首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryo-electron tomography of frozen hydrated cells has provided cell biologists with an indispensable tool for delineating three-dimensional arrangements of cellular ultrastructure. To avoid the damage induced by electron irradiation, images of frozen hydrated biological specimens are generally acquired under low-dose conditions, resulting in weakly contrasted images that are difficult to interpret, and in which ultrastructural details remain ambiguous. Zernike phase contrast transmission electron microscopy can improve contrast, and can also fix a fatal problem related to the inherent low contrast of conventional electron microscopy, namely, image modulation due to the unavoidable setting of deep defocus. In this study, we applied cryo-electron tomography enhanced with a Zernike phase plate, which avoids image modulation by allowing in-focus setting. The Zernike phase contrast cryo-electron tomography has a potential to suppress grainy background generation. Due to the smoother background in comparison with defocus phase contrast cryo-electron tomography, Zernike phase contrast cryo-electron tomography could yield higher visibility for particulate or filamentous ultrastructure inside the cells, and allowed us to clearly recognize membrane protein structures.  相似文献   

2.
The density of glycoprotein (GP) distribution on the virion surface substantially influences the virus infectivity and pathogenicity. A method to quantitatively determine the area occupied by surface GP spikes was proposed for influenza virus (Flu) strain A/PR/8/34 on the basis of data of tritium bombardment and dynamic light scattering. The latter was used to measure the diameter of intact virions and subviral particles (Flu virions lacking GP spikes after bromelain digestion). Intact virions and subviral particles were bombarded with a hot tritium atom flux, and the specific radioactivity of the matrix M1 protein was analyzed. The tritium label was incorporated into the amino acid residues of a thin exposed protein layer and partly penetrated through the lipid bilayer of the viral envelope, labeling M1, located under the lipid bilayer. The tritium label distribution among different amino acid residues was the same in M1 isolated from subviral particles and M1 isolated from intact virions, demonstrating that the M1 spatial structure remained unchanged during proteolysis of GP spikes. The difference in specific radioactivity between the M1 proteins isolated from intact virions and subviral particles was used to calculate the GP-free portion of the viral surface. Approximating the Flu virion as a sphere, the GP-covered area was estimated at 1.4 × 104 nm2, about 40% of the total virion surface. This was consistent with the cryoelectron tomography data published for Flu strain A/X-31. The approach can be applied for other enveloped high pathogenic viruses, such as HIV and the Ebola virus.  相似文献   

3.
La Crosse (LAC) virions were cryopreserved by rapid freezing in a thin layer of vitreous ice. The vitrified-hydrated LAC virions were subsequently imaged at -170 degrees C in a transmission electron microscope equipped with a low-temperature specimen holder. This cryoelectron microscopic technique eliminates the artifacts frequently associated with negative staining. Images of vitrified-hydrated LAC virions clearly revealed surface spikes as well as bilayer structure. Size measurements of the vitrified-hydrated LAC virions showed heterogeneity, with diameters ranging from 75 to 115 nm. Regardless of the particle size, the spike was about 10 nm long, and the bilayer was about 4 nm thick. The spikes are interpreted to be one or both of the glycoproteins, and the bilayer is interpreted to be the membrane envelope of the virus. In contrast to the pleomorphic appearance of the negatively stained LAC virions, the vitrified-hydrated LAC virions showed uniform spherical shapes regardless of their sizes.  相似文献   

4.
The surface potential of membranes of vesicular stomatitis virus and liposomes was determined by shift of ionization over a wide pH range of the membrane-inserted fluorophore, 4-heptadecyl-7-hydroxycoumarin. Incorporation into sonicated vesicles of negatively charged phosphatidylserine markedly increased the surface potential of uncharged phosphatidylcholine, but no significant effect on surface potential was produced by polar but uncharged glucocerebroside incorporated in phosphatidylcholine vesicles. The membrane of vesicular stomatitis virus was found to have a moderately high surface potential. Contributing to this viral membrane surface potential were glycoprotein spikes and phospholipid headgroups as determined by lowered charge after treatment of intact virions with thermolysin to remove glycoprotein or phospholipase C to remove phospholipid headgroups. The role of viral glycoprotein was confirmed by demonstrating increased surface charge of vesicles reconstituted with both viral glycoprotein and lipids compared with vesicles reconstituted with viral lipids alone. An unexpected finding was the large contribution to surface potential of cholesterol present in viral membrane. Increasing cholesterol concentration in virions by interaction with cholesterol-complexed serum lipoproteins resulted in a marked decrease in surface potential, whereas 75% depletion of virion cholesterol by interaction with sphingomyelin-complexed serum lipoproteins resulted in a significant increase in virion membrane surface potential. Although removal of glycoprotein spikes or depletion of cholesterol causes reduction in infectivity of vesicular stomatitis virus, no direct correlation could be found between alteration in surface charge and infectivity.  相似文献   

5.
The envelope of the influenza virus undergoes extensive structural change during the viral life cycle. However, it is unknown how lipid and protein components of the viral envelope contribute to its mechanical properties. Using atomic force microscopy, here we show that the lipid envelope of spherical influenza virions is ∼10 times softer (∼0.05 nanonewton nm−1) than a viral protein-capsid coat and sustains deformations of one-third of the virion''s diameter. Compared with phosphatidylcholine liposomes, it is twice as stiff, due to membrane-attached protein components. We found that virus indentation resulted in a biphasic force-indentation response. We propose that the first phase, including a stepwise reduction in stiffness at ∼10-nm indentation and ∼100 piconewtons of force, is due to mobilization of membrane proteins by the indenting atomic force microscope tip, consistent with the glycoprotein ectodomains protruding ∼13 nm from the bilayer surface. This phase was obliterated for bromelain-treated virions with the ectodomains removed. Following pH 5 treatment, virions were as soft as pure liposomes, consistent with reinforcing proteins detaching from the lipid bilayer. We propose that the soft, pH-dependent mechanical properties of the envelope are critical for the pH-regulated life cycle and support the persistence of the virus inside and outside the host.  相似文献   

6.
HIV-1 assembly depends on its structural protein, Gag, which after synthesis on ribosomes, traffics to the late endosome/plasma membrane, associates with HIV Env glycoprotein, and forms infectious virions. While Env and Gag migrate to lipid microdomains, their stoichiometry and specificity of interaction are unknown. Pseudotyped viral particles can be made with one viral core surrounded by heterologous envelope proteins. Taking advantage of this property, we analyzed the association of HIV Env and Ebola glycoprotein (GP), with HIV-1 Gag coexpressed in the same cell. Though both viral glycoproteins were expressed, each associated independently with Gag, giving rise to distinct virion populations, each with a single glycoprotein type. Confocal imaging demonstrated that Env and GP localized to distinct lipid raft microdomains within the same cell where they associated with different virions. Thus, a single Gag particle associates "quantally" with one lipid raft, containing homogeneous trimeric viral envelope proteins, to assemble functional virions.  相似文献   

7.
Budding of enveloped viruses has been shown to be driven by interactions between a nucleocapsid and a proteolipid membrane. By contrast, we here describe the assembly of viral envelopes independent of a nucleocapsid. Membrane particles containing coronaviral envelope proteins were assembled in and released from animal cells co-expressing these proteins' genes from transfected plasmids. Of the three viral membrane proteins only two were required for particle formation, the membrane glycoprotein (M) and the small envelope protein (E). The spike (S) protein was dispensable but was incorporated when present. Importantly, the nucleocapsid protein (N) was neither required not taken into the particles when present. The E protein, recently recognized to be a structural protein, was shown to be an integral membrane protein. The envelope vesicles were found by immunogold labelling and electron microscopy to form a homogeneous population of spherical particles indistinguishable from authentic coronavirions in size (approximately 100 nm in diameter) and shape. They were less dense than virions and sedimented slightly slower than virions in sucrose velocity gradients. The nucleocapsid-independent formation of apparently bona fide viral envelopes represents a novel mode of virus assembly.  相似文献   

8.
Reaction of vesicular stomatitis virus with pardaxin, the hydrophobic toxin of the Red Sea flatfish, resulted in a profound morphological change of many virions and dissociation of their membrane and nucleocapsid into components readily separable by density gradient centrifugation. The basic matrix protein and acidic pardaxin segregated largely with the high density nucleocapsid. The dissociated virion membrane formed lipoprotein vesicles which retained glycoprotein spikes and a certain amount of N protein but no appreciable amounts of other nucleocapsid proteins and little if any RNA. Iodination of the tyrosine residue of the glycoprotein tail fragment provided supporting evidence that the COOH terminus of the glycoprotein extends beyond the inner layer of the membrane into the interior of the virion. These data indicate that pardaxin may serve as a probe for studying the organization of viral membranes, and, hopefully, other biological membranes.  相似文献   

9.
The HIV-1 envelope (Env) glycoproteins play an essential role in the virus replication cycle by mediating the fusion between viral and cellular membranes during the entry process. The Env glycoproteins are synthesized as a polyprotein precursor (gp160) that is cleaved by cellular proteases to the mature surface glycoprotein gp120 and the transmembrane glycoprotein gp41. During virus assembly, the gp120/gp41 complex is incorporated as heterotrimeric spikes into the lipid bilayer of nascent virions. These gp120/gp41 complexes then initiate the infection process by binding receptor and coreceptor on the surface of target cells. Much is currently known about the HIV-1 Env glycoprotein trafficking pathway and the structure of gp120 and the extracellular domain of gp41. However, the mechanism by which the Env glycoprotein complex is incorporated into virus particles remains incompletely understood. Genetic data support a major role for the cytoplasmic tail of gp41 and the matrix domain of Gag in Env glycoprotein incorporation. Still to be defined are the identities of host cell factors that may promote Env incorporation and the role of specific membrane microdomains in this process. Here, we review our current understanding of HIV-1 Env glycoprotein trafficking and incorporation into virions.  相似文献   

10.
The dissolution of polyhedra of Autographa californica nuclear polyhedrosis virus by digestive fluid collected from 5th stage Trichoplusia ni larvae was studied in vitro. Observations were made at timed intervals using phase contrast microscopy, and scanning and transmission electron microscopy. Dissolution occurred rapidly and in a detectable sequence. Under phase contrast, most polyhedra lost their refringence by 0.5 min. The polyhedra became rounded in appearance with small protuberances on the surface and Brownian movement was observed within. After 1 min, the envelope of most polyhedra had ruptured, releasing the enclosed virions. The protuberances were also observed under the scanning electron microscope after digestion for 0.5 min. Many shell fragments devoid of internal contents were seen after more lengthy digestion. Internal structural changes were revealed by electron microscopy. After 1 min of exposure, polyhedra were observed in all stages of dissolution. By 3 min, only virions, scattered about in heterogeneous material, could be distinguished.  相似文献   

11.
Influenza virus enters host cells by endocytosis. The low pH of endosomes triggers conformational changes in hemagglutinin (HA) that mediate fusion of the viral and endosomal membranes. We have used cryo-electron tomography to visualize influenza A virus at pH 4.9, a condition known to induce fusogenicity. After 30 min, when all virions are in the postfusion state, dramatic changes in morphology are apparent: elongated particles are no longer observed, larger particles representing fused virions appear, the HA spikes become conspicuously disorganized, a layer of M1 matrix protein is no longer resolved on most virions, and the ribonucleoprotein complexes (RNPs) coagulate on the interior surface of the virion. To probe for intermediate states, preparations were imaged after 5 min at pH 4.9. These virions could be classified according to their glycoprotein arrays (organized or disorganized) and whether or not they have a resolved M1 layer. Employing subtomogram averaging, we found, in addition to the neutral-pH state of HA, two intermediate conformations that appear to reflect an outwards movement of the fusion peptide and rearrangement of the HA1 subunits, respectively. These changes are reversible. The tomograms also document pH-induced changes affecting the M1 layer that appear to render the envelope more pliable and hence conducive to fusion. However, it appears desirable for productive infection that fusion should proceed before the RNPs become coagulated with matrix protein, as eventually happens at low pH.  相似文献   

12.
Observations of the light-scattering properties of several enveloped viruses indicate that virions (vesicular stomatitis, SV5 and influenza), in common with other membrane systems, are osmotically active, responding to NaCl gradients by swelling in hypo-osmolar solutions and shrinking in hyperosmolar solutions. The permeability barrier responsible for this osmotic response in vesicular stomatitis virions was modified both by protease treatment to remove the viral glycoprotein and by treatment with the polyene antibiotic filipin, an agent known to interact with cholesterol in liposomes and membranes. Filipin altered the kinetic and equilibrium permeability behavior of virions but the extent of leakage of osmotic shocking agent was less than that in lecithin/cholesterol and lecithin/ergosterol liposomes and in ergosterol-containing ciliary membranes. Negative-staining electron microscopy revealed that filipin treatment caused structural changes in the viral membrane. Intact virions exhibited appreciably larger responses to osmotic change than did protease-treated virus particles. Thus, the osmotic barrier in intact vesicular stomatitis virions may not be exclusively lipid in nature.  相似文献   

13.
Observations of the light-scattering properties of several enveloped viruses indicate that virions (vesicular stomatitis, SV5 and influenza), in common with other membrane systems, are osmotically active, responding to NaCl gradients by swelling in hypo-osmolar solutions and shrinking in hyperosmolar solutions. The permeability barrier responsible for this osmotic response in vesicular stomatitis virions was modified both by protease treatment to remove the viral glycoprotein and by treatment with the polyene antibiotic filipin, an agent known to interact with cholesterol in liposomes and membranes. Filipin altered the kinetic and equilibrium permeability behavior of virions but the extent of leakage of osmotic shocking agent was less than that in lecithin/cholesterol and lecithin/ergosterol liposomes and in ergosterol-containing ciliary membranes. Negative-staining electron microscopy revealed that filipin treatment caused structural changes in the viral membrane. Intact virions exhibited appreciably larger responses to osmotic change than did protease-treated virus particles. Thus, the osmotic barrier in intact vesicular stomatitis virions may not be exclusively lipid in nature.  相似文献   

14.
The bilayer phase of dioleoylphosphatidylethanolamine (PE) can be stabilized with palmitoyl-IgG monoclonal antibody to the glycoprotein gD of the herpes simplex virus (HSV). Interactions of PE immunoliposomes with the target virions were characterized by analyzing the kinetics of lipid mixing, by liposomal content release, and by ultrastructural studies. As revealed by a resonance energy transfer assay, lipid mixing between PE immunoliposomes and virions was very rapid, with a second-order rate constant (kapp) of 0.173 (min)-1 (microgram/mL virus)-1. In comparison, content release from PE immunoliposomes was much slower and exhibited multiple-phase, mixed-order kinetics, indicating that liposome destabilization involved fusion of liposomes with HSV. The extent and the apparent rate of liposome destabilization were strongly dependent on liposome concentration. This was evident by the fact that only one to two liposomes were destabilized by each virus particle at low liposome concentration (0.1 microM). For higher liposome concentrations (1-10 microM), this value was 35-104. This finding implies that collision among the virus-bound liposomes is essential for the eventual collapse of PE immunoliposomes to form the hexagonal (HII) equilibrium phase which was observed using freeze-fracture electron microscopy. Studies employing soluble gD, immobilized on latex beads, indicated that a multivalent antigen source is essential for PE immunoliposome destabilization. Immediately after liposome-virus binding, fusion of liposome with the viral membrane then follows. Upon growth of the fusion complexes, which increase to 35-104 liposomes for each virus, an eventual collapse of the structure results, driving PE to its equilibrium structure of HII phase.  相似文献   

15.
Influenza A virus matrix M1 protein is membrane associated and plays a crucial role in virus assembly and budding. The N-terminal two thirds of M1 protein was resolved by X-ray crystallography. The overall 3D structure as well as arrangement of the molecule in relation to the viral membrane remains obscure. Now a proteolytic digestion of virions with bromelain was used as an instrument for the in situ assessment of the M1 protein structure. The lipid bilayer around the subviral particles lacking glycoprotein spikes was partially disrupted as was shown by transmission electron microscopy. A phenomenon of M1 protein fragmentation inside the subviral particles was revealed by SDS-PAGE analysis followed by in-gel trypsin hydrolysis and MALDI-TOF mass spectrometry analysis of the additional bands. Putative bromelain-digestion sites appeared to be located at the surface of the M1 protein globule and could be used as landmarks for 3D molecular modeling.  相似文献   

16.
We used cryo-electron tomography to visualize Rous sarcoma virus, the prototypic alpharetrovirus. Its polyprotein Gag assembles into spherical procapsids, concomitant with budding. In maturation, Gag is dissected into its matrix, capsid protein (CA), and nucleocapsid moieties. CA reassembles into cores housing the viral RNA and replication enzymes. Evidence suggests that a correctly formed core is essential for infectivity. The virions in our data set range from ∼ 105 to ∼ 175 nm in diameter. Their cores are highly polymorphic. We observe angular cores, including some that are distinctively “coffin-shaped” for which we propose a novel fullerene geometry; cores with continuous curvature including, rarely, fullerene cones; and tubular cores. Angular cores are the most voluminous and densely packed; tubes and some curved cores contain less material, suggesting incomplete packaging. From the tomograms, we measured the surface areas of cores and, hence, their contents of CA subunits. From the virion diameters, we estimated their original complements of Gag. We find that Rous sarcoma virus virions, like the human immunodeficiency virus, contain unassembled CA subunits and that the fraction of CA that is assembled correlates with core type; angular cores incorporate ∼ 80% of the available subunits, and open-ended tubes, ∼ 30%. The number of glycoprotein spikes is variable (∼ 0 to 118) and also correlates with core type; virions with angular cores average 82 spikes, whereas those with tubular cores average 14 spikes. These observations imply that initiation of CA assembly, in which interactions of spike endodomains with the Gag layer play a role, is a critical determinant of core morphology.  相似文献   

17.
We present the first application of Zernike phase-contrast transmission electron microscopy to single-particle 3D reconstruction of a protein, using GroEL chaperonin as the test specimen. We evaluated the performance of the technique by comparing 3D models derived from Zernike phase contrast imaging, with models from conventional underfocus phase contrast imaging. The same resolution, about 12A, was achieved by both imaging methods. The reconstruction based on Zernike phase contrast data required about 30% fewer particles. The advantages and prospects of each technique are discussed.  相似文献   

18.
Lassa virus is an enveloped, bi-segmented RNA virus and the most prevalent and fatal of all Old World arenaviruses. Virus entry into the host cell is mediated by a tripartite surface spike complex, which is composed of two viral glycoprotein subunits, GP1 and GP2, and the stable signal peptide. Of these, GP1 binds to cellular receptors and GP2 catalyzes fusion between the viral envelope and the host cell membrane during endocytosis. The molecular structure of the spike and conformational rearrangements induced by low pH, prior to fusion, remain poorly understood. Here, we analyzed the three-dimensional ultrastructure of Lassa virus using electron cryotomography. Sub-tomogram averaging yielded a structure of the glycoprotein spike at 14-Å resolution. The spikes are trimeric, cover the virion envelope, and connect to the underlying matrix. Structural changes to the spike, following acidification, support a viral entry mechanism dependent on binding to the lysosome-resident receptor LAMP1 and further dissociation of the membrane-distal GP1 subunits.  相似文献   

19.
Directional budding of human immunodeficiency virus from monocytes.   总被引:4,自引:3,他引:1       下载免费PDF全文
Time-lapse cinematography revealed that activated human immunodeficiency virus (HIV)-infected monocytes crawl along surfaces, putting forward a leading pseudopod. Scanning electron micrographs showed monocyte pseudopods associated with spherical structures the size of HIV virions, and transmission electron micrographs revealed HIV virions budding from pseudopods. Filamentous actin (F-actin) was localized by electron microscopy in the pseudopod by heavy meromyosin decoration. Colocalization of F-actin and p24 viral antigen by light microscopy immunofluorescence indicated that F-actin and virus were present on the same pseudopod. These observations indicate that monocytes produce virus from a leading pseudopod. We suggest that HIV secretion at the leading edges of donor monocytes/macrophages may be an efficient way for HIV to infect target cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号