首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In cultured cells of the Bomirski Ab amelanotic hamster melanoma line, the substrates of tyrosinase, L-tyrosine, and L-DOPA induce the melanogenic pathway. In this report, we demonstrate that these substrates regulate the subcellular apparatus involved in their own metabolism and that this regulation is under the dynamic control of one of the components of this apparatus, tyrosinase, via tyrosine hydroxylase activity. Culturing cells with nontoxic but melanogenically inhibitory levels of phenylthiourea (PTU; 100 microM) strongly inhibits induction of both the tyrosine hydroxylase and DOPA oxidase activities of tyrosinase by L-tyrosine (200 microM) but has no effect on the induction of either activity by L-DOPA (50 microM). De novo synthesis of premelanosomes precedes the onset of tyrosine-induced melanogenesis. Thereafter, increases in the population of melanosomes (likewise inhibited by PTU) correlate positively with increases in tyrosinase activity induced by L-tyrosine. Melanogenesis induced by L-DOPA in the absence of L-tyrosine is rate-limited not by tyrosinase but by inadequate melanosome synthesis. Our findings indicate that in Bomirski Ab amelanotic hamster melanoma cells the synthesis of the subcellular apparatus of melanogenesis is initiated by L-tyrosine and is regulated further by tyrosinase and L-DOPA, which serves as a second messenger subsequent to tyrosine hydroxylase activity.  相似文献   

2.
3.
A Slominski 《Life sciences》1989,45(19):1799-1803
In cultured amelanotic hamster melanoma cells L-tyrosine induces melanogenesis. This induction involves an increase in intracellular concentration of proteins precipitated by polyclonal anti-tyrosinase antibodies, and stimulation of the Vmax of tyrosinase activity. Therefore it is suggested that in hamster melanoma cells L-tyrosine induces synthesis of tyrosinase and melanogenesis related proteins.  相似文献   

4.
目的:探索不同剂量的L-酪氨酸对羊驼黑素细胞增殖以及酪氨酸酶mRNA表达的影响。方法:体外培养正常羊驼皮肤黑素细胞,显微镜下观察不同剂量的L-酪氨酸(100μmol/L、200μmol/L、300μmol/L、400μmol/L)对羊驼皮肤黑素细胞增殖的影响,利用实时荧光定量PCR技术分析不同剂量L-酪氨酸对酪氨酸酶mRNA的表达量的影响。结果:研究结果显示:在培养的黑素细胞中添加了不同剂量L-酪氨酸3d后,镜检观察,黑素细胞数量相比较空白对照组有所减少,酪氨酸酶mRNA表达量增加且显著高于对照组(P〈0.05),在200μmol/L时,酪氨酸酶mRNA表达量达到最高峰值。结论:L-酪氨酸能诱导羊驼皮肤黑素细胞酪氨酸酶mRNA表达量增高。  相似文献   

5.
Bomirski Ab amelanotic melanoma cells have recently been shown to undergo striking phenotypic changes when precursors of the melanogenic pathway, L-tyrosine and L-dopa, are added to the culture medium. The changes include increased tyrosinase activity andde novo synthesis of melanosomes and melanin. L-tyrosine and L-dopa appeared to elicit these responses through separate but overlapping regulatory pathways. Here we show an additional effect of L-tyrosine: stimulation of MSH binding capacity. Cells cultured for 24–48 hours in the presence of 200 M L-tyrosine display a 3–4 fold increase in their ability to bind125l--MSH. L-dopa did not stimulate MSH binding under the same conditions. In control experiments neither L-tyrosine nor L-dopa had any effect on insulin binding. The amelanotic cells respond to MSH with increased dendrite formation, increased tyrosinase activity without melanin production, and decreased growth rate.  相似文献   

6.
In the pathway of melanin biosynthesis originating from L-tyrosine, the dopachrome accumulation at physiological pH is produced with a pronounced lag period, during which the level of L-dopa increases, following a sigmoidal kinetics to reach a steady-state. A kinetic model has been proposed for the overall pathway of melanization from L-tyrosine to dopachrome; it explains the lag period present during the dopachrome accumulation as well as the influence of L-tyrosine and tyrosinase over this lag period. Use of this model is also valid to explain the kinetics of L-dopa accumulation in the reaction medium, as has been tested by simulation.  相似文献   

7.
8.
A promising attempt in the field of tumour therapy is the modulation of intracellular, proliferation-associated signalling pathways. The role of cyclic nucleotide phosphodiesterases (PDEs), key enzymes in cAMP/cGMP signal transduction, was investigated in two human CNS tumour cell lines as well as in the rat glioblastoma cell line C6 in comparison with rat cerebellar astrocytes with the emphasis on target evaluation. We found differential PDE expression patterns in human CNS tumour cell lines as well as in CNS cells of rat origin. In human glioblastoma cells, intracellular cAMP and Ca(2+) levels correlated well with the PDE expression pattern. There were, however, marked differences in PDE expression and Ca(2+) kinetics between the human glioblastoma cell lines. In contrast to human epithelial tumour cells, shown earlier by us to express significantly enhanced cAMP-specific PDE activity, this was not the case in rat glioblastoma cells compared with non-malignant rat astrocytes. Despite different levels of PDE1 and PDE4 expression and activity, cyclic nucleotide and Ca(2+) levels in non-malignant and malignant rat CNS cells were similar. These in vitro data do not support the concept of PDE1C representing a target exploitable for drug treatment of malignant CNS tumours.  相似文献   

9.
We present the development of a simple, high-throughput screen for identifying bacterial strains capable of L-tyrosine production. Through the introduction of a heterologous gene encoding a tyrosinase, we were able to link L-tyrosine production in Escherichia coli with the synthesis of the black and diffusible pigment melanin. Although melanin was initially produced only at low levels in morpholinepropanesulfonic acid (MOPS) minimal medium, phosphate supplementation was found to be sufficient for increasing both the rates of synthesis and the final titers of melanin. Furthermore, a strong linear correlation between extracellular L-tyrosine content and melanin formation was observed by use of this new medium formulation. A selection strategy that utilizes these findings has been developed and has been shown to be effective in screening large combinatorial libraries in the search for L-tyrosine-overproducing strains.  相似文献   

10.
There is evidence that L-tyrosine and L-dihydroxyphenylalanine (L-DOPA), besides serving as substrates and intermediates of melanogenesis, are also bioregulatory agents acting not only as inducers and positive regulators of melanogenesis but also as regulators of other cellular functions. These can be mediated through action on specific receptors or through non-receptor-mediated mechanisms. The substrate induced (L-tyrosine and/or L-DOPA) melanogenic pathway would autoregulate itself as well as regulate the melanocyte functions through the activity of its structural or regulatory proteins and through intermediates of melanogenesis and melanin itself. Dissection of regulatory and autoregulatory elements of this process may elucidate how substrate-induced autoregulatory pathways have evolved from prokaryotic or simple eukaryotic organisms to complex systems in vertebrates. This could substantiate an older theory proposing that receptors for amino acid-derived hormones arose from the receptors for those amino acids, and that nuclear receptors evolved from primitive intracellular receptors binding nutritional factors or metabolic intermediates.  相似文献   

11.
12.
Peroxisome proliferator-activated receptor alpha (PPARalpha) is mainly expressed in liver and involved in lipid metabolism. Oxidation of certain fatty acids in peroxisomes is under PPARalpha control. A wide variety of lipid molecules activate PPARalpha as well as the fibric acid derivative clofibrate. In the present study, we evaluated the differential activation of PPARalpha with several agonist ligands through its expression and DNA binding in both rat (McA-RH7777) and human (HepG2) hepatoma cell lines. In McA-RH7777 cells, clofibrate alone mediated a higher induction of PPARalpha expression than linoleic acid. In contrast, linoleic acid was the most effective ligand in HepG2 cells and treatment with clofibrate plus linoleic acid did not further increase PPARalpha expression. PPRE-binding activity of PPARalpha in ligand-treated cells was also increased in a parallel manner. We suggest that ligand-induced PPARalpha activation might give rise to differential species-dependent responses.  相似文献   

13.
Abstract—Novel treatments for various types of malignant diseases are warranted. In this study, we evaluated JAK2 inhibitors (Janus kinase 2) for suppressing the growth of malignant neuroblastoma and glioblastoma cells as well as breast and non-small cell lung cancers. Neuroblastoma and glioblastoma cells are the most sensitive to the JAK2 inhibitor AG490. A study of the relative expression of receptors that can activate JAK2 suggests that cell line sensitivity to AG490 may be mediated by IL6-R, IL11-R and/or CSF1-R. AG490 enhances the effect of doxorubicin on neuroblastoma cells. Our findings suggest the possible relevance of JAK2 inhibitors for neuroblastoma therapy, especially in combination with doxorubicin.  相似文献   

14.
IIB-MEL-J is a highly heterogeneous newly established human melanoma cell line. The addition of 3 mM L-tyrosine to the culture medium produced (1) a great decrease in the cell growth rate, (2) a loss of the anchor-age-independent growth capacity, and (3) a change in the morphology of the cells to a fibroblastoid aspect. Coincident with these changes, an increase in subpopulations I and II and a decrease in subpopulations III and IV took place. In view of this evidence we consider that the cells have differentiated. The melanin production was not increased by the L-tyrosine treatment, suggesting that differentiation and melanin expression are not strictly correlated.  相似文献   

15.
Efficient biosynthesis of L-tyrosine from glucose is necessary to make biological production economically viable. To this end, we designed and constructed a modular biosynthetic pathway for L-tyrosine production in E. coli MG1655 by encoding the enzymes for converting erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP) to L-tyrosine on two plasmids. Rational engineering to improve L-tyrosine production and to identify pathway bottlenecks was directed by targeted proteomics and metabolite profiling. The bottlenecks in the pathway were relieved by modifications in plasmid copy numbers, promoter strength, gene codon usage, and the placement of genes in operons. One major bottleneck was due to the bifunctional activities of quinate/shikimate dehydrogenase (YdiB), which caused accumulation of the intermediates dehydroquinate (DHQ) and dehydroshikimate (DHS) and the side product quinate; this bottleneck was relieved by replacing YdiB with its paralog AroE, resulting in the production of over 700 mg/liter of shikimate. Another bottleneck in shikimate production, due to low expression of the dehydroquinate synthase (AroB), was alleviated by optimizing the first 15 codons of the gene. Shikimate conversion to L-tyrosine was improved by replacing the shikimate kinase AroK with its isozyme, AroL, which effectively consumed all intermediates formed in the first half of the pathway. Guided by the protein and metabolite measurements, the best producer, consisting of two medium-copy-number, dual-operon plasmids, was optimized to produce >2 g/liter L-tyrosine at 80% of the theoretical yield. This work demonstrates the utility of targeted proteomics and metabolite profiling in pathway construction and optimization, which should be applicable to other metabolic pathways.  相似文献   

16.
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a nuclear receptor that controls lipid and glucose metabolism and exerts antiinflammatory activities. PPARalpha is also reported to influence bile acid formation and bile composition. Farnesoid X receptor (FXR) is a bile acid-activated nuclear receptor that mediates the effects of bile acids on gene expression and plays a major role in bile acid and possibly also in lipid metabolism. Thus, both PPARalpha and FXR appear to act on common metabolic pathways. To determine the existence of a molecular cross-talk between these two nuclear receptors, the regulation of PPARalpha expression by bile acids was investigated. Incubation of human hepatoma HepG2 cells with the natural FXR ligand chenodeoxycholic acid (CDCA) as well as with the nonsteroidal FXR agonist GW4064 resulted in a significant induction of PPARalpha mRNA levels. In addition, hPPARalpha gene expression was up-regulated by taurocholic acid in human primary hepatocytes. Cotransfection of FXR/retinoid X receptor in the presence of CDCA led to up to a 3-fold induction of human PPARalpha promoter activity in HepG2 cells. Mutation analysis identified a FXR response element in the human PPARalpha promoter (alpha-FXR response element (alphaFXRE)] that mediates bile acid regulation of this promoter. FXR bound the alphaFXRE site as demonstrated by gel shift analysis, and CDCA specifically increased the activity of a heterologous promoter driven by four copies of the alphaFXRE. In contrast, neither the murine PPARalpha promoter, in which the alphaFXRE is not conserved, nor a mouse alphaFXRE-driven heterologous reporter, were responsive to CDCA treatment. Moreover, PPARalpha expression was not regulated in taurocholic acid-fed mice. Finally, induction of hPPARalpha mRNA levels by CDCA resulted in an enhanced induction of the expression of the PPARalpha target gene carnitine palmitoyltransferase I by PPARalpha ligands. In concert, these results demonstrate that bile acids stimulate PPARalpha expression in a species-specific manner via a FXRE located within the human PPARalpha promoter. These results provide molecular evidence for a cross-talk between the FXR and PPARalpha pathways in humans.  相似文献   

17.
Alzheimer's disease (AD) is the most common form of dementia and displays the characteristics of chronic neurodegenerative disorders; amyloid plaques (AP) that contain amyloid β‐protein (Aβ) accumulate in AD, which is also characterized by tau phosphorylation. Epidemiological evidence has demonstrated that long‐term treatment with nonsteroidal anti‐inflammatory drugs (NSAIDs) markedly reduces the risk of AD by inhibiting the expression of cyclooxygenase 2 (COX‐2). Although the levels of COX‐2 and its metabolic product prostaglandin (PG)E2 are elevated in the brain of AD patients, the mechanisms for the development of AD remain unknown. Using human‐ or mouse‐derived glioblastoma and neuroblastoma cell lines as model systems, we delineated the signaling pathways by which COX‐2 mediates the reciprocal regulation of interleukin‐1β (IL‐1β) and Aβ between glial and neuron cells. In glioblastoma cells, COX‐2 regulates the synthesis of IL‐1β in a PGE2‐dependent manner. Moreover, COX‐2‐derived PGE2 signals the activation of the PI3‐K/AKT and PKA/CREB pathways via cyclic AMP; these pathways transactivate the NF‐κB p65 subunit via phosphorylation at Ser 536 and Ser 276, leading to IL‐1β synthesis. The secretion of IL‐1β from glioblastoma cells in turn stimulates the expression of COX‐2 in human or mouse neuroblastoma cells. Similar regulatory mechanisms were found for the COX‐2 regulation of BACE‐1 expression in neuroblastoma cells. More importantly, Aβ deposition mediated the inflammatory response of glial cells via inducing the expression of COX‐2 in glioblastoma cells. These findings not only provide new insights into the mechanisms of COX‐2‐induced AD but also initially define the therapeutic targets of AD.  相似文献   

18.
Control of L-phenylalanine production by a recombinant of Escherichia coli AT2471 by means of the dual feeding of glucose and L-tyrosine was investigated. A novel method was developed for on-line monitoring of the maximum glucose uptake rate (MGUR), in which the length of time required for the consumption of added glucose was measured. Accumulation of acetic acid was successfully prevented throughout the whole period of the culture when the glucose concentration was kept below 0.1 g/L by controlling the glucose feeding on the basis of on-line monitoring of the MGUR and the cell concentration with a laser sensor.In a batch culture with glucose feeding, after L-tyrosine was depleted cell growth and the L-phenylalanine production rate decreased along with decreases in the specific enzyme activities of chorismate mutase-p-prephenate dehydratase (CMP) and 3-deoxy-D-arabinoheputulosonate 7-phosphate synthase (DAHP), which are the key enzymes in the L-phenylalanine synthesis pathway. Increasing the L-tyrosine feed rate by an appropriate amount, but not so far as to cause L-tyrosine accumulation in the culture, increased the activities of the enzymes and the specific rates of growth and production while the product yield based on glucose consumption decreased.The average specific rates of growth, production, and MGUR could be expressed as functions of the specific L-tyrosine consumption rate during both the earlier and later periods of L-tyrosine feeding. Estimations of the amount of L-phenylalanine produced, the product yield, and the cost factor by using these functions with several different combinations of two specific L-tyrosine consumption rates for two 10-h periods resulted in a suggested optimum L-tyrosine feeding strategy giving a lower specific L-tyrosine consumption rate in the later period, to suppress cell growth, in comparison to that in the earlier period. During L-tyrosine feeding, the three specific rates (growth, production, and MGUR) could be successfully controlled by adjusting the specific L-tyrosine consumption rate to the predicted value. The cost factor was lowest in this controlled culture, demonstrating experimentally the effectiveness of the strategy. (c) 1996 John Wiley & Sons, Inc.  相似文献   

19.
Human tyrosinase (5.5 mg) has been purified from a single human melanotic melanoma metastasis (50.5 g). In the presence of dioxygen, L-tyrosine proved to be a very poor substrate for this enzyme with barely detectable activity compared to L-dopa. However, saturating superoxide anion (i.e., greater than 5 x 10(-3) M) enhanced the oxidation rate of L-tyrosine to dopachrome 40-fold. Hydrogen peroxide was shown to be a competitive inhibitor of tyrosinase when L-tyrosine was the substrate. This reversible inhibition is based on a slow pseudocatalase activity for tyrosinase. Monothiols and dithiols inhibit tyrosinase by different mechanisms. Reduced human thioredoxin and 2,3-dithiopropanol are allosteric inhibitors of tyrosinase yielding bis-cysteinate complexes with one of the copper atoms in the enzyme active site. Bis-cysteinate tyrosinase activity is down-regulated to 30% of native enzyme activity in the L-dopa assay; suggesting a true regulatory role for dithiols. Monothiols such as reduced glutathione and beta-mercaptoethanol are much less reactive with tyrosinase although 10(-3) M monothiol totally inhibits enzyme activity. Reduced thioredoxin inhibits tyrosinase 23-fold more than reduced glutathione under the same experimental conditions.  相似文献   

20.
Non-steroidal anti-inflammatory drug (NSAID), sulindac has chemopreventive and anti-tumorigenic properties, however, the molecular mechanism of this inhibitory action has not been clearly defined. The Akt/protein kinase B, serine/threonine kinase is well known as an important mediator of many cell survival signaling pathways. In the present study, we demonstrate that down-regulation of Akt is a major effect of anti-invasiveness property of sulindac and its metabolites in glioblastoma cells. Myristoylated Akt (MyrAkt) transfected U87MG glioblastoma cells showed increase invasiveness, whereas DN-Akt transfected cells showed decrease invasiveness indicating that Akt potently promoted glioblastoma cell invasion. MMP-2 promoter and enzyme activity were up-regulated in Akt kinase activity dependent manner. Sulindac and its metabolites down-regulated Akt phosphorylation, inhibited MMP-2 production, and significantly inhibited invasiveness of human glioblastoma cells. In addition, sulindac and LY294002, a selective inhibitor of phosphoinositide 3-kinase (PI3K), synergistically inhibited the invasion of glioblastoma cells. Furthermore, only celecoxib showed Akt phosphorylation reduction and an anti-invasivness in glioblastoma cells, whereas aspirin, ketoprofen, ketorolac, and naproxen did not. In conclusion, our results provide evidence that down-regulation of Akt pathway and MMP-2 may be one of the mechanisms by which sulindac and its metabolites inhibit glioblastoma cell invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号