首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolism of Phenol and Cresols by Mutants of Pseudomonas putida   总被引:21,自引:13,他引:8  
Mutant strains of Pseudomonas putida strain U have been obtained which are deficient in enzymes of the degradative pathways of phenol and cresols. Mutant strains deficient in catechol 2, 3-oxygenase accumulated the appropriate catechol derivative from cresols. A mutant strain which would not grow on either phenol or a cresol was shown to be deficient in both 2-hydroxymuconic semialdehyde hydrolase and a nicotinamide adenine dinucleotide, oxidized form, (NAD(+))-dependent aldehyde dehydrogenase. When this strain was grown in the presence of phenol or a cresol, the appropriate product of meta fission of these compounds accumulated in the growth medium. A partial revertant of this mutant strain, which was able to grow on ortho- and meta-cresol but not para-cresol, was shown to have regained only the hydrolase activity. This strain was used to show that the products of meta ring fission of the cresols and phenol are metabolized as follows: (i) ortho- and meta-cresol exclusively by a hydrolase; (ii) para-cresol exclusively by a NAD(+)-dependent aldehyde dehydrogenase; (iii) phenol by both a NAD(+)-dependent dehydrogenase and a hydrolase in the approximate ratio of 5 to 1. This conclusion is supported by the substrate specificity and enzymatic activity of the hydrolase and NAD(+)-dependent aldehyde dehydrogenase enzymes of the wild-type strain. The results are discussed in terms of the physiological significance of the pathway. Properties of some of the mutant strains isolated are discussed.  相似文献   

2.
Metabolism of phenol and cresols by Bacillus stearothermophilus.   总被引:1,自引:1,他引:0       下载免费PDF全文
An obligate thermophilic strain of Bacillus stearothermophilus, strain PH24, isolated from industrial sediment by elective culture, grew readily at 55 C on phenol or on one of the isomers of cresol as the major carbon source. Intact cells grown in the presence of phenol, o-cresol, m-cresol, or p-cresol were induced to oxidize, without lag, these substrates together with catechol, 3-methylcatechol, and 4-methylcatechol. Cell extracts prepared from B. stearothermophilus PH24 after growth in the presence of phenol converted phenol to catechol with a concomitant uptake of 1 mol of oxygen per mol of substrate in reaction mixtures supplemented with reduced nicotinamide adenine dinucleotide. These preparations also catalyzed the oxidation of o-cresol to 3-methylcatechol and of m-cresol and p-cresol to 4-methylcatechol. Enzyme activity was inhibited by 1 mM p-chloromercuribenzoate and by 0.1 mM 0-phenanthroline. Catechol and the corresponding methylcatechol intermediates were further dissimilated by cell extracts of phenol-grown cells via the meta-cleavage route to yield 2-hydroxymuconic semialdehyde and the respective methylated derivatives.  相似文献   

3.
Plasmid pRO1957 contains a 26.5-kb BamHI restriction endonuclease-cleaved DNA fragment cloned from the chromosome of Pseudomonas pickettii PKO1 that allows P. aeruginosa PAO1c to grow on toluene, benzene, phenol, or m-cresol as the sole carbon source. The genes encoding enzymes for meta cleavage of catechol or 3-methylcatechol, derived from catabolism of these substrates, were subcloned from pRO1957 and were shown to be organized into a single operon with the promoter proximal to tbuE. Deletion and analysis of subclones demonstrated that the order of genes in the meta cleavage operon was tbuEFGKIHJ, which encoded catechol 2,3-dioxygenase, 2-hydroxymuconate semialdehyde hydrolase, 2-hydroxymuconate semialdehyde dehydrogenase, 4-hydroxy-2-oxovalerate aldolase, 4-oxalocrotonate decarboxylase, 4-oxalocrotonate isomerase, and 2-hydroxypent-2,4-dienoate hydratase, respectively. The regulatory gene for the tbuEFGKIHJ operon, designated tbuS, was subcloned into vector plasmid pRO2317 from pRO1957 as a 1.3-kb PstI fragment, designated pRO2345. When tbuS was not present, meta pathway enzyme expression was partially derepressed, but these activity levels could not be fully induced. However, when tbuS was present in trans with tbuEFGKIHJ, meta pathway enzymes were repressed in the absence of an effector and were fully induced when an effector was present. This behavior suggests that the gene product of tbuS acts as both a repressor and an activator. Phenol and m-cresol were inducers of meta pathway enzymatic activity. Catechol, 3-methylcatechol, 4-methylcatechol, o-cresol, and p-cresol were not inducers but could be metabolized by cells previously induced by phenol or m-cresol.  相似文献   

4.
The meta-cleavage pathway of catechol is a major mechanism for degradation of aromatic compounds. In this pathway, the aromatic ring of catechol is cleaved by catechol 2,3-dioxygenase and its product, 2-hydroxymuconic semialdehyde, is further metabolized by either a hydrolytic or dehydrogenative route. In the dehydrogenative route, 2-hydroxymuconic semialdehyde is oxidized to the enol form of 4-oxalocrotonate by a dehydrogenase and then further metabolized to acetaldehyde and pyruvate by the actions of 4-oxalocrotonate isomerase, 4-oxalocrotonate decarboxylase, 2-oxopent-4-enoate hydratase, and 4-hydroxy-2-oxovalerate aldolase. In this study, the isomerase, decarboxylase, and hydratase encoded in the TOL plasmid pWW0 of Pseudomonas putida mt-2 were purified and characterized. The 28-kilodalton isomerase was formed by association of extremely small identical protein subunits with an apparent molecular weight of 3,500. The decarboxylase and the hydratase were 27- and 28-kilodalton polypeptides, respectively, and were copurified by high-performance-liquid chromatography with anion-exchange, hydrophobic interaction, and gel filtration columns. The structural genes for the decarboxylase (xylI) and the hydratase (xylJ) were cloned into Escherichia coli. The elution profile in anion-exchange chromatography of the decarboxylase and the hydratase isolated from E. coli XylI+XylJ- and XylI-XylJ+ clones, respectively, were different from those isolated from XylI+ XylJ+ bacteria. This suggests that the carboxylase and the hydratase form a complex in vivo. The keto but not the enol form of 4-oxalocrotonate was a substrate for the decarboxylase. The product of decarboxylation was 2-hydroxypent-2,4-dienoate rather than its keto form, 2-oxopent-4-enoate. The hydratase acts on the former but not the latter isomer. Because 2-hydroxypent-2,4-dienoate is chemically unstable, formation of a complex between the decarboxylase and the hydratase may assure efficient transformation of this unstable intermediate in vivo.  相似文献   

5.
In addition to catalyzing the hydrolysis of 4-carboxy-2-hydroxymuconic semialdehyde, formed by meta-fission of protocatechuate, Pseudomonas testosteroni also possesses a nicotinamide adenine dinucleotide(phosphate)-linked dehydrogenase for this compound and can degrade protocatechuate to pyruvate and oxaloacetate.  相似文献   

6.
Bacillus stearothermophilus IC3 degraded the meta cleavage product of catechol, 2-hydroxymuconic semialdehyde, to pyruvate and acetaldehyde via the 4-oxalocrotonate pathway. The pathway was identical to those previously delineated in several mesophilic organisms. However, all the enzymes showed activity at 55 degrees C and other properties (substrate specificities and effects of metal ions) also differed from those displayed by the mesophilic enzymes. All enzymes of this meta cleavage pathway, except the 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase and 4-hydroxy-2-oxovalerate aldolase activities, were induced by growth on phenol.  相似文献   

7.
Bordetella sp. strain 10d metabolizes 4-amino-3-hydroxybenzoic acid via 2-hydroxymuconic 6-semialdehyde. Cell extracts from 4-amino-3-hydroxybenzoate-grown cells showed high NAD(+)-dependent 2-hydroxymuconic 6-semialdehyde dehydrogenase, 4-oxalocrotonate tautomerase, 4-oxalocrotonate decarboxylase, and 2-oxopent-4-enoate hydratase activities, but no 2-hydroxymuconic 6-semialdehyde hydrolase activity. These enzymes involved in 4-amino-3-hydroxybenzoate metabolism were purified and characterized. When 2-hydroxymuconic 6-semialdehyde was used as substrate in a reaction mixture containing NAD(+) and cell extracts from 4-amino-3-hydroxybenzoate-grown cells, 4-oxalocrotonic acid, 2-oxopent-4-enoic acid, and 4-hydroxy-2-oxovaleric acid were identified as intermediates, and pyruvic acid was identified as the final product. A complete pathway for the metabolism of 4-amino-3-hydroxybenzoic acid in strain 10d is proposed. Strain 10d metabolized 2-hydroxymuconic 6-semialdehyde derived from 4-amino-3-hydroxybenzoic acid via a dehydrogenative route, not via a hydrolytic route. This proposed metabolic pathway differs considerably from the modified meta-cleavage pathway of 2-aminophenol and those previously reported for methyl- and chloro-derivatives.  相似文献   

8.
The nucleotide sequence of a 2493 base pair (bp) region, spanning the coding regions for the meta-cleavage pathway enzymes 2-hydroxymuconic semialdehyde dehydrogenase (HMSD) and 2-hydroxymuconic semialdehyde hydrolase (HMSH), was determined. The deduced protein sequence for HMSD is 486 amino acid residues long with an Mr of 51,682. HMSD has homology with a number of aldehyde dehydrogenases from various eukaryotic sources. The deduced protein sequence for HMSH is 283 amino acids long with an Mr of 30,965. The amino acid composition of this enzyme is similar to that of isofunctional enzymes from toluene and m-cresol catabolic pathways.  相似文献   

9.
J. Hollender  J. Hopp    W. Dott 《Applied microbiology》1997,63(11):4567-4572
Comamonas testosteroni JH5 used 4-chlorophenol (4-CP) as its sole source of energy and carbon up to a concentration of 1.8 mM, accompanied by the stoichiometric release of chloride. The degradation of 4-CP mixed with the isomeric 2-CP by resting cells led to the accumulation of 3-chlorocatechol (3-CC), which inactivated the catechol 2,3-dioxygenase. As a result, further 4-CP breakdown was inhibited and 4-CC accumulated as a metabolite. In the crude extract of 4-CP-grown cells, catechol 1,2-dioxygenase and muconate cycloisomerase activities were not detected, whereas the activities of catechol 2,3-dioxygenase, 2-hydroxymuconic semialdehyde dehydrogenase, 2-hydroxymuconic semialdehyde hydrolase, and 2-oxopent-4-enoate hydratase were detected. These enzymes of the meta cleavage pathway showed activity with 4-CC and with 5-chloro-2-hydroxymuconic semialdehyde. The activities of the dioxygenase and semialdehyde dehydrogenase were constitutive. Two key metabolites of the meta cleavage pathway, the meta cleavage product (5-chloro-2-hydroxymuconic semialdehyde) and 5-chloro-2-hydroxymuconic acid, were detected. Thus, our previous postulation that C. testosteroni JH5 uses the meta cleavage pathway for the complete mineralization of 4-CP was confirmed.  相似文献   

10.
A species of Acinetobacter and two strains of Pseudomonas putida when grown with 4-hydroxyphenylacetic acid gave cell extracts that converted 3,4-dihydroxyphenylacetic acid (homoprotocatechuic acid) into carbon dioxide, pyruvate, and succinate. The sequence of enzyme-catalyzed steps was as follows: ring-fission by a 2,3-dioxygenase, nicotinamide adenine dinucleotide-dependent dehydrogenation, decarboxylation, hydration, aldol fission, and oxidation of succinic semialdehyde. Two new metabolites, 5-carboxymethyl-2-hydroxymuconic acid and 2-hydroxyhepta-2,4-diene-1,7-dioic acid, were isolated from reaction mixtures and a third, 4-hydroxy-2-ketopimelic acid, was shown to be cleaved by extracts to give pyruvate and succinic semialdehyde. Enzymes of this metabolic pathway were present in Acinetobacter grown with 4-hydroxyphenylacetic acid but were effectively absent when 3-hydroxyphenylacetic acid or phenylacetic acid served as sources of carbon.  相似文献   

11.
A study of the degradation of phenol, p-cresol, and m- and p-toluate by Alcaligenes eutrophus 345 has provided evidence that these compounds are metabolized via separate catechol meta-cleavage pathways. Analysis of the enzymes synthesized by wild-type and mutant strains and by strains cured of the plasmid pRA1000, which encodes m- and p-toluate degradation, indicated that two or more isofunctional enzymes mediated several steps in the pathway. The formation of three catechol 2,3-oxygenases and two 2-hydroxymuconic semialdehyde hydrolases was indicated from an examination of the ratio of the specific activities of these enzymes against various substrates. Evidence for two 2-hydroxymuconic semialdehyde dehydrogenases, two 4-oxalocrotonate isomerases and decarboxylases, and three 2-ketopent-4-enoate hydratases was derived from the induction of these enzymes under different growth conditions. Each activity was detected when the wild type was grown in the presence of m-toluate, but not when grown with phenol (except for a hydratase) or p-cresol, whereas in strains cured of pRA1000, growth with phenol or p-cresol, but not with m-toluate, induced these enzymes. Hydroxylation of phenol and p-cresol appears to be mediated by the same enzyme.  相似文献   

12.
Mutant strains SU1, SU4, and US1 lacking glutamate synthase (GOGAT) activity were isolated from strains of P. aeruginosa for which histidine is a growth rate-limiting source of nitrogen. Strains SU1 and SU4 were unable to grow when a low concentration of ammonia and a variety of compounds, including histidine, were supplied as sole sources of nitrogen. A revertant of strain SU1, strain 39, produced no GOGAT but high levels of nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase and had restored ability to grow on a limited number of nitrogen sources. Strain US1 grew at the same rate in histidine medium as did its parent; it was derepressed for glutamine synthase synthesis, and histidase was less sensitive to repression by ammonia than in the parent strain. We conclude that GOGAT is not essential for growth on histidine but high levels of glutamine synthase are required nd high levels of nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase can sustain growth at low concentrations of ammonia in the absence of GOGAT.  相似文献   

13.
Nitrobenzene is degraded by Pseudomonas pseudoalcaligenes JS45 via 2-aminophenol to 2-aminomuconic semialdehyde, which is further degraded to pyruvate and acetaldehyde. Comamonas sp. JS765 degrades nitrobenzene via catechol to 2-hydroxymuconic semialdehyde. In this study we examined and compared the late steps of degradation of nitrobenzene by these two microorganisms in order to reveal the biochemical relationships of the two pathways and to provide insight for further investigation of their evolutionary history. Experiments showed that 2-hydroxymuconate, the product of the dehydrogenation of 2-hydroxymuconic semialdehyde, was degraded to pyruvate and acetaldehyde by crude extracts of Comamonas sp. JS765, which indicated the operation of a classical catechol meta-cleavage pathway. The semialdehyde dehydrogenases from Comamonas sp. JS765 and P. pseudoalcaligenes JS45 were able to metabolize both 2-amino- and 2-hydroxymuconic semialdehyde, with strong preference for the physiological substrate. 2-Aminomuconate was not a substrate for 4-oxalocrotonate decarboxylase from either bacterial strain. The close biochemical relationships among the classical catechol meta-cleavage pathway in Comamonas sp. JS765, 2-aminophenol meta-cleavage pathways in P. pseudoalcaligenes JS45, and an alternative 2-aminophenol meta-cleavage pathway in Pseudomonas sp. AP-3 suggest a common evolutionary origin. Received: 23 November 1998 / Accepted: 3 February 1999  相似文献   

14.
Previous studies have shown that the biodegradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45 proceeds by the reduction of nitrobenzene through nitrosobenzene and hydroxylaminobenzene, followed by rearrangement to 2-aminophenol, which then undergoes meta ring cleavage. We report here the isolation of a Comamonas sp. that uses an oxidative pathway for the complete mineralization of nitrobenzene. The isolate, designated strain JS765, uses nitrobenzene as a sole source of carbon, nitrogen, and energy. Nitrobenzene-grown cells oxidized nitrobenzene, with the stoichiometric release of nitrite. Extracts of nitrobenzene-grown JS765 showed high levels of catechol 2,3-dioxygenase activity that were not abolished by heating the cell extracts to 60(deg)C for 10 min. The ring cleavage product had an absorbance maximum at 375 nm, consistent with that of 2-hydroxymuconic semialdehyde. Both NAD-dependent dehydrogenase and NAD-independent hydrolase activities towards 2-hydroxymuconic semialdehyde were induced in extracts of nitrobenzene-grown cells. Catechol accumulated in the reaction mixture when cells preincubated with 3-chlorocatechol were incubated with nitrobenzene. Conversion of nitrobenzene to catechol by induced cells in the presence of 3-chlorocatechol and (sup18)O(inf2) demonstrated the simultaneous incorporation of two atoms of oxygen, which indicated that the initial reaction was dioxygenation. The results indicate that the catabolic pathway involves an initial dioxygenase attack on nitrobenzene with the release of nitrite and formation of catechol, which is subsequently degraded by a meta cleavage pathway.  相似文献   

15.
Degradation of 2-hydroxy-5-carboxymethylmuconic semialdehyde, the ring fission product of the 4-hydroxyphenylacetate meta-cleavage pathway, by mutant strains P23X19 and P23X16 of Pseudomonas putida NCI B 9865 was studied. Both mutants were unable to grow on either 4-hydroxyphenylacetate of 3,4-dihydroxyphenylacetate. Cell extracts of P23X19, grown in the presence of 3,4-dihydroxyphenylacetate, degraded the ring fission product to a compound that accumulated and had maximum UV absorption at 300 nm, pH 7.4, and 345 nm, pH 12. These are the spectral characteristics of 2-keto-5-carboxymethylhex-3-ene-1,6-dioate, the substrate for the decarboxylase in this pathway. This observation is consistent with P23X19's being decarboxylase defective. Cell extracts of P23X16, grown in the presence of 3,4-dihydroxyphenylacetate, degraded the ring fission product to a compound that accumulated and has maximum UV absorption at 295 nm, pH 7.4, and 345 nm, pH 12. This compound spontaneously degraded to a compound with the spectral properties of the decarboxylase substrate. The compound accumulated by P23X16 was also obtained when the decarboxylase substrate was treated with borate. It is suggested that the compound accumulated by P23X16 is the substrate of an isomerase. The results are consistent with P23X16's being unable to synthesize a functional isomerase while retaining decarboxylase activity and establish the physiological importance of an enzyme-catalyzed isomerization in the meta-cleavage degradation of 4-hydroxyphenylacetate.  相似文献   

16.
The meta cleavage operon of TOL degradative plasmid pWWO comprises 13 genes   总被引:3,自引:0,他引:3  
Summary The meta-cleavage operon of TOL plasmid pWWO of Pseudomonas putida encodes a set of enzymes which transform benzoate/toluates to Krebs cycle intermediates via extradiol (meta-) cleavage of (methyl)catechol. The genetic organization of the operon was characterized by cloning of the meta-cleavage genes into an expression vector and identification of their products in Escherichia coli maxicells. This analysis showed that the meta-cleavage operon contains 13 genes whose order and products (in kilodaltons) are The xyIXYZ genes encode three subunits of toluate 1,2-dioxygenase. The xylL, xyIE, xyIG, xylF, xylJ, xylK, xylI and xylH genes encode 1,2-dihydroxy-3,5-cyclohexadiene-1-carboxylate dehydrogenase, catechol 2,3-dioxygenase, 2-hydroxymuconic semialdehyde dehydrogenase, 2-hydroxymuconic semialdehyde hydrolase, 2-oxopent-4-enoate hydratase, 4-hydroxy-2-oxovalerate aldolase, 4-oxalocrotonate decarboxylase and 4-oxalocrotonate tautomerase, respectively. The functions of xyIT and xylQ are not known at present. The comparison of the coding capacity and the sizes of the products of the meta-cleavage operon genes indicated that most of the DNA between xyIX and xyIH consists of coding sequences.  相似文献   

17.
Mutant strains of Pseudomonas aeruginosa PAO were isolated on the basis of their inability to utilize mannitol as sole carbon source for growth. Four linkage groups (I through IV) among these mutant strains were resolved by two-factor crosses using the general transducing phage F116, and the strains appeared to contain point mutations as evidenced by ability to give rise to spontaneous revertants with wild phenotype on mannitol minimal agar. Group I strains were affected only in ability to grow on mannitol; all were deficient in inducible mannitol dehydrogenase activity, and all but one were deficient in inducible mannitol transport activity. Fructokinase was induced in group I strains and in wild-type bacteria during growth in the presence of mannitol but not fructose, indicating the presence of a pathway specific for endogenously generated fructose. Cells grown on fructose contained phosphoenolpyruvate:fructose-1-phosphotransferase activity, and mannitol-grown cells contained a lower level of this activity. Group II mutants were deficient in constitutive phosphoglucoisomerase, failed to grow on mannitol, grew very slowly on glycerol and fructose, but grew normally on glucose and gluconate. Group III strains were deficient in both nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-linked glucose-6-phosphate dehydrogenase activities that reside in a single enzyme species. 6-Phosphogluconate appeared to be the inductive effector for this enzyme, which was not required for aerobic growth on glucose or gluconate. A single mannitol-negative mutant in group IV also failed to grow on glycerol and glucose, but no biochemical lesion was identified.  相似文献   

18.
A mutation, pnt-1, causing loss of pyridine nucleotide transhydrogenase activity in Escherichia coli, was mapped by assaying for the enzyme in extracts of recombinant strains produced by conjugation, F-duction, and P1 transduction. The site of this mutation was near min 35, counterclockwise from man, and it co-transduced 59% with man. The mutation was associated with loss from the cell membrane fraction of energy-independent and adenosine 5'-triphosphate-dependent transhydrogenase activities, but reduced nicotinamide adenine dinucleotide dehydrogenase activity was not affected. Strains were constructed which lack phosphoglucoisomerase (pgi-2) and which carry either pnt+ or pnt-1. Although such strains, when grown on glucose, are expected to produce a large excess of reduced nicotinamide adenine dinucleotide phosphate, the growth rate was not affected by the pnt-1 allele.  相似文献   

19.
The two species of 6-phosphogluconate dehydrogenase (EC 1.1.1.43) from Pseudomonas multivorans were resolved from extracts of gluconate-grown bacteria and purified to homogeneity. Each enzyme comprised between 0.1 and 0.2% of the total cellular protein. Separation of the two enzymes, one which is specific for nicotinamide adenine dinucleotide phosphate and the other which is active with nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate was facilitated by the marked difference in their respective isoelectric points, which were at pH 5.0 and 6.9. Comparison of the subunit compositions of the two enzymes indicated that they do not share common peptide chains. The enzyme active with nicotinamide adenine dinucleotide was composed of two subunits of about 40,000 molecular weight, and the nicotinamide adenine dinucleotide phosphate-specific enzyme was composed of two subunits of about 60,000 molecular weight. Immunological studies indicated that the two enzymes do not share common antigenic determinants. Reduced nicotinamide adenine dinucleotide phosphate strongly inhibited the 6-phosphogluconate dehydrogenase active with nicotinamide adenine dinucleotide by decreasing its affinity for 6-phosphogluconate. Guanosine-5'-triphosphate had a similar influence on the nicotinamide adenine dinucleotide phosphate-specific 6-phosphogluconate dehydrogenase. These results in conjunction with other data indicating that reduced nicotinamide adenine dinucleotide phosphate stimulates the conversion of 6-phosphogluconate to pyruvate by crude bacterial extracts suggest that in P. multivorans, the relative distribution of 6-phosphogluconate into the pentose phosphate and Entner-Doudoroff pathways might be determined by the intracellular concentrations of reduced nicotinamide adenine dinucleotide phosphate and purine nucleotides.  相似文献   

20.
Pathway of n-Alkane Oxidation in Cladosporium resinae   总被引:2,自引:0,他引:2       下载免费PDF全文
Pathways of initial oxidation of n-alkanes were examined in two strains of Cladosporium resinae. Cells grow on dodecane and hexadecane and their primary alcohol and monoic acid derivatives. The homologous aldehydes do not support growth but are oxidized by intact cells and by cell-free preparations. Hexane and its derivatives support little or no growth, but cell extracts oxidize hexane, hexanol, and hexanal. Alkane oxidation by extracts is stimulated by reduced nicotinamide adenine dinucleotide (phosphate). Alcohol and aldehyde oxidation are stimulated by nicotinamide adenine dinucleotide (phosphate), and reduced coenzymes accumulate in the presence of cyanide or azide. Extracts supplied with (14)C-hexadecane convert it to the alcohol, aldehyde, and acid. Therefore, the major pathway for initial oxidation of n-alkanes is via the primary alcohol, aldehyde, and monoic acid, and the system can act on short-, intermediate-, and long-chain substrates. Thus, filamentous fungi appear to oxidize n-alkanes by pathways similar to those used by bacteria and yeasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号