首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
5-Aminolevulinic acid (ALA) synthesis has been shown to be the rate limiting step of tetrapyrrole biosynthesis. Glutamyl-tRNA reductase (GluTR) is the first committed enzyme of plant ALA synthesis and is controlled by interacting regulators, such as heme and the FLU protein. Induced inactivation of the HEMA1 gene encoding GluTR by RNAi expression in tobacco resulted in a reduced activity of Mg chelatase and Fe chelatase indicating a feed-forward regulatory mechanism that links ALA synthesis posttranslationally with late enzymes of tetrapyrrole biosynthesis (Hedtke et al., 2007). Here, the regulatory impact of GluTR was investigated by overexpression of AtHEMA1 in Arabidopsis and tobacco plants. Light-dependent ALA synthesis cannot benefit from an up to 7-fold induced expression of GluTR in Arabidopsis. While constitutive AtHEMA1 overexpression in tobacco stimulates ALA synthesis by 50-90% during light-exposed growth of seedlings, no increase in heme and chlorophyll contents is observed. HEMA1 overexpression in etiolated and dark-grown Arabidopsis and tobacco seedlings leads to additional accumulation of protochlorophyllide. As excessive accumulation of GluTR does not correlate with increased ALA formation, it is hypothesized that ALA synthesis is additionally limited by other effectors that balance the allocation of ALA with the activity of enzymes of chlorophyll and heme biosynthesis.  相似文献   

3.
The control of chlorophyll (Chl) synthesis in angiosperms depends on the light-operating enzyme protochlorophyllide oxidoreductase (POR). The interruption of Chl synthesis during darkness requires suppression of the synthesis of 5-aminolevulinic acid (ALA), the first precursor molecule specific for Chl synthesis. The inactivation of glutamyl-tRNA reductase (GluTR), the first enzyme in tetrapyrrole biosynthesis, accomplished the decreased ALA synthesis by the membrane-bound protein FLUORESCENT (FLU) and prevents overaccumulation of protochlorophyllide (Pchlide) in the dark. We set out to elucidate the molecular mechanism of FLU-mediated inhibition of ALA synthesis, and explored the role of each of the three structural domains of mature FLU, the transmembrane, coiled-coil and tetratricopeptide repeat (TPR) domains, in this process. Efforts to rescue the FLU knock-out mutant with truncated FLU peptides revealed that, on its own, the TPR domain is insufficient to inactivate GluTR, although tight binding of the TPR domain to GluTR was detected. A truncated FLU peptide consisting of transmembrane and TPR domains also failed to inactivate GluTR in the dark. Similarly, suppression of ALA synthesis could not be achieved by combining the coiled-coil and TPR domains. Interaction studies revealed that binding of GluTR and POR to FLU is essential for inhibiting ALA synthesis. These results imply that all three FLU domains are required for the repression of ALA synthesis, in order to avoid the overaccumulation of Pchlide in the dark. Only complete FLU ensures the formation of a membrane-bound ternary complex consisting at least of FLU, GluTR and POR to repress ALA synthesis.  相似文献   

4.
5.
The tetratricopeptide repeat (TPR)-containing protein FLU is a negative regulator of chlorophyll biosynthesis in plants. It directly interacts through its TPR domain with glutamyl-tRNA reductase (GluTR), the rate-limiting enzyme in the formation of δ-aminolevulinic acid (ALA). Delineation of how FLU binds to GluTR is important for understanding the molecular basis for FLU-mediated repression of synthesis of ALA, the universal tetrapyrrole precursor. Here, we characterize the FLU-GluTR interaction by solving the crystal structures of the uncomplexed TPR domain of FLU (FLUTPR) at 1.45-Å resolution and the complex of the dimeric domain of GluTR bound to FLUTPR at 2.4-Å resolution. Three non-canonical TPR motifs of each FLUTPR form a concave surface and clamp the helix bundle in the C-terminal dimeric domain of GluTR. We demonstrate that a 2:2 FLUTPR-GluTR complex is the functional unit for FLU-mediated GluTR regulation and suggest that the formation of the FLU-GluTR complex prevents glutamyl-tRNA, the GluTR substrate, from binding with this enzyme. These results also provide insights into the spatial regulation of ALA synthesis by the membrane-located FLU protein.  相似文献   

6.
Fluorescent in blue light (FLU) is a negative regulator involved in dark repression of 5‐aminolevulinic acid (ALA) synthesis and interacts with glutamyl‐tRNA reductase (GluTR), the rate‐limiting enzyme of tetrapyrrole biosynthesis. In this study, we investigated FLU‘s regulatory function in light‐exposed FLU‐overexpressing (FLUOE) Arabidopsis lines and under fluctuating light intensities in wild‐type (WT) and flu seedlings. FLUOE lines suppress ALA synthesis in the light, resulting in reduced chlorophyll content, but more strongly in low and high light than in medium growth light. This situation indicates that FLU's impact on chlorophyll biosynthesis depends on light intensity. FLU overexpressors contain strongly increased amounts of mainly membrane‐associated GluTR. These findings correlate with FLU‐dependent localization of GluTR to plastidic membranes and concomitant inhibition, such that only the soluble GluTR fraction is active. The overaccumulation of membrane‐associated GluTR indicates that FLU binding enhances GluTR stability. Interestingly, under fluctuating light, the leaves of flu mutants contain less chlorophyll compared with WT and become necrotic. We propose that FLU is basically required for fine‐tuned ALA synthesis. FLU not only mediates dark repression of ALA synthesis, but functions also to control balanced ALA synthesis under variable light intensities to ensure the adequate supply of chlorophyll.  相似文献   

7.
We report the results of cloning genes for two key biosynthetic enzymes of different 5-aminolevulinic acid (ALA) biosynthetic routes from Streptomyces. The genes encode the glutamyl-tRNAGlu reductase (GluTR) of the C5 pathway and the ALA synthase (ALAS) of the Shemin pathway. While Streptomyces coelicolor A3(2) synthesizes ALA via the C5 route, both pathways are operational in Streptomyces nodosus subsp. asukaensis, a producer of asukamycin. In this strain, the C5 route produces ALA for tetrapyrrole biosynthesis; the ALA formed by the Shemin pathway serves as a precursor of the 2-amino-3-hydroxycyclopent-2-enone moiety (C5N unit), an antibiotic component. The growth of S. nodosus and S. coelicolor strains deficient in the GluTR genes (gtr) is strictly dependent on ALA or heme supplementation, whereas the defect in the ALAS-encoding gene (hemA-asuA) abolishes the asukamycin production in S. nodosus. The recombinant hemA-asuA gene was expressed in Escherichia coli and in Streptomyces, and the encoded enzyme activity was demonstrated both in vivo and in vitro. The hemA-asuA gene is situated within a putative cluster of asukamycin biosynthetic genes. This is the first report about the cloning of genes for two different ALA biosynthetic routes from a single bacterium.  相似文献   

8.
The metabolite 5-aminolevulinic acid (ALA) is an early committed intermediate in the biosynthetic pathway of heme and chlorophyll formation. In plants, 5-aminolevulinic acid is synthesized via a two-step pathway in which glutamyl-tRNA(Glu) is reduced by glutamyl-tRNA(Glu) reductase (GluTR) to glutamate 1-semialdehyde, followed by transformation to 5-aminolevulinic acid catalyzed by glutamate 1-semialdehyde aminotransferase. Using an Escherichia coli cell-based high-throughput assay to screen small molecule libraries, we identified several chemical classes that specifically inhibit heme/chlorophyll biosynthesis at this point by demonstrating that the observed cell growth inhibition is reversed by supplementing the medium with 5-aminolevulinic acid. These compounds were further tested in vitro for inhibition of the purified enzymes GluTR and glutamate 1-semialdehyde aminotransferase as confirmation of the specificity and site of action. Several promising compounds were identified from the high-throughput screen that inhibit GluTR with an I(0.5) of less than 10 microM. Our results demonstrate the efficacy of cell-based high-throughput screening for identifying inhibitors of 5-aminolevulinic acid biosynthesis, thus representing the first report of exogenous inhibitors of this enzyme.  相似文献   

9.
10.
Glutamate-1-semialdehyde 2,1-aminomutase (GSAM) is the second enzyme in the C(5) pathway of tetrapyrrole biosynthesis found in most bacteria, in archaea and in plants. It catalyzes the transamination of glutamate-1-semialdehyde to 5-aminolevulinic acid (ALA) in a pyridoxal 5'-phosphate (PLP)-dependent manner. We present the crystal structure of GSAM from the thermophilic cyanobacterium Thermosynechococcus elongatus (GSAM(Tel)) in its PLP-bound form at 2.85A resolution. GSAM(Tel) is a symmetric homodimer, whereas GSAM from Synechococcus (GSAM(Syn)) has been described as asymmetric. The symmetry of GSAM(Tel) thus challenges the previously proposed negative cooperativity between monomers of this enzyme. Furthermore, GSAM(Tel) reveals an extensive flexible region at the interface of the proposed complex of GSAM with glutamyl-tRNA reductase (GluTR), the preceding enzyme in tetrapyrrole biosynthesis. Compared to GSAM(Syn), the monomers of GSAM(Tel) are rotated away from each other along the dimerization interface by 10 degrees . The associated flexibility of GSAM may be essential for complex formation with GluTR to occur. Unexpectedly, we find that GSAM is structurally related to 5-aminolevulinate synthase (ALAS), the ALA-producing enzyme in the Shemin pathway of alpha-proteobacteria and non-plant eukaryotes. This structural relationship applies also to the corresponding subfamilies of PLP-dependent enzymes. We thus propose that the CoA-subfamily (including ALAS) and the aminotransferase subfamily II (including GSAM) are evolutionarily closely related and that ALAS may thus have evolved from GSAM.  相似文献   

11.
In the cyanobacterium Synechocystis sp. PCC 6803 and in the enterobacterium Escherichia coli delta-amino-levulinic acid (ALA) is formed from glutamyl-tRNA by the sequential action of two enzymes, glutamyl-tRNA reductase (GluTR) and glutamate-1-semialdehyde aminotransferase. E. coli has two GluTR proteins with sizes of 45 kDa (GluTR45) and 85 kDa (GluTR85) (Jahn, D., Michelsen, U., and S?ll, D. (1991) J. Biol. Chem. 266, 2542-2548). The hemA gene, isolated from E. coli and several other eubacteria, has been proposed to encode a structural component of GluTR. Because of the inability to overexpress this gene in E. coli, we demonstrate directly GluTR function for the E. coli hemA gene product by its expression and functional analysis in yeast, which does not form ALA from Glu-tRNA. Gel filtration experiments demonstrated definitively that the yeast-expressed HemA protein corresponded to GluTR45. Furthermore, analysis of GluTR activity in an E. coli strain with a disrupted hemA gene displayed GluTR85, but not GluTR45 activity. The hemA gene from Synechocystis 6803 was cloned by functional complementation in E. coli. DNA sequence analysis revealed an open reading frame capable of encoding a 427-amino acid polypeptide (molecular mass of 47,525 Da). The Synechocystis 6803 amino acid sequence shows significant similarity upon alignment with HemA sequences from E. coli, Bacillus subtilis, Salmonella typhimurium, and Chlorobium vibrioforme but does not contain the amino acid sequence derived from the N terminus of the previously purified GluTR protein (Rieble, S., and Beale, S. I. (1991) J. Biol. Chem. 266, 9740-9745). These experiments are the first direct demonstration of GluTR activity of the HemA protein and provide further evidence for two pathways of ALA formation in prokaryotes.  相似文献   

12.
13.
14.
Glutamyl-tRNA reductase (GluTR) is the first enzyme committed to tetrapyrrole biosynthesis by the C5-pathway. This enzyme transforms glutamyl-tRNA into glutamate-1-semi-aldehyde, which is then transformed into 5-amino levulinic acid by the glutamate-1-semi-aldehyde 2,1-aminomutase. Binding of heme to GluTR seems to be relevant to regulate the enzyme function. Recombinant GluTR from Acidithiobacillus ferrooxidans an acidophilic bacterium that participates in bioleaching of minerals was expressed in Escherichia coli and purified as a soluble protein containing type b heme. Upon control of the cellular content of heme in E. coli, GluTR with different levels of bound heme was obtained. An inverse correlation between the activity of the enzyme and the level of bound heme to GluTR suggested a control of the enzyme activity by heme. Heme bound preferentially to dimeric GluTR. An intact dimerization domain was essential for the enzyme to be fully active. We propose that the cellular levels of heme might regulate the activity of GluTR and ultimately its own biosynthesis.  相似文献   

15.
16.
5-氨基乙酰丙酸(ALA)是植物血红素、叶绿素等四吡咯化合物的关键生物合成前体,对植物适应非生物胁迫至关重要。为验证外源ALA对黑果枸杞幼苗生理生长的影响,该研究用300 mmol·L-1 NaCl和不同浓度(0、5、10、15、20、25 mg·L-1)的ALA共同处理黑果枸杞幼苗,并测定其相关的生理指标和生长指标,综合评价各处理幼苗的耐盐性。结果表明:(1)NaCl胁迫使黑果枸杞幼苗总生物量和叶片总叶绿素、类胡萝卜素、可溶性糖含量以及过氧化物酶(POD)活性较CK分别显著降低了33.39%、19.06%、24.38%、39.57%和47.91%(P<0.05),使黑果枸杞幼苗脯氨酸和丙二醛的含量较CK分别显著增加了165.74%和49.16%。(2)当外源ALA和NaCl同时处理时,黑果枸杞幼苗叶片类胡萝卜素和丙二醛含量、POD和过氧化氢酶(CAT)活性以及株高、总生物量均恢复至对照水平,叶片总叶绿素和脯氨酸含量以及SOD活性较CK显著增加。(3)黑果枸杞幼苗叶片叶绿素和脯氨酸含量以及抗氧化酶活性、生物量等指标随ALA浓度增加均呈先...  相似文献   

17.
18.
19.
20.
Carotenoids are isoprenoid pigments that function as photoprotectors, precursors of the hormone abscisic acid (ABA), colorants and nutraceuticals. A major problem for the metabolic engineering of high carotenoid levels in plants is the limited supply of their isoprenoid precursor geranylgeranyl diphosphate (GGPP), formed by condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) units usually synthesized by the methylerythritol phosphate (MEP) pathway in plastids. Our earlier work with three of the seven MEP pathway enzymes suggested that the first reaction of the pathway catalyzed by deoxyxylulose 5-phosphate synthase (DXS) is limiting for carotenoid biosynthesis during tomato (Lycopersicon esculentum) fruit ripening. Here we investigate the contribution of the enzyme hydroxymethylbutenyl diphosphate reductase (HDR), which simultaneously synthesizes IPP and DMAPP in the last step of the pathway. A strong upregulation of HDR gene expression was observed in correlation with carotenoid production during both tomato fruit ripening and Arabidopsis thaliana seedling deetiolation. Constitutive overexpression of the tomato cDNA encoding HDR in Arabidopsis did not increase carotenoid levels in etioplasts. By contrast, light-grown transgenic plants showed higher carotenoid levels and an enhanced seed dormancy phenotype suggestive of increased ABA levels. The analysis of double transgenic Arabidopsis plants overproducing both the enzyme taxadiene synthase (which catalyzes the production of the non-native isoprenoid taxadiene from GGPP) and either HDR or DXS showed a twofold stronger effect of HDR in increasing taxadiene levels. Together, the data support a major role for HDR in controlling the production of MEP-derived precursors for plastid isoprenoid biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号