首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synopsis We caught first time emigrating Arctic charr in a smolt trap in the Vesturdalsa River in NE-Iceland. Most of the charr were of age-1 or age-2, but older pre-emigrating charr had passed earlier. In all years age-1 charr were more numerous than age-2 charr. The characteristics of the run differ considerably among years, with respect to onset, duration and pattern. The onset was correlated to water temperature. Most of the charr entered the trap during night.  相似文献   

2.
Seawater acclimation of diploid (FF) and triploid (F2F) brook charr Salvelinus fontinalis , diploid (AA) Arctic charr Salvelinus alpinus , and diploid (FA) and triploid (F2A) hybrids between female brook charr and male Arctic charr was investigated. Triploidization of brook charr and the hybrid did not have any effect on the acclimation. Seawater acclimation of the hybrid was achieved during the experimental period and was comparable to that observed in brook charr. Acclimation could not be ascertained in Arctic charr since the level of cortisol, a stress indicator, was still high at the end of the experiment. No relationship between either length or condition factors and plasma osmolality was observed. Elevated plasma cortisol concentrations in Arctic charr and in diploid or triploid hybrids, both in fresh water and sea water, indicate more favourable rearing conditions for brook charr.  相似文献   

3.
Metazoan parasites of arctic charr, Salvelinus alpinus , from the Nettilling Lake–Koukdjuak River system, Baffin Island, were studied. Non-migrating charr hosted 9 species of parasites while sea-run charr hosted 15 species of parasites. Diphyllobothrium spp., Eubothrium salvelini , and Proteocephalus longicollis were found to be good indicators of non-migrating charr and Brachyphallus crenatus, Bothrimonus sturionis and Prosorhynchus squamatus were good indicators of sea-run charr. Using these parasites as biological tags, the proportion of charr caught by the commercial fishery at the outlet of the Koukdjuak River were determined to be approximately 80% sea-run and 20% non-migrating charr. Step-wise discriminant statistical analysis on morphic characters of charr, designated as sea-run and non-migrating by their parasites, showed these charr to differ morphologically.  相似文献   

4.
Mitochondrial DNA (mtDNA) was purified from the Arctic charr, Salvelinus alpinus , the brook charr, Salvelinus fontinalis , and the lake charr, Salvelinus namaycush , and digested with restriction enzymes Ava II, Hinf I, Eco R V, Pst I and Xba I. Two Arctic charr samples were from natural populations and they represented two different morphotypes of Arctic charr. All other studied populations were hatchery maintained. Eight additional restriction enzymes and double digestions were employed to study morphotypes of Arctic charr. We distinguished two morphotypes with restriction enzyme Nci I. Sequence divergence among mtDNA types was 2.9–3.8% between S. alpinus and S. fontinalis , 3.4–4.6% between S. alpinus and S. namaycush , and 4.7–5.3% between S. fontinalis and S. namaycush . lntraspecific variation was lowest in Arctic charr, the average of nucleon diversity for three populations being 0.179, while for brook charr and for lake charr nucleon diversity was 0.334 and 0.550, respectively. According to the number of mtDNA types, it is obvious that introduction to Finland and hatchery propagation have not greatly affected the mtDNA variation of brook charr or lake charr.  相似文献   

5.
A diversity of aquatic organisms release chemical alarm signals when attacked or captured by a predator. These alarm signals are thought to warn other conspecifics of danger and, consequently, may benefit receivers by increasing their survival. Here we experimentally investigated the differences in behaviour and survival of hatchery-reared juvenile brook charr Salvelinus fontinalis that had been exposed to either brook charr skin extract (experimental treatment) or a control of swordtail skin extract (control treatment). Charr exposed to conspecific skin extract exhibited a significant reduction in movement and/or altered their foraging behaviour in the laboratory when compared with charr exposed to swordtail skin extract. We also exposed charr to either water conditioned by a single brook charr disturbed by a predatory bird model or water conditioned by a single undisturbed brook charr. Charr exposed to disturbance signals reduced activity significantly more than charr exposed to chemical stimuli from undisturbed charr. These results demonstrate the existence of both damage-released alarm signals and disturbance signals in brook charr. Wild brook charr also responded to damage-released alarm cues under natural conditions. Charr avoided areas of a stream with minnow traps labelled with conspecific alarm cues vs. control cues. During staged encounters with chain pickerel Esox niger in the laboratory, predator-naive charr fry were better able to evade the predator if they were previously warned by an alarm signal, thus suggesting a survival benefit to receivers. Collectively, these results demonstrate that the presence of alarm signals in brook charr has important implications for understanding predator–prey interactions.  相似文献   

6.
Competitive interactions for foraging microhabitat among introduced brook charr, Salvelinus fontinalis, and native bull charr, S. confluentus, and westslope cutthroat trout, Oncorhynchus clarki lewisi, were studied by species removal experiments in a tributary of the Flathead Lake and River system, northwestern Montana, focusing on brook charr influences on bull charr. When the three species were in sympatry, they interacted with each other, forming a size-structured, mixed-species dominance hierarchy in two stream pools. The influences of interference interactions were examined by measuring changes in five characteristics of foraging microhabitat and behavior, focal point height and velocity, cover use, and foraging rate and distance, after the successive removal of two species. Cutthroat trout removal resulted in increased foraging rates and distances, and decreased cover use for brook charr, but no changes for bull charr. After removal of brook charr from the two-species system, bull charr also increased foraging rates and distances and occupied more exposed positions. Moreover, total fish densities, which had initially decreased owing to the removal experiments, were partly compensated for by subsequent bull charr immigration, implying that competitive interactions with brook charr are an important factor in the mechanisms responsible for the regulation of bull charr densities, at least on a local scale.  相似文献   

7.
Lake x brook F1 hybrid charr were observed in heterogeneous groups with lake charr or brook charr to assess the effects of different species on hybrid social behaviour. Levels of behavioural plasticity were low in relation to the behavioural differences between the parental and hybrid types. Feeding behaviour showed the most dramatic change, with higher levels in the lake charr treatment and lower levels in the brook charr treatment than controls, suggesting social facilitation. Even though only two measures varied significantly between treatments, there was a tendency for the frequencies and durations of all agonistic measures to increase in the presence of lake charr and decrease with brook charr. A cost-benefit argument is presented to account for this trend.  相似文献   

8.
Morphological differences, haematocrit value and chloride cells were examined in downstream migrating Arctic charr, Salvelinus alpinus (L.) from the Hals River, North Norway, and resident charr from Lake Storvann. Fish were classified as visual parr, silvery parr or smolt based on the degree of silvering and the Occurrence of lateral parr marks. On average, 47% of downstream migrating Arctic charr were classified as visual molts, but only 14% of the resident charr. Charr longer than 20 cm fork length were mainly classified as visual molts. Morphometrical analyses of body size and shape revealed that most of the variations could be explained in terms of variations in fork length. Length adjusted ratios of post-anal distances were significantly higher in migrating charr than in resident charr. The number of developed chloride cells, the cell nucleus diameter in the basin of secondary gill lamellae and blood haematocrit values were significantly higher among downstream migrating charr than in resident charr. However, morphological differences between anadromous and resident Arctic charr were not necessarily synchronized with the development of chloride cells.  相似文献   

9.
Piscivory and cannibalism in Arctic charr   总被引:3,自引:0,他引:3  
Piscivory and cannibalism in Arctic charr, Salvelinus alpinus , were studied in three lakes in northern Norway: Guolasjavri, which contains only charr, Takvatn, where Arctic charr coexist with three-spined sticklebacks, Gasterosteus aculeatus and brown trout, Salmo trutta , and Stuorajavri, where whitefish, Coregonus lavarelun dominate a fish community containing six species. The prevalence of piscivory in the Arctic charr populations generally increased with increasing predator size. In all three lakes, many charr larger than 20 cm were piscivorous, but the extent of piscivory and cannibalism varied. The greatest prevalence of cannibalism was found in Guolasjavri, where 27% of charr greater than 20 cm in length had fed upon smaller conspeciflcs. In Takvatn, 5% of charr larger than 20 cm were cannibalistic, and an additional 9% had eaten three-spined sticklebacks. In Stuorajavri, up to 74% of the charr greater than 20 cm had eaten whitefish but cannibalism was not recorded. The possible role of cannibalism in population regulation within Arctic charr populations is considered.  相似文献   

10.
Anadromous white-spotted charr Salvelinus leucomaenis in a natural river in northern Japan migrated to the sea mainly at age 3+ years. Sea-run charr grew faster than parr, particularly as first time migrants. Sea-run charr repeated seaward migration up to three times; the observed maximum age was 5+ years old. The likelihood ratio test identified significant differences in asymptotic size and individual growth variability between parr and sea-run charr. Sea-run charr had an asymptotic size ( L ) twice as large as parr, while the growth parameter ( K ) was similar between sea-run and parr. Growth variability was higher for parr than for sea-run charr.  相似文献   

11.
In northern Transbaikalia, independently evolving landlocked populations of Arctic charr are found in mountain lakes. To assess the diversity of charr in this region, speciation modes involved in the evolution of charr forms, and the role of trophic polymorphism in their divergence, we studied the morphology and feeding of dwarf, small, and large forms of Arctic charr from a number of Transbaikalian lakes. Meristic data on charr from five lakes support the earlier conclusion that the three forms do not represent separate lineages but have independently diverged in sympatry in each of the lakes. In 10 lakes, the dwarf form showed varying degrees of differentiation from normal (small and large) charr in meristic characters (up to morphologically distinct and presumably reproductively isolated groupings), which is viewed as various levels of sympatric divergence. Indexes of gill raker length in fish from 20 lakes vary among populations of both dwarf and normal charr, with forms having short and long rakers being sympatric in some of these lakes. However, the index can be used only for comparing charr of different forms up to about 32cm fork length (FL) because it is strongly negatively correlated with size in larger fish. The study of charr diets in 21 lakes indicates that large charr are piscivorous whereas dwarf and small charr feed on a wide range of invertebrates, partitioning these resources in different ways. Planktivores, including very specialized ones, and non-planktivores (benthic feeders, insectivores) can be identified within the small and dwarf forms. The proportion of plankton in the diets of dwarf and small charr is positively correlated with the number and length of gill rakers while the proportion of benthos is negatively correlated. Allopatric planktivorous and non-planktivorous small charr differ in body proportions; parallel emergence of such morphotypes in different parts of the range is a characteristic feature of the Salvelinus alpinus complex.  相似文献   

12.
Interconnected lakes Bol’shoe Leprindo and Maloe Leprindo in Transbaikalia hosted large (extinct) and dwarf charr forms. Rarely “small” individuals intermediate in size between these forms are caught. In order to assess morphological, ecological, and genetic differentiation of sympatric charr forms and parapatric charr populations we studied their meristic and morphometric characters, feeding, breeding, and growth; we also investigated variation at 8 microsatellite loci using DNA isolated both from contemporary and historic samples. Profound differences were found between large and dwarf charr in growth rate, feeding (piscivores and highly specialized zooplanktivores, respectively), spawning time, and morphology. Dwarf charr from the two lakes demonstrate minor differences in morphology and growth rate. “Small” individuals are morphologically similar with dwarf charr and spawn together with them, they are recruited from dwarf form in late ontogeny as the result of transition to piscivorous feeding and growth acceleration. Microsatellite analysis showed that: (1) large and dwarf charr forms display high degree of genetic differentiation and reproductive isolation; (2) dwarf charr from interconnected lakes belong to different isolted populations; (3) “small charr” are genetically identical with dwarfs. The degree of ecomorphological and genetic differentiation between large and dwarf forms places charr from Leprindo Lakes among the most strongly differentiated Arctic charr forms’ flocks known at the vast range of S. alpinus complex.  相似文献   

13.
Two reproductive isolated morphs of Arctic charr (Salvelinus alpinus), termed profundal and littoral charr according to their different spawning habitats, co-occur in the postglacial lake Fjellfr?svatn in North Norway. All profundal charr live in deep water their entire life and have a maximum size of 14cm, while the littoral charr grow to 40cm. Some small and young littoral charr move to the profundal zone in an ontogenetic habitat shift in the ice-free season and the rest of the population remains in epilimnic waters. The two morphs had different diet niches in the profundal zone: the profundal charr ate typical soft-bottom prey (chironomid larvae, pea mussels and benthic copepods), while the young littoral charr mainly consumed crustacean zooplankton. In four other lakes without a profundal morph (i.e. monomorphic populations), young charr also performed ontogenetic habitat shifts to the profundal zone and fed on zooplankton. The profundal morph of Fjellfr?svatn therefore utilize a food resource niche that neither the littoral morph nor comparable monomorphic populations exploit. This suggests that intraspecific resource competition has driven incipient ecological speciation of the profundal charr of Fjellfr?svatn. The exploitation of the soft-bottom resources by the profundal charr supports earlier experimental findings that the profundal morph is genetically different in trophic behaviour and morphology. The sympatric ecological divergence within the profundal habitat is possible because unexploited food resources (soft-bottom profundal prey) are available. Apparently, this represents a case of incipient segregation by expansion to new resource types (niche invasion), and not by subdivision of one broad ancestral niche.  相似文献   

14.
Between 1984 and 1989, the experimental removal of 31 tons (666000 fish) of stunted Arctic charr, Salvelinus alpinus, from Takvatn in northern Norway, had strong effects on the populations of Arctic charr, brown trout, Salmo trutta, and three-spined sticklebacks, Gasterosteus aculeatus. The littoral catch per unit effort (CPUE) of charr had decreased by 90% in 1990 and then increased to about 50% of the initial level by 1994 while the pelagic CPUE had decreased to zero. Growth in both charr and trout greatly improved when the charr density had decreased, and large fish of both species appeared in the catches. These large fish became predators on small charr in the littoral zone. The incidence of trout increased from below 1% to 15% from 1988 to 1999 after a brief peak at 30% in 1992 and 1993. The charr population attained a bimodal size distribution and did not return to the stunted state during the 10 years following the intensive fishing period. The mass removal experiment showed that it is possible to change the structure of a charr population by intensive fishing. Predation on small charr from cannibals and large trout was probably essential for maintaining the new population structure. An increase in the growth of young charr from 1995 to 1997 was related to a high consumption of Daphnia and Eurycercus. Rapid changes in the growth of charr followed the density fluctuations in sticklebacks, which show large annual variations in this system; the rapid changes in charr growth were probably caused by variations in the competition intensity for cladoceran prey between young charr and sticklebacks. Twenty years of data has provided important information, but even more time is needed to follow the long-term trends in northern lakes such as Takvatn.  相似文献   

15.
Weight and eight linear measurements were made on Arctic charr from the domesticated Hammerfest strain from Norway and offspring of wild charr of a pelagic morph from Loch Rannoch, Scotland. Guts and mesenteries were removed from the Hammerfest charr only, and the amount of lipid in both carcass and mesenteries measured by Soxhlet extraction. Lipid was extracted from the whole body of the Loch Rannoch charr. Multiple regression analysis was used to derive morphometric predictors of total lipid for the Hammerfest charr and percentage body lipid for the Loch Rannoch charr, the regressions explaining 83 and 59% of variance respectively. For the Hammerfest charr, multiple regression also provided a reliable predictor of mesenteric fat, accounting for 65% of its variance. Hammerfest charr that exhibited high aggression rates had 53% more whole body lipid and 100% more mesenteric fat than those with low aggression rates, using direct measures of lipid levels. Indirect, morphometrically-derived measures of lipid levels gave almost identical results. It is concluded that morphometric techniques can provide estimates of both whole body and mesenteric lipid in studies requiring repeated measures on the same individuals.  相似文献   

16.
The relationships among time of spawning, incubation temperature, timing of first feeding and early growth were examined in four sympatric morphs of Arctic charr in Thingvallavatn, Iceland. Large benthivorous charr spawn in July-August at sites with cold ground-water flow. Planktivorous and piscivorous charr spawn in September-November and are not confined to ground-water sites. The spawning of small benthivorous charr overlaps with that of other morphs. Progeny of large benthivorous charr start feeding 2-3 months earlier than the progeny of autumn spawners. This results in differential size distribution and growth rates of young in the spring.  相似文献   

17.
Selection on Arctic charr generated by competition from brown trout   总被引:4,自引:0,他引:4  
We experimentally explored population‐ and individual‐level effects on Arctic charr (Salvelinus alpinus) resulting from resource competition with its common European competitor, the brown trout (Salmo trutta). At the population level, we compared performance of the two species in their natural sympatric state with that of Arctic charr in allopatry. At the individual level, we established selection gradients for morphological traits of Arctic charr in allopatric and in sympatric conditions. We found evidence for interspecific competition likely by interference at the population level when comparing differences in average performance between treatments. The growth and feeding rates did not differ significantly between allopatric and sympatric Arctic charr despite lower charr densities (substitutive design) in sympatric enclosures indicating that inter‐ and intraspecific competition are of similar strength. The two species showed distinct niche segregation in sympatry, and brown trout grew faster than Arctic charr. Arctic charr did not expand their niche in allopatry, indicating that the two species compete to a limited degree for the same resources and that interference may suppress the growth of charr in sympatric enclosures. At the individual level, however, we found directional selection in sympatric enclosures against individual Arctic charr with large head and long fins and against individuals feeding on zoobenthos rather than zooplankton indicating competition for common resources (possibly exploitative) between trout and these charr individuals. In allopatric enclosures these relations were not significant. Diets were correlated to the morphology supporting selection against the benthic‐feeding type, i.e. individuals with morphology and feeding behaviour most similar to their competitor, the benthic feeding brown trout. Thus, this study lends support to the hypothesis that Arctic charr have evolved in competition with brown trout, and through ecological character displacement adapted to their present niche.  相似文献   

18.
Size and frequency of occurrence of prey of brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.) were recorded in 13 Norwegian lakes during 1973–1990. Piscivores usually comprised less than 5% of the total population. Arctic charr were less piscivorous than brown trout. Trout and charr became piscivorous at 13 and 16 cm length, respectively. These size thresholds were similar to those of other facultative piscivorous freshwater fish species. When present, three-spined sticklebacks, Gasterosteus aculeatus (L.), were preferred by all length groups of piscivorous brown trout and Arctic charr. Length of prey increased with increasing predator length, and the mean body length of prey was about 33 and 25% of predator length for trout and charr, respectively. Yearlings of charr were not recorded as prey.  相似文献   

19.
Marking experiments on perch, Perca fluviatilis L., pike, Esox lucius L., and charr, Salvelinus alpinus L., have been carried out in Windermere. Numbered tags were used for individual identification, except in some short term experiments on charr. A total of 13 182 perch and 4696 pike were tagged; 2066 charr were tagged subcutaneously and marked with a fin clip. In the short-term experiments 2015 charr were marked with a fin clip or punched hole. Perch were recaptured up to 8 years after tagging, pike 12 years and charr 5 years. Estimates of numbers and mortality were not satisfactory, except for limited sections of the populations of pike and charr. The main reasons for the unsatisfactory results were: for perch, unknown mortality at time of tagging; for pike, selectivity of the gillnets and in some years low numbers tagged; for charr, restriction to few spawning sites and in some places low numbers recaptured. The experiments provided useful information on movements and growth, which could not have been obtained in any other way.  相似文献   

20.
The ability to distinguish among chemical cues from multiple predators is of key adaptive value for many prey fish. We examined the attractiveness and repulsiveness of chemical stimuli from different coexisting fish species fed on different diets on the behaviour of hatchery reared Arctic charr young in a Y-maze fluviarum, where the charr could choose between two sides either with control water or stimulus water with fish odour. We used stimuli from (1) matching sized conspecifics, large (2) Arctic charr, (3) salmon, (4) brown trout and (5) brown trout fed on Arctic charr fry. Other salmonids were given pellet food. Additional fish odour treatments included piscivorous (6) pike and (7) burbot. In the control trials both sides received control water. Arctic charr young were expected to respond adaptively to the stimuli from coexisting piscivorous fish. The charr most strongly preferred water with the odour of their matching sized conspecifics, which was the only fish odour they were familiar with before the experiments. They also showed significant preference for other salmonid odours, even though these fish are potential predators on small charr. Chemical stimuli from pike and burbot, on the contrary, were strongly avoided, and burbot odour even prevented the charr to swim and enter the lateral halves of the fluviarum. Moreover, odour from brown trout fed on Arctic charr fry was avoided when compared to stimuli from trout fed on pellets. Although the Arctic charr young were completely naive regarding piscivores, the fact that they could distinguish between different predator taxa and diets on the basis of chemical cues only reflects the long coevolutionary history of these fish populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号