首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the muscarinic agonist carbachol, histamine and bradykinin on incorporation of [3H]inositol into the phosphoinositides and the formation of [3H]InsPs were examined in bovine tracheal smooth-muscle (BTSM) slices labelled with [3H]inositol. These agonists result in substantial and dose-related increases in the incorporation of [3H]inositol into the phospholipids. Carbachol and histamine stimulated the incorporation of [3H]inositol into the phospholipids to the same degree, despite histamine being only 35% as effective as carbachol on [3H]InsP accumulation. Histamine and carbachol, at maximal concentrations, were non-additive with respect to both the stimulated incorporation of [3H]inositol and [3H]InsP formation. For carbachol this effect on incorporation was found to occur to a similar extent in PtdInsP and PtdInsP2 as well as PtdIns. The initial effect of carbachol on [3H]inositol incorporation was rapid (maximal by 10 min); however, with prolonged stimulation large secondary declines in PtdInsP and PtdInsP2 labelling were observed, with depletion of the much larger PtdIns pool only evident in the presence of Li+. Lowering buffer [Ca2+] increased the incorporation of [3H]inositol under basal conditions, but did not attenuate the subsequent agonist-stimulated incorporation effect. The large changes in specific radioactivity of the phosphoinositides, and consequently the [3H]InsP products, after carbachol stimulation resulted in the apparent failure of atropine to reverse the [3H]InsP response completely. Labelling muscle slices with [3H]inositol in the presence of carbachol or labelling for longer periods (greater than 6 h) prevented subsequent carbachol-stimulated effects on incorporation without significantly altering the dose-response relationship for carbachol-stimulated [3H]InsP formation and resulted in steady-state labelling conditions confirmed by the ability of atropine to reverse fully the [3H]InsP response to carbachol. This study demonstrates the profound effects of a number of agonists on [3H]inositol incorporation into the phospho- and polyphosphoinositides in BTSM with important consequent changes in the specific radioactivity of these lipids and the resulting [3H]InsP products. In addition, a selective depletion of PtdInsP and PtdInsP2 over PtdIns has been demonstrated with prolonged muscarinic-receptor stimulation.  相似文献   

2.
Incubation of human platelets with myo-[3H]inositol in a low-glucose Tyrode's solution containing MnCl2 enhanced the labelling of phosphoinositides about sevenfold and greatly facilitated the measurement of [3H]inositol phosphates formed by the activation of phospholipase C. Labelled platelets were permeabilized by high-voltage electric discharges and equilibrated at 0 degree C with ATP, Ca2+ buffers and guanine nucleotides, before incubation in the absence or presence of thrombin. Incubation of these platelets with ATP in the presence or absence of Ca2+ ions led to the conversion of [3H]phosphatidylinositol to [3H]phosphatidylinositol 4-phosphate and [3H]phosphatidylinositol 4,5-bisphosphate ([3H]PtdInsP2). At a pCa of 6, addition of 100 microM GTP[gamma S] both prevented this accumulation of [3H]PtdInsP2 and stimulated its breakdown; the formation of [3H]inositol phosphates was increased ninefold. After 5 min these comprised 70% [3H]inositol monophosphate ([3H]InsP), 28% [3H]inositol bisphosphate ([3H]InsP2) and 2% [3H]inositol trisphosphate ([3H]InsP3). In shorter incubations higher percentages of [3H]InsP2 and [3H]InsP3 were found. In the absence of added Ca2+, the formation of [3H]inositol phosphates was decreased by over 90%. Incubation of permeabilized platelets with GTP[gamma S] in the presence of 10 mM Li+ decreased the accumulation of [3H]InsP and increased that of [3H]InsP2, without affecting [3H]InsP3 levels. Addition of unlabelled InsP3 decreased the intracellular hydrolysis of exogenous [32P]InsP3 but did not trap additional [3H]InsP3. These results and the time course of [3H]inositol phosphate formation suggest that GTP[gamma S] stimulated the action of phospholipase C on a pool of [3H]phosphatidylinositol 4-phosphate that was otherwise converted to [3H]PtdInsP2 and that much less hydrolysis of [3H]phosphatidylinositol to [3H]InsP or of [3H]PtdInsP2 to [3H]InsP3 occurred. At a pCa of 6, addition of thrombin (2 units/ml) to permeabilized platelets caused small increases in the formation of [3H]InsP and [3H]InsP2. This action of thrombin was enhanced twofold by 10-100 microM GTP and much more potently by 4-40 microM GTP[gamma S]. In the presence of the latter, thrombin also increased [3H]InsP3. The total formation of [3H]inositol phosphates by permeabilized platelets incubated with thrombin and GTP[gamma S] was comparable with that observed on addition of thrombin alone to intact platelets. However, HPLC of the [3H]inositol phosphates formed indicated that about 75% of the [3H]InsP accumulating in permeabilized platelets was the 4-phosphate, whereas in intact platelets stimulated by thrombin, up to 80% was the 1-phosphate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
We show that microinjecting cyclic GMP (cGMP) into unfertilized sea urchin eggs activates them by stimulating a rise in the intracellular free calcium ion concentration ([Ca2+]i). The increase in [Ca2+]i is similar in both magnitude and duration to the transient that activates the egg at fertilization. It is due to mobilization of calcium from intracellular stores but is not prevented by the inositol trisphosphate (InsP3) antagonist heparin. Furthermore, cGMP does not stimulate the eggs Na+/H+ antiport when the [Ca2+]i transient is blocked by the calcium chelator bis-(O-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA), suggesting that cGMP does not activate eggs by interacting with the their phosphoinositide signaling pathway. However, the [Ca2+]i increase and activation are prevented in eggs in which the InsP3-sensitive calcium stores have been emptied by the prior microinjection of the InsP3 analogue inositol 1,4,5-trisphosphorothioate. These data indicate that cGMP activates eggs by stimulating the release of calcium from an InsP3-sensitive calcium store via a novel, though unidentified, route independent of the InsP3 receptor.  相似文献   

4.
B Ciapa  M Whitaker 《FEBS letters》1986,195(1-2):347-351
[3H]Inositol and [3H]arachidonic acid were used to label polyphosphoinositide phospholipids in sea urchin eggs. Both [3H]inositol polyphosphate (InsP3) and [3H]diacylglycerol (DAG) increase at fertilisation. An early increase in InsP3 occurs as the sperm-induced calcium transient crosses the egg and exocytosis occurs; a later increase in InsP3 as calcium declines and the protein kinase C-dependent Na/H antiporter causes the cytoplasmic pH in increase. These results support suggestions that a calcium-induced hydrolysis of phosphatidylinositol bisphosphate occurs at fertilisation, that the production of diacylglycerol may be essential for exocytosis and that diacylglycerol production at fertilisation stimulates the Na/H antiporter. The increase in [3H]inositol polyphosphate as calcium declines indicates that this second messenger may have some function later in the cell cycle.  相似文献   

5.
Inositol phospholipid metabolism in human platelets stimulated by ADP   总被引:2,自引:0,他引:2  
ADP-induced changes in inositol phospholipids, phosphatidic acid and inositol phosphates of human platelets have been studied in detail, using not only 32P labelling, but also by examining changes in amounts of the phospholipids, their labelling with [3H]glycerol and their specific radioactivities; changes in the labelling of inositol phosphates in platelets prelabelled with [3H]inositol were also measured. During the early (10 s) stage of reversible ADP-induced primary aggregation in a medium containing fibrinogen and with a concentration of Ca2+ in the physiological range (2 mM), the amounts of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) and phosphatidylinositol 4-phosphate (PtdInsP) decreased (by 11.2 +/- 4.9% and 11.3 +/- 5.3%, respectively) while the labelling, but not the amount, of phosphatidic acid increased. The decreases do not appear to be attributable to the action of phospholipase C because the specific radioactivity of phosphatidic acid labelling with [3H]glycerol was not significantly increased at 10 s (although the initial specific radioactivities of the inositol phospholipids and PtdCho were more than double that of phosphatidic acid), and no increases in the labelling of inositol trisphosphate (InsP3), inositol bisphosphate (InsP2) or inositol phosphate (InsP) were detectable at 10 s. Shifts in the interconversions between PtdInsP2 and PtdInsP, and PtdInsP and PtdIns may occur. By 30 to 60 s, when deaggregation was beginning, the amounts of PtdInsP2, PtdInsP and phosphatidic acid were not different from those in unstimulated platelets, but large increases in the 32P-labelling and [3H]glycerol labelling of phosphatidic acid were observed. Formation of [3H]inositol-labelled InsP3 was not detectable at any time in association with ADP-induced primary aggregation, indicating that degradation of PtdInsP2 by phospholipase C is not appreciably stimulated by ADP. These findings were compared with those obtained when platelets were aggregated by ADP in a medium without added of Ca2+ in which secondary aggregation associated with thromboxane A2 (TXA2) formation and release of granule contents occurs. At 10 s (during primary aggregation) the changes were similar in the two media. At 30 s and 60 s (during secondary aggregation in the low-Ca2+ medium), the increases in PtdInsP2, PtdInsP and phosphatidic acid in platelets suspended in the absence of added Ca2+ were larger than those in platelets suspended in the presence of 2 mM Ca2+. In the absence of added Ca2+, ADP-induced increases in the labelling of InsP3, InsP2 and InsP which were probably due to the effects of TXA2 since they were abolished by aspirin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
We show that microinjecting guanosine-5'-thiotriphosphate (GTP gamma S) into unfertilized sea urchin eggs generates an intracellular free calcium concentration [( Ca]i) transient apparently identical in magnitude and duration to the calcium transient that activates the egg at fertilization. The GTP gamma S-induced transient is blocked by prior microinjection of the inositol trisphosphate (InsP3) antagonist heparin. GTP gamma S injection also causes stimulation of the egg's Na+/H+ antiporter via protein kinase C, even in the absence of a [Ca]i increase. These data suggest that GTP gamma S acts by stimulating the calcium-independent production of the phosphoinositide messengers InsP3 and diacylglycerol (DAG). However, the fertilization [Ca]i transient is not affected by heparin, nor can the sperm cause calcium-independent stimulation of protein kinase C. It seems that the bulk of InsP3 and DAG production at fertilization is triggered by the [Ca]i transient, not by the sperm itself. GDP beta S, a G-protein antagonist, does not affect the fertilization [Ca]i transient. Our findings do not support the idea that signal transduction at fertilization operates via a G-protein linked directly to a plasma membrane sperm receptor.  相似文献   

7.
WRK 1 cells were labelled to equilibrium with 2-myo-[3H]inositol and stimulated with vasopressin. Within 3 s of hormone stimulation there was a marked accumulation of 3H-labelled InsP2 and InsP3 (inositol bis- and tris-phosphate), but not of InsP (inositol monophosphate). There was an associated, and rapid, depletion of 3H-labelled PtdInsP and PtdInsP2 (phosphatidylinositol mono- and bis-phosphates), but not of PtdIns (phosphatidylinositol), in these cells. Some 4% of the radioactivity in the total inositol lipid pool of WRK 1 cells was recovered in InsP2 and InsP3 after 10 s stimulation with the hormone. The selectivity of the vasopressin receptors of WRK 1 cells for a variety of vasopressin agonists and antagonists revealed these to be of the V1a subtype. There was no receptor reserve for vasopressin-stimulated inositol phosphate accumulation in WRK 1 cells. The accumulation of inositol phosphates was enhanced in the presence of Li+ions. Half-maximal accumulation of InsP, InsP2 and InsP3 in vasopressin-stimulated cells was observed with 0.9, 3.0 and 3.6 mM-Li+ respectively. Bradykinin and 5-hydroxytryptamine also provoked inositol phosphate accumulation in WRK 1 cells. The effects of sub-optimal concentrations of bradykinin and vasopressin upon inositol phosphate accumulation were additive, but those of optimal concentrations of the hormones were not.  相似文献   

8.
Others have reported that microinjection of inositol 1,4,5-trisphosphate (InsP3) releases stored intracellular Ca2+ and causes fertilization envelope elevation, part of the activation process normally initiated by fertilization in deuterostome eggs. In the protostome, Spisula solidissima, germinal vesicle breakdown (GVBD) is the first visible response of the egg to fertilization. To test the effects of InsP3 on egg activation in this organism, we microinjected the compound into oocytes. Microinjection of 0.4-7.0 x 10(-21) moles of InsP3 (equivalent to 5-80 pM if distributed throughout the cell) elicited GVBD in a dose-dependent manner, demonstrating that increased oocyte InsP3 can mimic part of the activation process in this protostome. Synthesis of InsP3 occurs in vivo when phosphatidylinositol 4,5-bisphosphate (PtdInsP2) is hydrolyzed by phospholipase C. To determine whether stimulus-induced synthesis of InsP3 occurs after fertilization of Spisula oocytes, we labeled oocyte lipids with [32P]orthophosphate and measured the radioactivity in phospholipids after insemination. Fertilization resulted in a rapid, transient loss of radioactivity from PtdInsP2. Because the radioactivity in phosphatidylinositol 4-phosphate and other phospholipids did not change, the loss of radioactivity from PtdInsP2 is most likely due to its hydrolysis, yielding InsP3 and diacylglycerol. The latter compound activates protein kinase C which has also been shown to be involved in regulating Spisula oocyte GVBD. Since both of these compounds appear to be early products of fertilization, they could coordinately activate Ca2+- and protein kinase C-dependent processes involved in Spisula oocyte GVBD. These data indicate that egg activation in this protostome includes pathways similar to those found in deuterostome eggs and in other eukaryotic cells.  相似文献   

9.
We directly manipulated the levels of PtdIns, PtdInsP and PtdInsP2 in digitonin-treated adrenal chromaffin cells with a bacterial phospholipase C (PLC) from Bacillus thuringiensis and by removal of ATP. The PtdIns-PLC acted intracellularly to cause a large decrease in [3H]inositol- or [32P]phosphate-labelled PtdIns, but did not directly hydrolyse PtdInsP or PtdInsP2. [3H]PtdInsP and [3H]PtdInsP2 levels declined markedly, probably because of the action of phosphatases in the absence of synthesis. Removal of ATP also caused marked decreases in [3H]PtdInsP and [3H]PtdInsP2. The decrease in polyphosphoinositide levels by PtdIns-PLC treatment or ATP removal was reflected by the inhibition of the production of inositol phosphates upon subsequent activation of the endogenous PLC by Ca2(+)-dependent catecholamine secretion from permeabilized cells was strongly inhibited by PtdIns-PLC treatment and by ATP removal. Ca2(+)-dependent secretion was similarly correlated with the sum of PtdInsP and PtdInsP2 when the level of these lipids was changed by either manipulation. PtdIns-PLC inhibited only the ATP-dependent component of secretion and did not affect ATP-dependent secretion. Both PtdIns-PLC and ATP removal inhibited the late slow phase of secretion, but had little effect on the initial rapid phase. Although we found a tight correlation between polyphosphoinositide levels and secretion, endogenous phospholipase C activity (stimulated by Ca2+, guanine nucleotides and related agents) was not correlated with secretion. Additional experiments indicated that neither the products of the PtdIns-PLC reaction (diacylglycerol and InsP1) nor the inability to generate products by subsequent activation of the endogenous PLC is likely to account for the inhibition of secretion. Incubation of permeabilized cells with neomycin in the absence of ATP maintained the level of polyphosphoinositides and more than doubled subsequent Ca2(+)-dependent secretion. The data suggest that: (1) Ca2(+)-dependent secretion has a requirement for the presence of inositol phospholipids; (2) the enhancement of secretion by ATP results in part from increased polyphosphoinositide levels; and (3) the role for inositol phospholipids in secretion revealed in these experiments is independent of their being substrates for the generation of diacylglycerol and InsP3.  相似文献   

10.
The dependence of phospholipase C activity on the cytosolic Ca2+ concentration ([Ca2+]i) was studied in intact liver cells treated with the Ca2+-mobilizing hormone vasopressin, or not so treated. Phospholipase C (PLC) activity was estimated from the formation of [3H]inositol trisphosphate (InsP3) and the degradation of [3H]phosphatidylinositol 4,5-bisphosphate (PtdInsP2). The [Ca2+]i of the cells was clamped from 29 to 1130 nM by quin2 loading. This wide concentration range was obtained by loading the hepatocytes with a high concentration of the Ca2+ indicator in low-Ca2+ medium or by using the Ca2+ ionophore ionomycin in medium containing Ca2+. In resting cells, in which [Ca2+]i was 193 nM, treatment with 0.1 microM-vasopressin which stimulates liver PLC maximally, tripled InsP3 content and raised [Ca2+]i to 2 microM within 15 s. Lowering [Ca2+]i partially decreased cell InsP3 content as well as the ability of vasopressin to stimulate InsP3 formation maximally. At 29 nM, the lowest Ca2+ concentration obtained in isolated liver cells, basal InsP3 content was 64% of that measured in control cells. Addition of vasopressin no longer affected [Ca2+]i, but significantly increased InsP3 by 200%, although less than in the controls (300%). The maintenance of the greater part of the PLC response at constant [Ca2+]i indicated that, in the liver, InsP3 formation does not result from an increase in [Ca2+]i. The effects of lowering [Ca2+]i were reversible. When low cell [Ca2+]i was restored to a normal value, resting InsP3 content and the ability of vasopressin to stimulate InsP3 formation maximally by 300% were also restored. Raising [Ca2+]i from 193 to 1130 nM had little effect on the InsP3 content or the vasopressin-mediated increase in InsP3. In agreement with the stimulation of PLC activity by vasopressin, cell [3H]PtdInsP2 and total PtdInsP2 were degraded by application of this hormone for 15 s. In contrast, when [Ca2+]i was lowered to 29 nM, basal [3H]PtdInsP2 and total PtdInsP2 were increased by about 30%, [3H]PtdInsP2 was further increased by vasopressin, but total PtdInsP2 was not changed. These results show that, in intact hepatocytes, PLC is little affected by [Ca2+]i concentrations above 193 nM, but is partially dependent on Ca2+ below that value. They suggest that, in addition to activating PLC activity, vasopressin might stimulate PtdInsP2 synthesis, presumably via phosphatidylinositol-phosphate kinase, and that this pathway might predominate in cells with low [Ca2+]i.  相似文献   

11.
The role of insulin in modulating phosphoinositide breakdown and accumulation of inositol phosphates was investigated in isolated rat pancreatic islets by using GPAIS (guinea-pig anti-insulin antiserum) that neutralizes effects of insulin in the medium. At either 3.0 mM- or 16.7 mM-glucose or 3.0 mM-glucose plus 10 microM-arecaidine propargyl ester (muscarinic receptor agonist), GPAIS (but not control serum) was able to increase InsP2 and InsP3, but not InsP, in myo-[3H] inositol-prelabelled islets. The effect of GPAIS on 3H incorporation into InsP3 was dose-dependent, with a half-maximal effect at a concentration able to bind 4004 +/- 163 microunits of insulin. A specific mass assay of the biologically relevant isomer Ins (1,4,5)P3 revealed a huge increase (greater than 3-folf). Formation of PtdIns, PtdInsP and PtdInsP2 was not affected by GPAIS. This is indirect evidence for an effect of insulin on inositide metabolism, and therefore endogenously released insulin may have led to an underestimation in earlier studies of effects of insulinotropic substances on inositol phosphate accumulation.  相似文献   

12.
1. For determination of the phosphoinositides and inositol phosphates present in anterior byssus retractor muscle (ABRM) of Mytilus edulis fiber bundles of this muscle were incubated with [3H]-inositol. Close-to-equilibrium labelling was achieved after 14-17 hr of incubation. 2. The phosphoinositides formed during incubation were identified as phosphatidylinositolphosphates by thin layer chromatography and as glycerophosphoryl esters by anion-exchange chromatography after deacylation. Besides PtdIns, PtdInsP and PtdInsP2 two labelled products are formed, which could not be identified. 3. Inositol phosphates were separated by anion-exchange chromatography. InsP, InsP2 and InsP3 are present, while InsP4 seemed to be absent. 4. Incubation of pre-labelled fibers with ACh induces the accumulation of InsP3 and InsP2 immediately. While 5-Ht accomplishes the accumulation after a lag time of 25 sec. The concentration of cytosolic InsP does not change.  相似文献   

13.
The effects of Li+ on carbachol-stimulated phosphoinositide metabolism were examined in rat cerebral-cortex slices labelled with myo-[2-3H]inositol. The muscarinic agonist carbachol evoked an enhanced steady-state accumulation of [3H]inositol monophosphate ([3H]InsP1), [3H]inositol bisphosphate ([3H]InsP2), [3H]inositol 1,3,4-trisphosphate ([3H]Ins(1,3,4)P3), [3H]inositol 1,4,5-trisphosphate ([3H]Ins(1,4,5)P3) and [3H]inositol tetrakisphosphate ([3H]InsP4). Li+ (5 mM), after a 10 min lag, severely attenuated carbachol-stimulated [3H]InsP4 accumulation while simultaneously potentiating accumulation of both [3H]InsP1 and [3H]InsP2 and, at least initially, of [3H]Ins(1,3,4)P3. These data are consistent with inhibition of inositol mono-, bis- and 1,3,4-tris-phosphate phosphatases to different degrees by Li+ in brain, but are not considered to be completely accounted for in this way. Potential direct and indirect mechanisms of the inhibitory action of Li+ on [3H]InsP4 accumulation are considered. The present results stress the complex action of Li+ on cerebral inositol metabolism and indicate that more complex mechanisms than are yet evident may regulate this process.  相似文献   

14.
NaF and guanosine 5'-O-thiotriphosphate [GTP(S)] stimulated the accumulation of [3H]inositol monophosphate ([3H]InsP) in rat brain cortical membranes, with half-maximal stimulation at 2 mM and 1 microM, respectively. Calcium also increased basal [3H]InsP formation over a range of concentrations from 10(-7) to 10(-4) M. The stimulatory effect of GTP(S) (30 microM) on [3H]InsP production was insensitive to Ca2+, whereas NaF-evoked [3H]InsP formation was dependent on Ca2+ concentrations. Guanosine 5'-O-thiodiphosphate significantly attenuated GTP(S)- but not NaF-stimulated [3H]InsP production. Coincubation of GTP(S) (30 microM) and submaximal concentrations of NaF (1 or 3 mM) stimulated [3H]InsP formation to a degree that was nearly additive with that produced by either drug alone. However, the resultant accumulation of [3H]InsP in the presence of maximally effective concentrations of GTP(S) and NaF was not different from that produced by NaF alone. Incubation of cortical membranes with GTP(S) and NaF for 1 min stimulated the accumulation of [3H]inositol bisphosphate (InsP2) but not [3H]InsP. [3H]InsP2 production elicited by GTP(S) was markedly enhanced by the muscarinic cholinergic agonist carbachol. In contrast, NaF-stimulated [3H]InsP2 formation was not potentiated by carbachol. Our findings of different characteristics of GTP(S) and fluoride activation of polyphosphoinositide (PPI) hydrolysis suggest that separate regulatory mechanisms are involved in these two modes of stimulation in brain membranes. Activation of PPI hydrolysis by fluoride may be mediated by a direct stimulation of PPI phosphodiesterase or by activating a putative guanine nucleotide regulatory protein at a location distinct from the GTP-binding site.  相似文献   

15.
In pancreatic acinar cells prelabeled with either 32Pi or myo-[3H]inositol, arachidonic acid (10-50 microM) rapidly decreased the steady-state levels of [32P]phosphatidylinositol 4',5'-bisphosphate [( 32P]PtdIns4,5P2) and inhibited carbachol-stimulated accumulation of [3H]inositol trisphosphate [( 3H]InsP3). Both actions of arachidonic acid were rapidly reversed by bovine serum albumin (BSA). Indomethacin and nordihydoguaiaretic acid failed to block the inhibitory effects of arachidonic acid on [32P]PtdIns4,5P2 levels. Arachidonic acid (10-50 microM) also caused a prompt depletion of cellular ATP which was rapidly reversed by BSA. The ATP-depleting action of arachidonate paralleled in terms of concentration dependence and time course its inhibitory effects on [32P]PtdIns4,5P2 and [3H]InsP3 levels. Exposure of acinar cells to 50 microM arachidonic acid produced an increase in oxygen consumption which exceeded that elicited by either carbachol or ionomycin. Arachidonic acid (10-50 microM) also caused a concentration-dependent rise in cytosolic Ca2+, which was partially obtunded by Ca2+ deprivation. A proposed mechanism involving arachidonic acid as a negative feedback regulator of polyphosphoinositide turnover in exocrine pancreas is discussed.  相似文献   

16.
K Swann  Y Igusa    S Miyazaki 《The EMBO journal》1989,8(12):3711-3718
Hamster eggs undergo repetitive increases in cytoplasmic free calcium concentration ([Ca2+]i) at fertilization or after injecting guanosine-5'-0-(3-thiotriphosphate) (GTP[S]). We report the effects of protein kinase C (PKC) agonists and antagonists on these repetitive [Ca2+]i transients as measured by their associated membrane potential hyperpolarizing responses (HRs). Iontophoretic injection of GTP[S] into unfertilized eggs caused a series of repetitive HRs that declined in amplitude with time. Continuous injection of inositol 1,4,5-trisphosphate (InsP3) also caused a series of repetitive HRs, but these HRs declined in amplitude less markedly. GTP[S]-induced HRs were inhibited by the PKC agonists phorbol 12-myristate 13-acetate (TPA) (100 nM) and 1,2-dioctanoyl-glycerol (diC8) (250 microM). Conversely the PKC inhibitor sphingosine (10 microM) enhanced the number of large HRs after GTP[S] injection. TPA or sphingosine did not alter InsP3-induced HRs. We suggest that G-protein-mediated InsP3 production causes repetitive [Ca2+]i transients but that GTP[S] injection stimulates a negative feedback loop involving PKC. Adding TPA (100 nM) before insemination caused a reduction in the frequency of HRs at fertilization, but neither TPA nor sphingosine affected the frequency or size of HRs when they were added after the start of fertilization. Fertilizing sperm may stimulate G-protein-mediated InsP3 production in a way that precludes feedback inhibition by PKC.  相似文献   

17.
The effects of extracellular ATP on inositol phospholipid breakdown and synthesis of eicosanoids were studied in mouse peritoneal macrophages. Addition of ATP to intact cells labelled with [3H]inositol stimulated a rapid (within 10 s) formation of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate. In parallel there was also a substantial accumulation of inositol 1,3,4-trisphosphate and the monophosphate and bisphosphate derivatives of inositol. Within 10 s after the addition of 30 microM ATP there was a twofold increase in inositol trisphosphate (InsP3), which declined over 2 min. The ED50 for ATP-stimulated generation of InsP3 was approximately 12 microM. ADP and GTP showed only weak effects on InsP3 formation, while AMP and adenosine were completely ineffective at 30 microM. Furthermore, the rank order of potency of ATP analogues was ATP greater than ATP[S] greater than AdoPP[NH]P = AdoPP[CH2]P greater than AdoP[CH2]PP thus, indicating the presence of a P2y-purinergic receptor. Cells labelled with [3H]arachidonic acid showed a 50% increase of label in 1,2-diacylglycerol after 15 s upon stimulation with ATP. In parallel to the stimulation of inositol phospholipid hydrolysis, ATP also caused a marked synthesis of prostaglandin E2 (PGE2) and leukotriene C4 (LTC4) in mouse peritoneal macrophages. The rank order of potency of ATP analogues was identical with that of InsP3 generation. The effect on eicosanoid synthesis could be mimicked by the calcium ionophore A23187 and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate. These results suggest that ATP-induced activation of P2y-purinergic receptors in mouse peritoneal macrophages triggers inositol phospholipid breakdown and eicosanoid synthesis.  相似文献   

18.
The formation and metabolism of inositol pentakis-and hexakisphosphates (InsP5 and InsP6) were investigated in Xenopus laevis oocytes. After [3H]inositol injection, [3H]InsP5 and subsequently [3H]Insp6 increased progressively over 72 h. In intact oocytes, [3H]InsP5 was progressively converted to [3H]InsP6 from 6 to 72 h of incubation and was not metabolized to lower inositol phosphates. In contrast, [3H]InsP6 remained unmetabolized for up to 72 h. These data are consistent with the kinetics of the increases in [3H]InsP5 and [3H]InsP6 in [3H]inositol-labeled oocytes. The highly phosphorylated inositols showed significant changes during oogenesis and maturation. In oocytes incubated for 48 h after [3H]inositol injection, the radioactive incorporation into polyphosphoinositols increased progressively from stage 3 to stage 6, with 5- and 6-fold rises (cpm/mg protein) for [3H]InsP5 and [3H]InsP6, respectively. These developmental changes were associated with 5-fold increases in [3H]inositol tetrakisphosphate between stages 3 and 6 of oogenesis. Induction of oocyte maturation by progesterone (1 microM) during the last 12 of a 36-h incubation with [3H]inositol doubled the levels of [3H]InsP6 relative to [3H]InsP5, suggesting that the activity of inositol pentakisphosphate kinase increases during maturation. These results provide direct evidence for metabolic conversion of InsP5 to InsP6 in animal cells and show that the higher inositol polyphosphates, unlike the lower phosphoinositols, are extraordinarily stable. These species increase markedly during ovum development and may play a regulatory role in oogenesis and maturation.  相似文献   

19.
The requirement of Ca2+ for the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) or the accumulation of inositol 1,4,5-trisphosphate (InsP3) in macrophages stimulated with fMet-Leu-Phe was examined using [32P]Pi or [3H]inositol-labeled cells. The dependence on Ca2+ of inositol-trisphosphate phosphatase was also examined. The application of 1 X 10(-8) M fMet-Leu-Phe caused a rapid decrease in the amount of PtdInsP2 to 70% of the control within 10 s, and the decrease was reverted to the control level by prolonged incubation. The decrease in the amount of PtdInsP2 accompanied the accumulation of phosphatidic acid and of InsP3, indicating that the loss of PtdInsP2 is due to phosphodiesteric breakdown. The dose-dependence of fMet-Leu-Phe or its analog on the hydrolysis of PtdInsP2 was much the same as that of the increase in intracellular free Ca2+ concentration in macrophages. The loss of PtdInsP2 as induced by fMet-Leu-Phe was similarly observed in macrophages treated with ionophore A23187 in the absence of external Ca2+ for 10 min. InsP3 was degraded by the particulate or cytosol fraction prepared from macrophages, and the activity of inositol-trisphosphate phosphatase in the particulate fraction was higher than that in the cytosol fraction. The enzyme in the cytosol fraction required Mg2+ for activity, and was activated by free Ca2+ concentrations ranging from 10(-7) to 10(-6) M in the presence of 1 mM MgCl2.  相似文献   

20.
N Sasakawa  T Nakaki  R Kato 《FEBS letters》1990,261(2):378-380
When [3H]inositol-prelabeled cultured bovine adrenal chromaffin cells were stimulated with nicotine (10 microM), a large and transient increase in [3H]inositol pentakisphosphate (InsP5) accumulation was observed. The accumulation reached the maximum level at 15 s, then declined to the basal level at 2 min. Nicotine also induced [3H]inositol tetrakisphosphate (InsP4) and [3H]inositol hexakisphosphate (InsP6) accumulation with a slower time course and a lesser magnitude than [3H]InsP5. The peaks of [3H]InsP4, [3H]InsP5 and [3H]InsP6 coincided with those of 32P radioactivity, when cells were doubly labeled with [3H]inositol and inorganic 32P. These results suggest that inositol pentakisphosphate is rapidly increased by nicotine, a cholinergic agonist, in cultured adrenal chromaffin cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号