首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 516 毫秒
1.
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) protein that reduce cAMP-stimulated Cl(-) conductance in airway and other epithelia. The purpose of this investigation was to identify new classes of potent CFTR activators. A collection of 60,000 diverse drug-like compounds was screened at 10 microm together with a low concentration of forskolin (0.5 microm) in Fisher rat thyroid epithelial cells co-expressing human CFTR and a green fluorescent protein-based Cl(-) sensor. Primary screening yielded 57 strong activators (greater activity than reference compound apigenin), most of which were unrelated in chemical structure to known CFTR activators, and 284 weaker activators. Secondary analysis of the strong activators included analysis of CFTR specificity, forskolin requirement, transepithelial short-circuit current, activation kinetics, dose response, toxicity, and activation mechanism. Three compounds, the most potent being a dihydroisoquinoline, activated CFTR by elevating cellular cAMP, probably by phosphodiesterase inhibition. Fourteen compounds activated CFTR without cAMP elevation or phosphatase inhibition, suggesting direct CFTR interaction. The most potent compounds had tetrahydrocarbazol, hydroxycoumarin, and thiazolidine core structures. These compounds induced CFTR Cl(-) currents rapidly (<5 min) with K(d) down to 200 nm and were CFTR-selective, reversible, and nontoxic. Several compounds, the most potent being a trifluoromethylphenylbenzamine, activated the CF-causing mutant G551D, but with much weaker affinity (K(d) > 10 microm). When added for 10 min, none of the compounds activated DeltaPhe(508)-CFTR in transfected cells grown at 37 degrees C (with DeltaPhe(508)-CFTR trapped in the endoplasmic reticulum). However, after correction of trafficking by 48 h of growth at 27 degrees C, tetrahydrocarbazol and N-phenyltriazine derivatives strongly stimulated Cl(-) conductance with K(d) < 1 microm. The new activators identified here may be useful in defining molecular mechanisms of CFTR activation and as lead compounds in CF drug development.  相似文献   

2.
The flavonoid genistein and the benzo[c]quinolizinium MPB-07 have been shown to activate the cystic fibrosis transmembrane conductance regulator (CFTR), the protein that is defective in cystic fibrosis. Lead-based combinatorial and parallel synthesis yielded 223 flavonoid, quinolizinium, and related heterocyclic compounds. The compounds were screened for their ability to activate CFTR at 50 microm concentration by measurement of the kinetics of iodide influx in Fisher rat thyroid cells expressing wild-type or G551D CFTR together with the green fluorescent protein-based halide indicator YFP-H148Q. Duplicate screenings revealed that 204 compounds did not significantly affect CFTR function. Compounds of the 7,8-benzoflavone class, which are structurally intermediate between flavones and benzo[c]quinoliziniums, were effective CFTR activators with the most potent being 2-(4-pyridinium)benzo[h]4H-chromen-4-one bisulfate (UCcf-029). Compounds of the novel structural class of fused pyrazolo heterocycles were also strong CFTR activators with the most potent being 3-(3-butynyl)-5-methoxy-1-phenylpyrazole-4-carbaldehyde (UCcf-180). A CFTR inhibitor was also identified. The active compounds did not induce iodide influx in null cells deficient in CFTR. Short-circuit current measurements showed that the CFTR activators identified by screening induced strong anion currents in the transfected cell monolayers grown on porous supports. Compared with genistein, the most active compounds had up to 10 times greater potency in activating wild-type and/or G551D-CFTR. The activators had low cellular toxicity and did not elevate cellular cAMP concentration or inhibit phosphatase activity, suggesting that CFTR activation may involve a direct interaction. These results establish an efficient screening procedure to identify CFTR activators and inhibitors and have identified 7,8-benzoflavones and pyrazolo derivatives as novel classes of CFTR activators.  相似文献   

3.
Reversible activation of succinate dehydrogenase   总被引:1,自引:0,他引:1       下载免费PDF全文
1. Treatment of particulate respiratory chain preparations in ways expected to raise or lower the concentration of endogenous soluble low-molecular-weight compounds respectively increased and diminished the capacity of succinate dehydrogenase to become activated reversibly and ;spontaneously' when preparations were diluted in tris acetate buffer and incubated at 37 degrees . 2. Addition of critically low concentrations of recognized activators to preparations that failed to undergo reversible ;spontaneous' activation when incubated at 1mg. of protein/ml. conferred on them the capacity to do so. 3. Preparations with a diminished tendency to undergo reversible ;spontaneous' activation had an increased tendency to become irreversibly inactivated on prolonged incubation at 1mg. of protein/ml. in tris acetate. 4. Extraction procedures designed to demonstrate the presence of possible endogenous activators in enzyme preparations failed to reveal a single substance to which such a role could be conclusively attributed. A mixture of compounds was found, however, including certain amino acids that have been shown to act as activators. It is questionable whether these compounds would be present at sufficiently high concentrations to act as activators when enzyme preparations are diluted to 1mg. of protein/ml. 5. Despite the failure to demonstrate conclusively the presence of endogenous activators, the balance of evidence appears to favour the hypothesis that reversible ;spontaneous' activation of these preparations can best be explained by the presence of such substances, and a scheme describing the mechanism of activation and deactivation of succinate dehydrogenase is discussed in relation to these and other observations.  相似文献   

4.
A novel and innovative high-throughput screening assay was developed to identify both activators and inhibitors of AMP-activated protein kinase (AMPK) using microarrayed compound screening (microARCS) technology. Test compounds were arrayed at a density of 8640 on a polystyrene sheet, and the enzyme and peptide substrate were introduced into the assay by incorporating them into an agarose gel followed by placement of the gels onto the compound sheet. Adenosine triphosphate (ATP) was delivered via a membrane, and the phosphorylated biotinylated substrate was captured onto a streptavidin affinity membrane (SAM trade mark ). For detection, the SAM trade mark was removed, washed, and imaged on a phosphor screen overnight. A library of more than 700,000 compounds was screened using this format to identify novel activators and inhibitors of AMPK.  相似文献   

5.
Lipid activators of protein kinase C   总被引:2,自引:0,他引:2  
Among the many reported lipid activators of protein kinase C only those of high affinity can be considered true physiological effectors, at present the tumor promoters, e.g., phorbol esters; 1,2-diacyl-sn-glycerols; and phosphatidylinositol 4,5-bisphosphate. Many other compounds (including arachidonic acid) are activators at high, unphysiological concentrations only, and they seem to be sterically unsuited for bonding to the enzyme. Such pseudo-activators possibly act by scrambling the structure of the regulatory moiety of the kinase.  相似文献   

6.
Plant activators are chemical crop protectants that fortify the immune system in plants. Unlike pesticides that target pathogens, plant activators provide durable effects against a broad spectrum of diseases, which have not been overcome by pathogenic microbes. Plant activators are not only useful agrochemicals, but can also help to elucidate the details of the plant immune system. Using an established high-throughput screening procedure, we previously identified 5 compounds, designated as Imprimatins, which prime plant immune response. These compounds increased disease resistance against pathogenic Pseudomonas bacteria in Arabidopsis plants by inhibiting 2 salicylic acid (SA) glucosyltransferases (SAGTs), resulting in accumulation of the phytohormone SA. Here, we report the isolation of 2 additional Imprimatins, B3 and B4, which are structurally similar to Imprimatin B1 and B2. Because these compounds did not have strong inhibitory effects on SAGTs in vitro, they may exert their function after metabolic conversion in vivo.  相似文献   

7.
Plant activators are agrochemicals that activate the plant immune system, thereby enhancing disease resistance. Due to their prophylactic and durable effects on a wide spectrum of diseases, plant activators can provide synergistic crop protection when used in combination with traditional pest controls. Although plant activators have achieved great success in wet-rice farming practices in Asia, their use is still limited. To isolate novel plant activators applicable to other crops, we screened a chemical library using a method that can selectively identify immune-priming compounds. Here, we report the isolation and characterization of three diuretics, bumetanide, bendroflumethiazide and clopamide, as immune-priming compounds. These drugs upregulate the immunity-related cell death of Arabidopsis suspension-cultured cells induced with an avirulent strain of Pseudomonas syringae pv. tomato in a concentration-dependent manner. The application of these compounds to Arabidopsis plants confers disease resistance to not only the avirulent but also a virulent strain of the pathogen. Unlike salicylic acid, an endogenous phytohormone that governs disease resistance in response to biotrophic pathogens, the three diuretic compounds analyzed here do not induce PR1 or inhibit plant growth, showing potential as lead compounds in a practical application.  相似文献   

8.
Plant activators are agrochemicals that protect plants from a broad range of pathogens by activating the plant immune system. Unlike pesticides, they do not target pathogens; therefore, plant activators provide durable effects that are not overcome by pathogenic microbes. Although certain plant activators have been applied to paddy fields for more than 30 years, the molecular basis of the underlying immune induction are unclear. From the screening of 10,000 diverse chemicals by a high-throughput screening procedure to identify compounds that specifically enhance pathogen-induced cell death in Arabidopsis cultured cells, we identified 7 compounds, which we designated as immune priming chemicals (Imprimatins). These compounds increased disease resistance against pathogenic Pseudomonas bacteria in Arabidopsis plants. Pretreatments increased the accumulation of endogenous salicylic acid (SA) but reduced its metabolite, SA-O-β-D-glucoside (SAG). Imprimatins inhibited the enzymatic activities of 2 SA glucosyltransferases (SAGTs) in vitro at concentrations effective for immune priming. Single and double knockout Arabidopsis plants for both SAGTs consistently exhibited enhanced disease resistance and SA accumulation. Our results demonstrate that the control of the free SA pool through SA-inactivating enzymes can be a useful methodology to confer disease resistance in plants. SAGTs can pave the way for target-based discovery of novel crop protectants.  相似文献   

9.
Searching for new antiobesity agents, a new series of fatty acid amide derivatives of 1,5-diarylpyrazole have been synthesized as dual peroxisome proliferator activated receptor alpha (PPARalpha)/cannabinoid receptor ligands. The compounds have been evaluated in vivo and in vitro as PPARalpha activators and as cannabinoids in two tests of the mouse tetrad. In vivo, food intake studies have been performed with all the compounds. No significant cannabinoid activity has been found but some compounds behaved as potent PPARalpha activators. Several compounds showed anorexigenic properties reducing food intake in rats.  相似文献   

10.
Activation of DNA damage checkpoint pathways, including Chk2, serves as an anticancer barrier in precancerous lesions. In an effort to identify small-molecule activators of Chk2, the authors developed a quantitative cell-based assay using a high-content analysis (HCA) platform. Induction of phosphorylated Chk2 was evaluated using several different parameters, including fold induction, Kolmogorov-Smirnov score, and percentage of positively stained cells. These measurements were highly correlated and provided an accurate method for compound ranking/binning, structure-activity relationship studies, and lead identification. Screening for Chk2 activators was undertaken with a target-focused library and a diversified library from ArQule chemical space. Several compounds exhibited submicromolar EC( 50) values for phosphorylated Chk2 induction. These compounds were further analyzed for Chk2-dependent cytotoxicity, as assessed through a high-content cell death assay in combination with siRNA silencing of Chk2 expression. Several compounds were identified and showed specific inhibition or lethality in a target-dependent manner. Therefore, identification of DNA damage checkpoint pathway activators by HCA is an attractive approach for discovering the next generation of targeted cancer therapeutics.  相似文献   

11.
Wilk  Sherwin  Chen  Wei-Er 《Molecular biology reports》1997,24(1-2):119-124
The development of small molecule peptide-based activators of the 20S proteasome or multicatalytic proteinase complex was initiated. The enhancement of antigen presentation by transfection of the protein activator PA28 into a mouse fibroblast cell line [10] supports the potential use of small molecule activators in stimulating the immune response. Four classes of peptide-based activators were synthesized, i.e. peptidyl alcohols, esters, p-nitroanilides and nitriles. These compounds markedly and reversibly stimulated the hydrolysis of suc-LLVY-MCA, Z-LLE-NA and Z-GPALG-p-aminobenzoate as well as hydrolysis of the decapeptide angiotensin I. Stimulation was due to a decrease in the K_ and increase in the V max of the substrate. In general, the EC50 for activation ranged from 50–150 mM and maximal stimulation varied from 3 to 15 fold depending on the activity measured. Z-IE(O-tBu)AL-p-nitroanilide, a proteasome substrate, markedly stimulated the hydrolysis of Z-GPALG-pAB by binding to a saturable high affinity site distinct from its binding site as substrate. Since all effective activators contain hydrophobic groups in positions P1-P5, low aqueous solubility is a limitation of these compounds. Competition experiments suggest that these activators bind to the same site as PA28.  相似文献   

12.
This Letter describes a novel series of GIRK activators identified through an HTS campaign. The HTS lead was a potent and efficacious dual GIRK1/2 and GIRK1/4 activator. Further chemical optimization through both iterative parallel synthesis and fragment library efforts identified dual GIRK1/2 and GIRK1/4 activators as well as the first examples of selective GIRK1/4 activators. Importantly, these compounds were inactive on GIRK2 and other non-GIRK1 containing GIRK channels, and SAR proved shallow.  相似文献   

13.
14.
A variety of substances of diverse structure have been shown to affect the activity of protein kinase C. Many of the agents which affect protein kinase C activity also markedly shift the bilayer to hexagonal phase transition temperature of phosphatidylethanolamines. Although one of the more potent activators of protein kinase C, diacylglycerols, are effective destabilizers of the bilayer phase of membranes, this is not a general property of all protein kinase C activators nor are inhibitors of this enzyme bilayer stabilizing agents. However, if we consider only compounds which are uncharged or are zwitterionic, then those which promote the conversion of phospholipid bilayers to the hexagonal phase are all activators of protein kinase C, while those which stabilize the bilayer phase are protein kinase C inhibitors. Among charged substances, all of those which are negatively charged are activators of protein kinase C, while all of the positively charged compounds are protein kinase C inhibitors.  相似文献   

15.
16.
Several benzyloxybenzaldehyde analogues were prepared and found to have significant inhibitory activity toward neutrophil superoxide formation. Consequently, these compounds were evaluated for cAMP-elevating capability. Among them, benzyloxybenzaldehyde (7), exhibiting activity equivalent to forskolin, was determined as an adenylyl cyclase activator since it elevates cAMP levels by activation of adenylyl cyclase but not by inhibition of phosphodiesterase. Having a chemical structure very different from known adenylyl cyclase activators, compound 7 is recommended by us for use as a new lead compound in the future development of adenylyl cyclase activators.  相似文献   

17.
18.
This past decade has seen the identification of numerous conserved genes that extend lifespan in diverse species, yet the number of compounds that extend lifespan is relatively small. A class of compounds called STACs, which were identified as activators of Sir2/SIRT1 NAD+-dependent deacetylases, extend the lifespans of multiple species in a Sir2-dependent manner and can delay the onset of age-related diseases such as cancer, diabetes and neurodegeneration in model organisms. Plant-derived STACs such as fisetin and resveratrol have several liabilities, including poor stability and relatively low potency as SIRT1 activators. To develop improved STACs, stilbene derivatives with modifications at the 4' position of the B ring were synthesized using a Horner-Emmons-based synthetic route or by hydrolyzing deoxyrhapontin. Here, we describe synthetic STACs with lower toxicity toward human cells, and higher potency with respect to SIRT1 activation and lifespan extension in Saccharomyces cerevisiae. These studies show that it is possible to improve upon naturally occurring STACs based on a number of criteria including lifespan extension.  相似文献   

19.
Based on the X-ray crystallographic structure of the adduct of human carbonic anhydrase II (hCA II) with the weak activator histamine (Briganti, F., Mangani, S., Orioli, P., Scozzafava, A., Vernaglione, G. and Supuran, C.T. (1997) Biochemistry, 36, 10,384-10,392), a novel class of tight-binding CA activators was designed by using histamine (Hst) as lead molecule. Thus, N-1-tritylsulfenyl Hst was synthesized by reaction of Hst with tetrabromophthalic anhydride followed by protection of its imidazole moiety with tritylsulfenyl chloride. After hydrazinolysis, it afforded a key intermediate which was derivatized at the aliphatic amino group. Reaction of the key intermediate with 4-fluorophenylsulfonylureido amino acids (fpu-AA) or 2-toluenesulfonylureido amino acids (ots-AA) in the presence of carbodiimides, afforded after deprotection, a series of compounds with the general formula fpu/ots-AA-Hst (fpu = 4-FC6H4SO2NHCO; ots = 2-MeC6H4SO2NHCO). Some structurally related dipeptides with the general formula fpu/ots-AA1-AA2-Hst (AA, AA1 and AA2 represent amino acyl moieties), were also prepared, by a strategy similar to that used for the simple amino acyl compounds above. The new derivatives proved to be efficient in vitro activators of three CA isozymes. Best activity was shown against hCA I and bCA IV, for which some of the new compounds (such as the Lys, Arg, His or the dipeptide derivatives) showed affinities in the 2-12 nm range (h = human; b = bovine isozymes). hCA II was on the other hand somehow less prone to activation by the new derivatives, which possessed affinities around 30-60 nM for this isozyme. Ex vivo experiments showed some of the new activators to strongly enhance red cell CA activity (180-230%) after incubation with human erythrocytes. This new class of CA activators might lead to the development of drugs/diagnostic tools for the CA deficiency syndrome, a genetic disease of bone, brain and kidneys.  相似文献   

20.
Endoplasmic reticulum stress plays a critical role to restore the homeostasis of protein production in eukaryotic cells. This vital process is hence involved in many types of diseases including COPD. PERK, one branch in the ER stress signaling pathways, has been reported to activate NRF2 signaling pathway, a known protective response to COPD. Based on this scientific rationale, we aimed to identify PERK activators as a mechanism to achieve NRF2 activation. In this report, we describe a phenotypic screening assay to identify PERK activators. This assay measures phosphorylation of GFP-tagged eIF2α upon PERK activation via a cell-based LanthaScreen technology. To obtain a robust assay with sufficient signal to background and low variation, multiple parameters were optimized including GFP-tagged eIF2α BacMam concentration, cell density and serum concentration. The assay was validated by a tool compound, Thapsigargin, which induces phosphorylation of eIF2α. In our assay, this compound showed maximal signal window of approximately 2.5-fold with a pEC50 of 8.0, consistent with literature reports. To identify novel PERK activators through phosphorylation of eIF2α, a focused set of 8,400 compounds was screened in this assay at 10 µM. A number of hits were identified and validated. The molecular mechanisms for several selected hits were further characterized in terms of PERK activation and effects on PERK downstream components. Specificity of these compounds in activating PERK was demonstrated with a PERK specific inhibitor and in PERK knockout mouse embryonic fibroblast (MEF) cells. In addition, these hits showed NRF2-dependent anti-oxidant gene induction. In summary, our phenotypic screening assay is demonstrated to be able to identify PERK specific activators. The identified PERK activators could potentially be used as chemical probes to further investigate this pathway as well as the link between PERK activation and NRF2 pathway activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号