首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The variant surface glycoprotein of African trypanosomes is released after overnight incubation of parasites at 4°C in pH 5.5 phosphate glucose buffer and may be purified by Concanavalin A Sepharose affinity chromatography [1]. The addition of proteinase inhibitors during the parasite incubation is necessary to prevent the proteolysis of the variant surface glycoproteins by the trypanosomal released proteinases. Using this procedure without the addition of proteinase inhibitors, the proteolytic activities, released from the bloodstream forms Trypanosoma brucei brucei variant AnTat 1.1, were separated by Concanavalin-A Sepharose affinity chromatography. The unretained material (F1) shows hydrolytic activity against the two synthetic substrates Z-Phe-Arg-AMC and Z-Arg-Arg-AMC, which is stimulated by dithiothreitol, but not inhibited by E-64, and characterized by and alkaline pH optimum and an estimated molecular mass of 80–100 kDa. The Michaelis constant for the substrates Z-Arg-Arg-AMC and Z-Phe-Arg-AMC was, respectively, 2.8 and 6.7 μM. The retained material eluted by addition of 1% methyl-α-D-mannopyranoside (F2) shows hydrolytic activity against the synthetic substrate Z-Phe-Arg-AMC, which is stimulated by dithiothreitol, inhibited by E-64, active between pH 6.0 and 8.0, and could be separated into two peaks of activity by HPLC, one peak of high molecular mass (> 70 kDa) and the other peak of lower molecular mass (30–70 kDa). By electrophoresis in gels containing gelatin as substrate, this fraction contains several proteins with gelatinolytic activity, whereas the unretained fraction F1 did not have any gelatinolytic activity.  相似文献   

2.
Proteolytic activities released by overnight incubation of Antwerpeen Trypanozoon antigenic type (AnTat) 1.1 trypanosomes at 4 degrees C in pH 5.5 and pH 7.0 phosphate/glucose buffers were analyzed in the supernatants obtained after centrifugation of the parasite suspensions. The assays used the fluorogenic substrates N-alpha-benzyloxycarbonyl-L-phenyl-alanyl-L-arginine-7-amido-4- methylcoumarin (Z-Phe-Arg-NMec) and N-alpha-benzyloxycarbonyl-L-arginyl-L-arginine-7- amido-4-methylcoumarin (Z-Arg-Arg-NMec) at two different pHs (6.0 and 8.3). Z-Phe-Arg-NMec hydrolysis was inhibited by 2 microM L-trans-epoxysuccinyllencylamido(4-guanidino)butane (E-64) to a greater extent in the pH 7.0 supernatant than in the pH 5.5 supernatant. Z-Arg-Arg-NMec hydrolysis by the two supernatants was not significantly inhibited by 2 microM E-64. At pH 8.3 this activity was increased more than 2-fold by the addition of dithiothreitol. The hydrolysis activities were analyzed in collected eluates after fractionation of the supernatants by gel permeation high-performance liquid chromatography. Z-Phe-Arg-NMec hydrolytic activity inhibited by 2 microM E-64 was maximal at a retention time of 33 min (approx. Mr 30,000). In addition, a hydrolytic activity against the substrates Z-Phe-Arg-NMec and Z-Arg-Arg-NMec gave a peak showing a maximum at a retention time of 29 min (approx. Mr 70,000).  相似文献   

3.
Sphingomyelinase from human placenta was purified to homogeneity in five steps: concanavalin A Sepharose, butyl agarose. Blue Sepharose, sphingosylphosphocholine Sepharose chromatography and FPLC-Mono Q. This lysosomal enzyme has a pH optimum around pH 5.0-6.0. It is a glycoprotein with an approximate molecular mass of 70 kDa which is reduced to 60 kDa by enzymatic deglycosylation. Monospecific antibodies against sphingomyelinase were isolated using sphingomyelinase covalently linked to Sepharose as affinity matrix. These antibodies effectively inhibit the sphingomyelinase activity. Peptides were released from sphingomyelinase by cyanogen bromide or proteolytically by trypsin, proteinase V8 and Lys C for gas phase sequencing. Amino-acid sequences are reported which proved to be the prerequisite for antibody and oligonucleotide screening of the respective human placenta cDNA libraries for the determination of the complete amino acid sequence of human lysosomal sphingomyelinase. In situ hybridisation with a labelled antisense RNA synthesized in vitro using cloned sphingomyelinase-specific cDNA as template, which encodes the peptide sequences described here, revealed the strong expression of sphingomyelinase in human placental villi and normal fibroblasts. Fibroblasts of a Niemann-Pick patient, however, were free of mRNA expressing the sphingomyelinase described here.  相似文献   

4.
African trypanosomes have thiol-dependent proteolytic activity that resembles some of the cathepsin-like activity found in mammalian lysosomes [Lonsdale-Eccles, J. D. & Mpimbaza, G. W. N. (1986) Eur. J. Biochem. 155, 469-473]. Here we show that this activity is found in lysosome-like organelles which we have isolated (density = 1.082 g/cm3 in Percoll) from bloodstream forms of Trypanosoma brucei brucei. They are approximately 250 nm in diameter, are bounded by a single limiting membrane, and contain acid phosphatase. The predominant proteolytic and peptidolytic activity of these organelles has a pH optimum about 6.0, exhibits latency, and has the characteristics of mammalian cathepsin L (and possibly cathepsin H) with respect to its hydrolysis of small fluorogenic peptidyl substrates such as benzyloxycarbonyl-phenylalanyl-arginyl-7-amido-4-methylcoumarin. This substrate appears to be a good marker for trypanosomal lysosomes. The cathepsin-L-like activity is inhibited by the thiol-protease inhibitors, E-64, cystatin, leupeptin and mercurial compounds. The proteolytic activity of the lysosome-like fraction is observed as a single band of activity with an approximate molecular mass of 27 kDa when measured after electrophoresis in the fibrinogen-containing sodium dodecyl sulphate/polyacrylamide gels. The addition of mammalian serum to this purified fraction, or to whole trypanosome homogenates, results in the appearance of additional bands of activity, with a concomitant increase in the total observed proteolytic activity. The serum of some species of animal (e.g. goat and guinea pig) appear to lack the ability to generate this new and increased activity, while rat, rabbit, human and bovine sera exhibit varying capacities to generate the new activity, the cow being the most effective. The apparent molecular masses of the new bands of activity are different for each mammalian species, suggesting that the activator is a species-specific molecule or class of molecules. We also show that Trypanosoma brucei contains soluble peptidolytic activity with an alkaline pH optimum. It is inhibited by the serine-protease inhibitor diisopropylfluorophosphate, but not by inhibitors such as phenylmethylsulphonyl fluoride, alpha 1-antitrypsin, or aprotinin. Nor is it inhibited by the thiol-protease-specific inhibitors E-64 or cystatin, although it is susceptible to inhibition by tosyllysylchloromethane, leupeptin, HgCl2 and p-chloromercuribenzoate. This enzymic activity has a preference for arginyl residues in the primary binding site (the P1 position), as also does the activity from the lysosomes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Micrococcus sp. INIA 528, a micro-organism isolated from raw ewe's milk Manchego cheese, produced an extracellular proteinase. This enzyme was purified to homogeneity from culture supernatant fluid in two chromatographic steps, with a 29-fold increase of specific activity and a 28% recovery of proteinase activity. The homogeneous protein was characterized biochemically. The molecular weight of the enzyme was determined to be 19.4 kDa by mass spectrometry. The purified enzyme was inhibited by E-64, PMSF and iodoacetamide and activated by cysteine, glutathione, dithiothreitol and β-mercaptoethanol. These results suggest that the enzyme is a cysteine proteinase. Optimal conditions for activity on azocasein were 34°C and a pH of 7.0. The proteinase preferentially degraded β-casein, while after a longer incubation period αs1-casein was also extensively hydrolysed. The proteinase had a K m value of 6.12 g 1−1 for casein and 2.20 g 1−1 for azocasein.  相似文献   

6.
昆虫卵内蛋白酶在胚胎发育中水解卵黄蛋白,为胚胎发育提供氨基酸,昆虫中已报道过几类卵蛋白酶,如家蚕中半胱氨酸蛋白酶和丝氨酸蛋白酶等。但是,目前尚不清楚这些蛋白酶是否存在于其他鳞翅目昆虫。了解这些蛋白酶的作用机理可以为我们提供害虫防治的新方法。并且,由于蛋白水解在许多生理过程中具有重要作用,如蛋白质的成熟和转运、受精、萌芽、肿瘤转移和其他形态发生等。因此,阐明这些蛋白酶的生物功能具有重要意义。由于(i蚕卵粒大产卵量也很大,因此被选作研究鳞翅目昆虫卵蛋白酶的材料,我们希望通过对数种昆虫卵内蛋白酶的研究、找出卵黄蛋白水解的一般规律。在我们前一篇文章中报道了(i蚕组织蛋白酶B的鉴定,该蛋白酶属于半胱氨酸蛋白酶类的组织蛋或最适pH为3.5,可被E-64抑制。本文报道蛋白酶的纯化和性质。经过5步纯化过程,从(i蚕卵母细胞中纯化出组织蛋白酶B,用SDS聚丙烯酰胺凝胶电泳测得蛋白酶的亚基分子量在47kDa左右。纯化的蛋白酶活性可被E-64和Leupeptin抑制。因此,该蛋白酶属于半胱氨酸蛋白酶。天冬氨酸蛋白酶特异性抑制剂pepstatin不抑制其活性。其活性可被DFP和PMSF部分抑制。这两种抑制剂通常抑制丝氨酸蛋白酶活性  相似文献   

7.
A previously described “major acidic proteinase” of adult Schistosoma mansoni, believed to play a key role in the parasite's metabolism, has been identified as a cathepsin B (Sm31). Purified Sm cathepsin B was not recognized by anti-Sm32 or anticathepsin L antibodies. The enzyme hydrolyzes the synthetic protease substrates Z-Arg-Arg-AMC and Z-Phe-Arg-AMC as well as protein substrates. Its pH optimum is 3.0 with serum albumin, 4.0–5.0 with globin and 5.5–6.0 with the synthetic substrates. The enzyme was inactivated by cysteine proteinase inhibitors. Its activity against protein substrates would support the hypothesis that it plays a role in schistosome nutrition.  相似文献   

8.
In our isolation procedure, the surface antigens of the variants AnTat 1.1 and 1.10 (Trypanosoma brucei brucei) are essentially obtained as a disulfide-linked dimer while the AnTat 1.8 surface antigen is found as a mixture of monomer and disulfide-linked dimer. This observation may be related to the localization of the cysteine residues in the protein sequences. In the purification procedure using concanavalin-A Sepharose chromatography, besides the VSG elution by methyl-alpha-D-mannopyranoside, a quantitative elution of still bound VSG may be obtained by the addition of beta-mercaptoethanol to methyl-alpha-D-mannopyrannoside in the elution buffer. The surface antigen of the variant AnTat 1.1 was examined for molecular form at several different times during the release procedure. The disulfide-linked dimer could be observed within 30 min of the surface coat release, indicating its presence within the parasite.  相似文献   

9.
Gel electrophoresis, lectin affinity blotting, and endoglycosidase H digestion have been used to analyze the glycoprotein profiles of bloodstream and procyclic forms of Trypanosoma brucei brucei and T. b. gambiense. Proteins resolved by polyacrylamide gel electrophoresis were stained with silver nitrate or electrophoretically transferred to nitrocellulose and probed with a horseradish peroxidase conjugate of either concanavalin A or wheat germ agglutinin. Silver staining showed, as expected, that the expression of the variant specific glycoprotein was restricted to the bloodstream forms. Twenty-three concanavalin A binding proteins were resolved in blots of bloodstream forms. Concanavalin A binding molecules corresponding in electrophoretic mobility to 21 of these 23 bloodstream form glycoproteins were detected in blots of procyclic forms. The two concanavalin A binding glycoproteins present only in bloodstream form extracts were variant specific glycoprotein and an 81-kDa protein designated glycoprotein 81b. One concanavalin A binding molecule of 84 kDa, glycoprotein 84p, was detected only in procyclic forms. The 19 major wheat germ agglutinin binding glycoproteins expressed by bloodstream forms were not detected in procyclic forms; only small proteins or protein fragments in procyclic form extracts bound wheat germ agglutinin. Incubating transferred proteins in endoglycosidase H eliminated subsequent binding of concanavalin A to most of the 22 common glycoproteins of bloodstream forms. Three major concanavalin A binding glycoproteins of bloodstream forms, variant specific glycoprotein, glycoprotein 81b, and a 110-kDa molecule (glycoprotein 110b), and other minor glycoproteins carried sugar chains that resisted endoglycosidase H digestion. In contrast, concanavalin A did not bind to any procyclic form glycoproteins, including a 110-kDa concanavalin A binding molecule (glycoprotein 110p) after endoglycosidase H treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Although papain-like enzymes are strongly inhibited by their natural tight-binding inhibitors of the cystatin superfamily, cathepsins B and L may still retain some residual proteolytic activity toward Z-Phe-Arg-AMC in the presence of an excess of kininogen. This activity is abolished by adding E-64 or chicken cystatin. Cathepsins B and L show a single band of gelatinolytic activity when subjected to gelatin-SDS-PAGE. Adding high Mr kininogen, low Mr kininogen, T-kininogen, or chicken cystatin to cathepsin L results in additional intense bands of enzyme activity corresponding to the protease-inhibitor complexes. Cathepsin B does not produce these additional bands. This gelatinolytic activity was inhibited by E-64, but not by EDTA, PMSF or Pefabloc. Cathepsin L also specifically generated kinins from high and low molecular weight kininogens in vitro, but cathepsin B did not. T-kininogen did not release any immunoreactive kinins when complexed with cathepsin L, as previously observed using tissue kallikreins. The ability of cathepsin L to generate vasoactive peptides raises the question of the physiological significance of this mechanism during inflammation.  相似文献   

11.
A new alkaline proteinase activity was identified in cell-free extracts of Trypanosoma cruzi epimastigotes on the basis of its ability to hydrolyze the fluorogenic substrate N-Z-Gly-Gly-Arg-AMC. The optimal activity was at pH 8.0. After a three step-chromatography procedure using two anionic columns (DEAE-Sepharose and Mono Q) and a chromatofocusing column (Mono P), the proteolytic activity was associated with a single 120 kDa protein and was called Tc 120 proteinase. The molecular mass of the proteinase was confirmed by direct visualization of the proteolytic activity using a fluorometric assay on SDS-PAGE. The Tc 120 proteinase which also cleaves N-Z-Arg-AMC, N-Z-Phe-Arg-AMC and N-glutaryl-Gly-Arg-AMC substrates, is a cysteine-type proteinase with an unusual low sensitivity to E-64.  相似文献   

12.
A metal-dependent peptidase was isolated from the homogenate of human uterus by standard chromatographic techniques and purified to apparent homogeneity. The peptidase hydrolysed the synthetic vertebrate collagenase substrate 2,4-dinitrophenyl-Pro-Gln-Gly-Ile-Ala-Gly-Gln-D-Arg (Dnp-peptide), the synthetic bacterial collagenase substrate 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-D-Arg (PZ-peptide) and gelatinolytic peptides of gelatin, but was inactive against collagen type I, gelatin and casein. The cleavage site for the Dnp-peptide was the Gly-Ile bond. The enzyme was not only inhibited by metal chelators, such as EDTA, 1,10-phenantroline and dithiothreitol but also by thiol reagents, such as mersalylic acid and N-ethylmaleimid. However, E-64, an inhibitor for thiolproteinases, and leupeptin, an inhibitor for thiol- and serine proteases, did not exhibit any inhibitory activity. Pepstatin, an inhibitor for aspartate proteinases, and inhibitors for serine proteinases like phenylmethanesulfonyl fluoride and Trasylol were ineffective as well. The purified peptidase displayed a single band in the SDS-PAGE with an apparent molecular mass of 65 kDa. Employing isoelectric focusing an IP of 5.0 could be determined. The enzyme's properties are discussed in relation to the proteinase EC 3.4.24.11 and to proteinases of the collagenase family as well as the possibility to discriminate these three metalloproteinase classes by employing the Dnp-peptide.  相似文献   

13.
14.
The surface coat of Trypanosoma brucei is composed of 10(7) molecules of the variant surface glycoprotein (VSG). Each VSG molecule is tethered to the cell membrane by a glycolipid moiety which contains 1,2-dimyristoyl-sn-phosphatidylinositol (Ferguson, M. A. J., Low, M. G., and Cross, G. A. M. (1985) J. Biol. Chem. 260, 14547-14555). Following cell lysis, an endogenous phospholipase C cleaves dimyristoyl glycerol from the glycolipid, releasing soluble VSG. We have purified this enzyme, which we designate VSG lipase, by detergent extraction, (NH4)2SO4 fractionation, hydrophobic chromatography, and cation exchange chromatography. It is purified 2600-fold and is virtually homogeneous. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the apparent molecular mass is 37 kDa. In solutions containing the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS), the Stokes radius (2.6 nm), S20,w (3.7 S), and v (0.77 cm3/g) of VSG lipase suggest a molecular mass for the native enzyme of about 47 kDa, part of which may be due to bound CHAPS. Therefore, it is probably monomeric. VSG lipase does not require Ca2+; it is stimulated by chelating agents or dithiothreitol, and it is inhibited by some sulfhydryl reagents. The purified enzyme appears to be highly specific. Under the conditions of our assay, it cleaves the VSG glycolipid, a biosynthetic precursor of the VSG glycolipid, and, to a much lesser extent, 1,2-dimyristoyl-sn-phosphatidylinositol. There was no apparent cleavage of other myristate-containing lipids of trypanosomes or 1-stearoyl-2-arachidonoyl-sn-phosphatidylinositol.  相似文献   

15.
ABSTRACT. A procedure was developed to purify a coated vesicle fraction from the protozoan parasite Trypanosoma brucei. Electron microscopy revealed a difference between T. brucei coated vesicles and clathrin-coated vesicles from other eukaryotes: trypanosome vesicles were larger (100 to ISO nm in diameter) and contained an inner coat of electron-dense material in addition to the external coat. Evidence suggests that the internal coat is the parasite's variant surface glycoprotein (VSG) coat. The SDS-PAGE analysis shows the major protein of T. brucei coated vesicles has a molecular mass of 61 kD, similar to VSG; this protein was recognized in an immunoblot by anti-VSG serum. Trypanosome coated vesicles also contain a protein which comigrates with the major protein (clathrin) of coated vesicles purified from rat brains. However, this protein is a minor component and it is not serologically cross-reactive with mammalian clathrin. Immunoblot analysis demonstrated that the parasite vesicles contained host IgG, IgM, and serum albumin.  相似文献   

16.
A procedure was developed to purify a coated vesicle fraction from the protozoan parasite Trypanosoma brucei. Electron microscopy revealed a difference between T. brucei coated vesicles and clathrin-coated vesicles from other eukaryotes: trypanosome vesicles were larger (100 to 150 nm in diameter) and contained an inner coat of electron-dense material in addition to the external coat. Evidence suggests that the internal coat is the parasite's variant surface glycoprotein (VSG) coat. The SDS-PAGE analysis shows the major protein of T. brucei coated vesicles has a molecular mass of 61 kD, similar to VSG; this protein was recognized in an immunoblot by anti-VSG serum. Trypanosome coated vesicles also contain a protein which comigrates with the major protein (clathrin) of coated vesicles purified from rat brains. However, this protein is a minor component and it is not serologically cross-reactive with mammalian clathrin. Immunoblot analysis demonstrated that the parasite vesicles contained host IgG, IgM, and serum albumin.  相似文献   

17.
Trypanosoma brucei variant surface glycoproteins are apparently synthesized with a hydrophobic carboxyl-terminal peptide that is cleaved and replaced by a complex glycosylphosphatidylinositol membrane anchor within 1 min of the completion of polypeptide synthesis. The rapidity of this carboxyl-terminal modification suggests the existence of a prefabricated core glycolipid that would be transferred en bloc to the variant surface glycoprotein polypeptide. We report the purification and chemical characterization of a glycolipid from T. brucei that has properties consistent with a role as a variant surface glycoprotein glycolipid donor. This candidate glycolipid precursor has been defined by thin-layer chromatography of extracts of trypanosomes metabolically labeled with radioactive myristic acid, ethanolamine, glucosamine, mannose, and phosphate and by enzymatic, chemical, and gas chromatographic-mass spectrometric analysis. Mild alkali released 100% of the myristic acid, and reaction with phospholipase A2 released 50%. Nitrous acid deamination generated dimyristylphosphatidylinositol, and periodate oxidation released phosphatidic acid. Treatment of purified glycolipid with phosphatidylinositol-specific phospholipase C released dimyristylglycerol and a water-soluble glycan that was sized on Bio-Gel P-4 columns. The candidate precursor contained mannose, myristic acid, phosphate, and ethanolamine with an unsubstituted amino group, but not galactose.  相似文献   

18.
A cDNA encoding cathepsin B was cloned from the scuticociliate, Uronema marinum, which invades the olive flounder, Paralichthys olivaceus, leading to high mortalities in culturing fish. The full-length scuticociliate cathepsin B (ScCtB) gene contains an open reading frame of 1053 base pairs encoding 350 amino acids. A homology search revealed that ScCtB shares sequence identity with several piscine cathepsin Bs (48%-45%). The protein of ScCtB from U. marinum extracts was purified 12.8-fold by a one step purification process using a DEAE-Sephagel high performance liquid chromatography (HPLC) column. It had a molecular mass of 30 kDa, as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting, which was consistent with predicting molecular mass of mature protein (29.2 kDa) of ScCtB. The protease activity of the ScCtB enzyme was demonstrated by electrophoresis in a gelatin-acrylamide copolymerized gel. Its activity was quantified by cleaving a synthetic fluorogenic peptide substrate, Z-arginyl-arginyl-7-amido-4-methylcoumarin (Z-Arg-Arg-AMC). The optimum pH for the protease activity was 5.5. Typical of cysteine proteases, the enzyme was inhibited by trans-epoxysuccinyl-L-leucyl-amido(4-guanidino)butane (E-64) and leupeptin.  相似文献   

19.
Fibronectin contains two latent gelatinolytic enzymes, FN-gelatinase and FN-laminase that can be activated in the presence of Ca2+ from the purified cathepsin D-produced 190-kDa fibronectin fragment. The results of this work show that Achromobacter collagenase cleaves fibronectin and generates an active FN-gelatinase. In contrast to the cathepsin D digest, the collagenase digest directly exhibits gelatinolytic activity without additional activation. The gelatinolytic activity of the total collagenase digest can be inhibited by phenylmethanesulfonyl fluoride, a serine proteinase inhibitor and by pepstatin A, an aspartic-acid proteinase inhibitor. FN-laminase activity, when assayed with its synthetic substrate GPAGPR and also with laminin was revealed after separation of the collagenase digest of fibronectin on heparin Ultrogel. FN-gelatinase and FN-laminase activities were found in heparin unretained and heparin strongly retained fractions. These results have demonstrated that in contrast to cathepsin D, Achromobacter collagenase activates two matrix-degrading proteinases from fibronectin, FN-Gelatinase und FN-Laminase.  相似文献   

20.
Non-albicans Candida species cause 35-65% of all candidemias in the general population, especially in immunosuppressed individuals. Here, we describe a case of a 19-year-old HIV-infected man with pneumonia due to a yeast-like organism. This clinical yeast isolate was identified as Candida guilliermondii through mycological tests. C. guilliermondii was cultivated in brain heart infusion medium for 48 h at 37 degrees C. After sequential centrifugation and concentration steps, the free-cell culture supernatant was obtained and extracellular proteolytic activity was assayed firstly using gelatin-SDS-PAGE. A 50 kDa proteolytic enzyme was detected with activity at physiological pH. This activity was completely blocked by 10 mM phenylmethylsulphonyl fluoride (PMSF), a serine proteinase inhibitor, suggesting that this extracellular proteinase belongs to the serine proteinase class. E-64, a strong cysteine proteinase inhibitor, and pepstatin A, a specific aspartic proteolytic inhibitor, did not interfere with the 50 kDa proteinase. Conversely, a zinc-metalloproteinase inhibitor (1,10-phenanthroline) restrained the proteinase activity released by C. guilliermondii by approximately 50%. Proteinases are a well-known class of enzymes that participate in a vast context of yeast-host interactions. In an effort to establish a functional implication for this extracellular serine-type enzyme, we investigated its capacity to hydrolyze some serum proteins and extracellular matrix components. We demonstrated that the 50 kDa exocellular serine proteinase cleaved human serum albumin, non-immune human immunoglobulin G, human fibronectin and human placental laminin, generating low molecular mass polypeptides. Collectively, these results showed for the first time the ability of an extracellular proteolytic enzyme other than aspartic-type proteinases in destroying a broad spectrum of relevant host proteins by a clinical species of non-albicans Candida.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号