首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: Multilocus sequence typing (MLST) was used to examine the diversity and population structure of Campylobacter jejuni isolates associated with sporadic cases of gastroenteritis in Australia, and to compare these isolates with those from elsewhere. METHODS AND RESULTS: A total of 153 Camp. jejuni isolates were genotyped. Forty sequence types (STs) were found, 19 of which were previously undescribed and 21 identified in other countries. The 19 newly described STs accounted for 43% of isolates, 16 of which were assigned to known clonal complexes. Eighty-eight percent of isolates were assigned to a total of 15 clonal complexes. Of these, four clonal complexes accounted for 60% of isolates. Three STs accounted for nearly 40% of all isolates and appeared to be endemic, while 21 STs were represented by more than one isolate. Seven infections were acquired during international travel, and the associated isolates all had different STs, three of which were exclusive to the travel-acquired cases. Comparison of serotypes among isolates from clonal complexes revealed further diversity. Eight serotypes were identified among isolates from more than one clonal complex, while isolates from six clonal complexes displayed serotypes not previously associated with those clonal complexes. CONCLUSIONS: Multilocus sequence typing is a useful tool for the discrimination of subtypes and examination of the population structure of Camp. jejuni associated with sporadic infections. SIGNIFICANCE AND IMPACT OF THE STUDY: This study highlights the genotypic diversity of Camp. jejuni in Australia, demonstrating that STs causing disease have both a global and a local distribution evident from the typing of domestically and internationally acquired Camp. jejuni isolates.  相似文献   

2.
The genetic diversity of Campylobacter jejuni isolates from farm animals and their environment was investigated by multilocus sequence typing (MLST). A total of 30 genotypes, defined by allelic profiles (assigned to sequence types [STs]), were found in 112 C. jejuni isolates originating in poultry, cattle, sheep, starlings, and slurry. All but two of these genotypes belonged to one of nine C. jejuni clonal complexes previously identified in isolates from human disease and retail food samples and one clonal complex previously associated with an environmental source. There was some evidence for the association of certain clonal complexes with particular farm animals: isolates belonging to the ST-45 complex predominated among poultry isolates but were absent among sheep isolates, while isolates belonging to the ST-61 and ST-42 complexes were predominant among sheep isolates but were absent from the poultry isolates. In contrast, ST-21 complex isolates were distributed among the different isolation sources. Comparison with MLST data from 91 human disease isolates showed small but significant genetic differentiation between the farm and human isolates; however, representatives of six clonal complexes were found in both samples. These data demonstrate that MLST and the clonal complex model can be used to identify and compare the genotypes of C. jejuni isolates from farm animals and the environment with those from retail food and human disease.  相似文献   

3.
Escherichia coli clonal group A isolates cause infections in people. We investigated 158 phylogroup D E. coli isolates from animals, meat, and humans. Twenty-five of these isolates were of clonal group A, and 15 isolates were shown to cause infection in a mouse urinary tract infection (UTI) model. We conclude that clonal group A isolates are found in both broiler chickens and broiler chicken meat and may cause UTI in humans.  相似文献   

4.
The genetic diversity of Campylobacter jejuni isolates from farm animals and their environment was investigated by multilocus sequence typing (MLST). A total of 30 genotypes, defined by allelic profiles (assigned to sequence types [STs]), were found in 112 C. jejuni isolates originating in poultry, cattle, sheep, starlings, and slurry. All but two of these genotypes belonged to one of nine C. jejuni clonal complexes previously identified in isolates from human disease and retail food samples and one clonal complex previously associated with an environmental source. There was some evidence for the association of certain clonal complexes with particular farm animals: isolates belonging to the ST-45 complex predominated among poultry isolates but were absent among sheep isolates, while isolates belonging to the ST-61 and ST-42 complexes were predominant among sheep isolates but were absent from the poultry isolates. In contrast, ST-21 complex isolates were distributed among the different isolation sources. Comparison with MLST data from 91 human disease isolates showed small but significant genetic differentiation between the farm and human isolates; however, representatives of six clonal complexes were found in both samples. These data demonstrate that MLST and the clonal complex model can be used to identify and compare the genotypes of C. jejuni isolates from farm animals and the environment with those from retail food and human disease.  相似文献   

5.
Isolates of Escherichia coli belonging to clonal group A (CGA), a recently described disseminated cause of drug-resistant urinary tract infections in humans, were present in four of seven sewage effluents collected from geographically dispersed areas of the United States. All 15 CGA isolates (1% of the 1,484 isolates analyzed) exhibited resistance to trimethoprim-sulfamethoxazole (TMP-SMZ), accounting for 19.5% of the 77 TMP-SMZ-resistant isolates. Antimicrobial resistance patterns, virulence traits, O:H serotypes, and phylogenetic groupings were compared for CGA and selected non-CGA isolates. The CGA isolates exhibited a wider diversity of resistance profiles and somatic antigens than that found in most previous characterizations of this clonal group. This is the first report of recovery from outside a human host of E. coli CGA isolates with virulence factor and antibiotic resistance profiles typical of CGA isolates from a human source. The occurrence of "human-type" CGA in wastewater effluents demonstrates a potential mode for the dissemination of this clonal group in the environment, with possible secondary transmission to new human or animal hosts.  相似文献   

6.
To determine the extent of genetic diversity of Salmonella choleraesuis subspecies choleraesuis serovar Infantis and whether environmental isolates were similar or identical to human isolates, a total of 110 isolates from humans, broiler samples, egg production facilities, riverwater, sewage, and chicken meat were analyzed epidemiologically by pulsed-field gel electrophoresis. While the isolates showed 35 distinct pulsed-field profiles, none had the genotype of the human isolates. One pulsed-field profile was shared by 43 (39%) of the 110 isolates. These results indicate that relatively fewer clonal lines of S. serovar Infantis had spread widely while multiple clonal lines, including the strain involved in the outbreak, exist in Western Japan.  相似文献   

7.
We recently developed a multilocus sequence typing (MLST) scheme to differentiate S. uberis isolates and facilitate an understanding of the population biology of this pathogen. The scheme was initially used to study a collection of 160 bovine milk isolates from the United Kingdom and showed that the majority of isolates were from one clonal complex (designated the ST-5 complex). Here we describe the MLST analysis of a collection of New Zealand isolates. These were obtained from diverse sources, including bovine milk, other bovine anatomical sites, and environmental sources. The complete allelic profiles of 253 isolates were determined. The collection was highly diverse and included 131 different sequence types (STs). The New Zealand and United Kingdom populations were distinct, since none of the 131 STs were represented within the previously studied collection of 160 United Kingdom S. uberis isolates. However, seven of the STs were members of the ST-5 clonal complex, the major complex within the United Kingdom collection. Two new clonal complexes were identified: ST-143 and ST-86. All three major complexes were isolated from milk, other bovine sites, and the environment. Carriage of the hasA gene, which is necessary for capsule formation, correlated with clonal complex and isolation from clinical cases of mastitis.  相似文献   

8.
The Beijing strain is one of the most successful genotypes of Mycobacterium tuberculosis worldwide and appears to be highly homogenous according to existing genotyping methods. To type Beijing strains reliably we developed a robust typing scheme using single nucleotide polymorphisms (SNPs) and regions of difference (RDs) derived from whole-genome sequencing data of eight Beijing strains. SNP/RD typing of 259 M. tuberculosis isolates originating from 45 countries worldwide discriminated 27 clonal complexes within the Beijing genotype family. A total of 16 Beijing clonal complexes contained more than one isolate of known origin, of which two clonal complexes were strongly associated with South African origin. The remaining 14 clonal complexes encompassed isolates from different countries. Even highly resolved clonal complexes comprised isolates from distinct geographical sites. Our results suggest that Beijing strains spread globally on multiple occasions and that the tuberculosis epidemic caused by the Beijing genotype is at least partially driven by modern migration patterns. The SNPs and RDs presented in this study will facilitate future molecular epidemiological and phylogenetic studies on Beijing strains.  相似文献   

9.
We recently developed a multilocus sequence typing (MLST) scheme to differentiate S. uberis isolates and facilitate an understanding of the population biology of this pathogen. The scheme was initially used to study a collection of 160 bovine milk isolates from the United Kingdom and showed that the majority of isolates were from one clonal complex (designated the ST-5 complex). Here we describe the MLST analysis of a collection of New Zealand isolates. These were obtained from diverse sources, including bovine milk, other bovine anatomical sites, and environmental sources. The complete allelic profiles of 253 isolates were determined. The collection was highly diverse and included 131 different sequence types (STs). The New Zealand and United Kingdom populations were distinct, since none of the 131 STs were represented within the previously studied collection of 160 United Kingdom S. uberis isolates. However, seven of the STs were members of the ST-5 clonal complex, the major complex within the United Kingdom collection. Two new clonal complexes were identified: ST-143 and ST-86. All three major complexes were isolated from milk, other bovine sites, and the environment. Carriage of the hasA gene, which is necessary for capsule formation, correlated with clonal complex and isolation from clinical cases of mastitis.  相似文献   

10.
We have identified a clonal complex of Mycobacterium bovis isolated at high frequency from cattle in Uganda, Burundi, Tanzania, and Ethiopia. We have named this related group of M. bovis strains the African 2 (Af2) clonal complex of M. bovis. Af2 strains are defined by a specific chromosomal deletion (RDAf2) and can be identified by the absence of spacers 3 to 7 in their spoligotype patterns. Deletion analysis of M. bovis isolates from Algeria, Mali, Chad, Nigeria, Cameroon, South Africa, and Mozambique did not identify any strains of the Af2 clonal complex, suggesting that this clonal complex of M. bovis is localized in East Africa. The specific spoligotype pattern of the Af2 clonal complex was rarely identified among isolates from outside Africa, and the few isolates that were found and tested were intact at the RDAf2 locus. We conclude that the Af2 clonal complex is localized to cattle in East Africa. We found that strains of the Af2 clonal complex of M. bovis have, in general, four or more copies of the insertion sequence IS6110, in contrast to the majority of M. bovis strains isolated from cattle, which are thought to carry only one or a few copies.  相似文献   

11.
Molecular approaches for the assessment of intraspecific diversity within an economically important plant pathogen were compared with traditional physiological methods (vegetative compatibility testing). The vegetative compatibility groups (VCGs) of 14 isolates of Fusarium oxysporum f.sp. cubense (FOC) from Kenya were first assessed using nitrate non-utilizing mutants. Nine of these isolates, from different areas of the country, were compatible with one or more of VCGs 0124, 0125, 0128 and 01220, i.e. they formed a single clonal lineage. Three isolates, all originating from the banana growing district of Kisii, were compatible with the VCG 01212 and formed a second distinct clonal lineage. Mutants could not be recovered from one isolate (62) and two isolates (27 and 30) were not vegetatively compatible with any of the VCG testers and may represent two novel VCGs. Polymerase chain reaction (PCR) fingerprinting, especially when using the M13 derived primer, was found to produce banding patterns that correlated with clonal lineage and also distinguished isolates 27 and 30 when analysed by unweighted pair group method analysis and principle co-ordinate analysis. This approach also distinguished FOC from F. oxysporum IMI350438 isolated from Triticum sp. and from isolates of Colletotrichum gloeosporioides . Total protein profiles were analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and although clonal lineages were not separated, isolates 27 and 30 were again distinguishable and FOC produced a different profile to F. oxysporum (IMI 350438) and C. gloeosporioides.  相似文献   

12.
We analyzed 48 invasive isolates of Neisseria meningitidis that were isolated from meningitis cases in Burkina Faso (April 2002 to April 2003). Thirty-nine of these isolates had the phenotype (serogroup:serotype:serosubtype) W135:2a:P1.5,2, eight isolates were A:4:P1.9 and one isolate was nongroupable:nonserotypable:nonserosubtypable. Genotyping of meningococcal isolates showed that W135 isolates belonged to the sequence type (ST)-11. The nongroupable isolate was of genogroup W135 and belonged to ST-192. Isolates of serogroup A belonged to ST-2859 (a member of the subgroup III/ST-5 clonal complex). W135 (ST-11) isolates involved in meningitis outbreaks in Burkina Faso differed from those involved in the Hajj-2000 associated outbreak by their pulsed-field gel electrophoresis profile. These data confirm the changing epidemiology of meningococcal infection in Burkina Faso with the establishment and expansion of serogroup W135 N. meningitidis strains of the ET-37/ST-11 clonal complex, as well as the emergence of a new clone within the subgroup III/ST-5 clonal complex.  相似文献   

13.
AIMS: Andaman and Nicobar Islands in India has a century long history of human leptospirosis. Several isolates have been recovered over the years from different locations. The present study was undertaken to understand the clonal relationship between all these pathogenic leptospires recovered from these islands. METHODS AND RESULTS: Arbitrarily primed polymerase chain reaction (AP-PCR) was employed to genetically characterize 40 isolates recovered during 1995--2001 and their fingerprints were compared with those of 26 reference strains of known genetic and serological affinities. Sequences of PCR-amplified products from representative isolates were compared with those of different strains belonging to seven genospecies. AP-PCR fingerprints revealed that 32 of the 40 isolates were clonal in nature and fingerprints of all the isolates matched with known reference strains of pathogenic Leptospira interrogans sensu stricto. Comparison of sequence data of PCR amplified products of reference strains and isolates also corroborated these findings. CONCLUSIONS: The study revealed that 80% of the isolates recovered from these islands were clonal in nature and all the isolates taken in the study belonged to Leptospira interrogans sensu stricto. SIGNIFICANCE AND IMPACT OF THE study: An extension of the study in animal population would help in understanding the transmission dynamics of this commonly circulating clone in these islands, which in turn might help in effective control of this public health problem.  相似文献   

14.
Listeria monocytogenes is among the most important food-borne pathogens and is well adapted to persist in the environment. To gain insight into the genetic relatedness and potential virulence of L. monocytogenes strains causing central nervous system (CNS) infections, we used multilocus variable-number tandem-repeat analysis (MLVA) to subtype 183 L. monocytogenes isolates, most from ruminant rhombencephalitis and some from human patients, food, and the environment. Allelic-profile-based comparisons grouped L. monocytogenes strains mainly into three clonal complexes and linked single-locus variants (SLVs). Clonal complex A essentially consisted of isolates from human and ruminant brain samples. All but one rhombencephalitis isolate from cattle were located in clonal complex A. In contrast, food and environmental isolates mainly clustered into clonal complex C, and none was classified as clonal complex A. Isolates of the two main clonal complexes (A and C) obtained by MLVA were analyzed by PCR for the presence of 11 virulence-associated genes (prfA, actA, inlA, inlB, inlC, inlD, inlE, inlF, inlG, inlJ, and inlC2H). Virulence gene analysis revealed significant differences in the actA, inlF, inlG, and inlJ allelic profiles between clinical isolates (complex A) and nonclinical isolates (complex C). The association of particular alleles of actA, inlF, and newly described alleles of inlJ with isolates from CNS infections (particularly rhombencephalitis) suggests that these virulence genes participate in neurovirulence of L. monocytogenes. The overall absence of inlG in clinical complex A and its presence in complex C isolates suggests that the InlG protein is more relevant for the survival of L. monocytogenes in the environment.  相似文献   

15.
Shot hole disease is one of the most important diseases of stone fruit trees in Iran. The disease is wide spread among orchards of Prunus spp. During spring and summer of 2007, 80 monoconidial isolates of the pathogen were recovered from infected leaves, fruits and twigs of different Prunus spp. in West Azerbaijan, Tehran, Ghazvin and Razavi Khorasan provinces of Iran and were studied taxonomically. Based on morphological and physiological characteristics and growth optimal temperature, all isolates were identified as Wilsonomyces carpophilus. Seedlings of stone fruits (apricot, almond, peach, nectarine, plum, sweet cherry and sour cherry) were used for pathogenicity tests. All seedlings were susceptible to the fungal isolates and showed disease symptoms on twigs, leaves, buds and petioles. Genetic diversity of 28 selected fungal isolates was investigated based on DNA fingerprinting by random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR), using four random primers. Based on cluster analysis of the PCR results from the four primers, 10 fingerprinting groups (clonal lineages) and 27 haplotypes were identified. Clonal lineages “C”, “D” and “E”, each with six haplotypes formed the biggest clonal lineages, but other clonal lineages (“B”, “F”, “G”, “H”, “I” and “J”) included only one isolate. No correlation was detected among clonal lineages with the location of selected isolates and their host species. A correlation was found between the substrate (fruit, twig or leaf) and clonal lineages, particularly in “C” clonal lineage. The results showed that the fungus population had high genetic diversity which is distributed among the different areas of Iran.  相似文献   

16.
Isolates of Escherichia coli belonging to clonal group A (CGA), a recently described disseminated cause of drug-resistant urinary tract infections in humans, were present in four of seven sewage effluents collected from geographically dispersed areas of the United States. All 15 CGA isolates (1% of the 1,484 isolates analyzed) exhibited resistance to trimethoprim-sulfamethoxazole (TMP-SMZ), accounting for 19.5% of the 77 TMP-SMZ-resistant isolates. Antimicrobial resistance patterns, virulence traits, O:H serotypes, and phylogenetic groupings were compared for CGA and selected non-CGA isolates. The CGA isolates exhibited a wider diversity of resistance profiles and somatic antigens than that found in most previous characterizations of this clonal group. This is the first report of recovery from outside a human host of E. coli CGA isolates with virulence factor and antibiotic resistance profiles typical of CGA isolates from a human source. The occurrence of “human-type” CGA in wastewater effluents demonstrates a potential mode for the dissemination of this clonal group in the environment, with possible secondary transmission to new human or animal hosts.  相似文献   

17.
Cats are important in the epidemiology of Toxoplasma gondii because they are the only hosts that excrete environmentally resistant oocysts in feces. In the present study, 115 viable T. gondii isolates from tissues of cats from Egypt were genotyped using 10 PCR-restriction fragment length polymorphism markers (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico) and DNA from tachyzoites. Seven genotypes were recognized including the clonal Type II, Type III (2 genotypes), and 4 atypical genotypes. Ninety percent (103 of 115) of isolates were clonal, i.e., Type II (n = 61) and Type III (n = 42) strains. Of the 61 Type II strains, all had the Type II alleles at all loci, except for 2 strains that had allele I at Apico. Eight isolates were divided into 4 atypical genotypes. One of these genotypes (with 4 isolates) was previously reported in dogs from Sri Lanka and in sand cats from the United Arab Emirates. Four isolates had mixed infections. These results revealed a strong clonal population structure with the dominance of clonal Type II and III lineages of T. gondii in feral cats from Egypt.  相似文献   

18.
Feil EJ  Smith JM  Enright MC  Spratt BG 《Genetics》2000,154(4):1439-1450
Multilocus sequence typing (MLST) is a highly discriminatory molecular typing method that defines isolates of bacterial pathogens using the sequences of approximately 450-bp internal fragments of seven housekeeping genes. This technique has been applied to 575 isolates of Streptococcus pneumoniae and identifies a number of discrete clonal complexes. These clonal complexes are typically represented by a single group of isolates sharing identical alleles at all seven loci, plus single-locus variants that differ from this group at only one out of the seven loci. As MLST is highly discriminatory, the members of each clonal complex can be assumed to have a recent common ancestor, and the molecular events that give rise to the single-locus variants can be used to estimate the relative contributions of recombination and mutation to clonal divergence. By comparing the sequences of the variant alleles within each clonal complex with the allele typically found within that clonal complex, we estimate that recombination has generated new alleles at a frequency approximately 10-fold higher than mutation, and that a single nucleotide site is approximately 50 times more likely to change through recombination than mutation. We also demonstrate how to estimate the average length of recombinational replacements from MLST data.  相似文献   

19.
The introduction of multilocus sequence typing (MLST) for the precise characterization of isolates of bacterial pathogens has had a marked impact on both routine epidemiological surveillance and microbial population biology. In both fields, a key prerequisite for exploiting this resource is the ability to discern the relatedness and patterns of evolutionary descent among isolates with similar genotypes. Traditional clustering techniques, such as dendrograms, provide a very poor representation of recent evolutionary events, as they attempt to reconstruct relationships in the absence of a realistic model of the way in which bacterial clones emerge and diversify to form clonal complexes. An increasingly popular approach, called BURST, has been used as an alternative, but present implementations are unable to cope with very large data sets and offer crude graphical outputs. Here we present a new implementation of this algorithm, eBURST, which divides an MLST data set of any size into groups of related isolates and clonal complexes, predicts the founding (ancestral) genotype of each clonal complex, and computes the bootstrap support for the assignment. The most parsimonious patterns of descent of all isolates in each clonal complex from the predicted founder(s) are then displayed. The advantages of eBURST for exploring patterns of evolutionary descent are demonstrated with a number of examples, including the simple Spain(23F)-1 clonal complex of Streptococcus pneumoniae, "population snapshots" of the entire S. pneumoniae and Staphylococcus aureus MLST databases, and the more complicated clonal complexes observed for Campylobacter jejuni and Neisseria meningitidis.  相似文献   

20.
Aims: To determine the diversity and population structure of Campylobacter jejuni (C. jejuni) isolates from Danish patients and to examine the association between multilocus sequence typing types and different clinical symptoms including gastroenteritis (GI), Guillain–Barré syndrome (GBS) and reactive arthritis (RA). Methods and Results: Multilocus sequence typing (MLST) was used to characterize 122 isolates, including 18 from patients with RA and 8 from patients with GBS. The GI and RA isolates were collected in Denmark during 2002–2003 and the GBS isolates were obtained from other countries. In overall, 51 sequence types (STs) were identified within 18 clonal complexes (CCs). Of these three CCs, ST‐21, ST‐45 and ST‐22 clonal complexes accounted for 64 percent of all isolates. The GBS isolates in this study significantly grouped into the ST‐22 clonal complex, consistent with the PubMLST database isolates. There was no significant clustering of the RA isolates. Conclusions: Isolates from Denmark were found to be highly genetically diverse. GBS isolates grouped significantly with clonal complex ST‐22, but the absence of clustering of RA isolates indicated that the phylogenetic background for this sequela could not be reconstructed using variation in MLST loci. Possibly, putative RA‐associated genes may vary, by recombination or expression differences, independent of MLST loci. Significance and Impact of the Study: MLST typing of C. jejuni isolates from Danish patients with gastroenteritis confirmed that the diversity of clones in Denmark is comparable to that in other European countries. Furthermore, a verification of the grouping of GBS isolates compared to RA isolates provides information about evolution of the bacterial population resulting in this important sequela.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号