首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic voltammetry at potential range − 1.1 to 0.5 V from aqueous buffer solution (pH 7) containing CoCl2 produced a well defined cobalt oxide (CoOx) nanoparticles deposited on the surface of glassy carbon electrode. The morphology of the modified surface and cobalt oxide formation was examined with SEM and cyclic voltammetry techniques. Hemoglobin (Hb) was successfully immobilized in cobalt-oxide nanoparticles modified glassy carbon electrode. Immobilization of hemoglobin onto cobalt oxide nanoparticles have been investigated by cyclic voltammetry and UV–visible spectroscopy. The entrapped protein can take direct electron transfer in cobalt-oxide film. A pair of well defined, quasi-reversible cyclic voltammetric peaks at about − 0.08 V vs. SCE (pH 7), characteristic of heme redox couple (Fe(III)/Fe(II)) of hemoglobin, and the response showed surface controlled electrode process. The dependence of formal potential (E0′) on the solution pH (56 mV pH− 1) indicated that the direct electron transfer reaction of hemoglobin was a one-electron transfer coupled with a one proton transfer reaction process. The average surface coverage of Hb immobilized on the cobalt oxide nanoparticles was about 5.2536 × 10− 11 mol cm− 2, indicating high loading ability of nanoparticles for hemoglobin entrapment. The heterogeneous electron transfer rate constant (ks) was 1.43 s− 1, indicating great of facilitation of the electron transfer between Hb and electrodeposited cobalt oxide nanoparticles. Modified electrode exhibits a remarkable electrocatalytic activity for the reduction of hydrogen peroxide and oxygen. The Michaels–Menten constant Km of 0.38 mM, indicating that the Hb immobilized onto cobalt oxide film retained its peroxidases activity. The biosensor exhibited a fast amperometric response < 5 s, a linear response over a wide concentration range 5 μM to 700 μM and a low detection limit 0.5 μM. According to the direct electron transfer property and enhanced activity of Hb in cobalt oxide film, a third generation reagentless biosensor without using any electron transfer mediator or specific reagent can be constructed for determination of hydrogen peroxide in anaerobic solutions.  相似文献   

2.
Cyclic voltammetry was used for simultaneous formation and immobilization of nickel oxide nano-scale islands and catalase on glassy carbon electrode. Electrodeposited nickel oxide may be a promising material for enzyme immobilization owing to its high biocompatibility and large surface. The catalase films assembled on nickel oxide exhibited a pair of well defined, stable and nearly reversible CV peaks at about -0.05 V vs. SCE at pH 7, characteristic of the heme Fe (III)/Fe (II) redox couple. The formal potential of catalase in nickel oxide film were linearly varied in the range 1-12 with slope of 58.426 mV/pH, indicating that the electron transfer is accompanied by single proton transportation. The electron transfer between catalase and electrode surface, (k(s)) of 3.7(+/-0.1) s(-1) was greatly facilitated in the microenvironment of nickel oxide film. The electrocatalytic reduction of hydrogen peroxide at glassy carbon electrode modified with nickel oxide nano-scale islands and catalase enzyme has been studied. The embedded catalase in NiO nanoparticles showed excellent electrocatalytic activity toward hydrogen peroxide reduction. Also the modified rotating disk electrode shows good analytical performance for amperometric determination of hydrogen peroxide. The resultant catalase/nickel oxide modified glassy carbon electrodes exhibited fast amperometric response (within 2 s) to hydrogen peroxide reduction (with a linear range from 1 microM to 1 mM), excellent stability, long term life and good reproducibility. The apparent Michaelis-Menten constant is calculated to be 0.96(+/-0.05)mM, which shows a large catalytic activity of catalase in the nickel oxide film toward hydrogen peroxide. The excellent electrochemical reversibility of redox couple, high stability, technical simplicity, lake of need for mediators and short preparations times are advantages of this electrode. Finally the activity of biosensor for nitrite reduction was also investigated.  相似文献   

3.
Prosperity of information on the reactions of redox-active sites in proteins can be attained by voltammetric studies in which the protein sample is located on a suitable surface. This work reports the presentation of myoglobin/nickel oxide nanoparticles/glassy carbon (Mb/NiO NPs/GC) electrode, ready by electrochemical deposition of the NiO NPs on glassy carbon electrode and myoglobin immobilization on their surfaces by the potential cycling method. Images of electrodeposited NiO NPs on the surface of glassy carbon electrode were obtained by scanning electron microscopy (SEM) and atomic force microscopy (AFM). A pair of well-defined redox peaks for Mb(Fe(III)-Fe(II)) was obtained at the prepared electrode by direct electron transfer between the protein and nanoparticles. Electrochemical parameters of immobilized myoglobin such as formal potential (E(0')), charge transfer coefficient (alpha) and apparent heterogeneous electron transfer rate constant (k(s)) were estimated by cyclic voltammetry and nonlinear regression analysis. Biocatalytic activity was exemplified at the prepared electrode for reduction of hydrogen peroxide.  相似文献   

4.
Positively charged Ni-Al layered double hydroxide nanosheets (Ni-Al LDHNS) have been used for the first time as matrices for immobilization of horseradish peroxidase (HRP) in order to fabricate enzyme electrodes for the purpose of studying direct electron transfer between the redox centers of proteins and underlying electrodes. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) revealed that the HRP-Ni-Al LDHNS film had an ordered structure and that HRP was intercalated into Ni-Al LDHNS with a monolayer arrangement. Field emission scanning electron microscopy (FESEM) showed that the HRP-Ni-Al LDHNS film had a uniform, porous morphology. UV-vis spectroscopy indicated that the intercalated HRP retained its native structure after incorporation in the Ni-Al LDHNS film. The immobilized HRP in Ni-Al LDHNS on the surface of a glassy carbon electrode (GCE) exhibited good direct electrochemical and electrocatalytic responses to the reduction of hydrogen peroxide (H(2)O(2)) and trichloroacetic acid (TCA). The resulting H(2)O(2) biosensor showed a wide linear range from 6.00x10(-7)M to 1.92x10(-4)M, low detection limit (4.00x10(-7)M) and good stability. The results show that Ni-Al LDHNS provide a novel and efficient platform for the immobilization of enzymes and realizing direct electrochemistry and that the materials have potential applications in the fabrication of third-generation biosensors.  相似文献   

5.
A convenient and effective strategy for preparation nanohybrid film of multi-wall carbon nanotubes (MWNT) and gold colloidal nanoparticles (GNPs) by using proteins as linker is proposed. In such a strategy, hemoglobin (Hb) was selected as model protein to fabricate third-generation H2O2 biosensor based on MWNT and GNPs. Acid-pretreated, negatively charged MWNT was first modified on the surface of glassy carbon (GC) electrode, then, positively charged Hb was adsorbed onto MWNT films by electrostatic interaction. The {Hb/GNPs}n multilayer films were finally assembled onto Hb/MWNT film through layer-by-layer assembly technique. The assembly of Hb and GNPs was characterized with cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and transmission electron microscopy (TEM). The direct electron transfer of Hb is observed on Hb/GNPs/Hb/MWNT/GC electrode, which exhibits excellent electrocatalytic activity for the reduction of H2O2 to construct a third-generation mediator-free H2O2 biosensor. As compared to those H2O2 biosensors only based on carbon nanotubes, the proposed biosensor modified with MWNT and GNPs displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 2.1x10(-7) to 3.0x10(-3) M with a detection limit of 8.0x10(-8) M at 3sigma. The Michaelies-Menten constant KMapp value is estimated to be 0.26 mM. Moreover, this biosensor displays rapid response to H2O2 and possesses good stability and reproducibility.  相似文献   

6.
The direct voltammetry and electrocatalytic properties of catalase, which was adsorbed on the surface of multiwall carbon nanotubes (MWCNTs), was investigated. A pair of well-defined and nearly reversible cyclic voltammetry peaks for Fe(III)/Fe(II) redox couple of catalase adsorbed on the surface of MWCNTs at approximately -0.05 V versus reference electrode in pH 6.5 buffer solution, indicating the direct electron transfer between catalase and electrode. The surface coverage of catalase immobilized on MWCNTs glassy carbon electrode was approximately 2.4x10(-10) molcm-2. The transfer coefficient (alpha) was calculated to be 0.4, and the heterogeneous electron transfer rate constant was 80 s-1 in pH 7, indicating great facilitation of the electron transfer between catalase and MWCNTs adsorbed on the electrode surface. The formal potential of catalase Fe(III)/Fe(II) couple in MWCNTs film had a linear relationship with pH values between 2 and 11 with a slope of 58 mV/pH, showing that the electron transfer is accompanied by single proton transportation. Catalase adsorbed on MWCNTs exhibits a remarkable electrocatalytic activity toward the reduction of oxygen and hydrogen peroxide. The value for calculated Michaelis-Menten constant (1.70 mM) was high, indicating the potential applicability of the films as a new type of reagentless biosensor based on the direct electrochemistry of the catalase enzyme.  相似文献   

7.
The direct electrochemistry of hemoglobin (Hb) immobilized on a hexagonal mesoporous silica (HMS)-modified glassy carbon electrode was described. The interaction between Hb and the HMS was investigated using UV-Vis spectroscopy, FT-IR, and electrochemical methods. The direct electron transfer of the immobilized Hb exhibited two couples of redox peaks with the formal potentials of -0.037 and -0.232 V in 0.1 M (pH 7.0) PBS, respectively, which corresponded to its two immobilized states. The electrode reactions showed a surface-controlled process with a single proton transfer at the scan rate range from 20 to 200 mV/s. The immobilized Hb retained its biological activity well and displayed an excellent response to the reduction of both hydrogen peroxide (H2O2) and nitrate (NO2-). Its apparent Michaelis-Menten constants for H2O2 and NO2- were 12.3 and 49.3 microM, respectively, showing a good affinity. Based on the immobilization of Hb on the HMS and its direct electrochemistry, two novel biosensors for H2O2 and NO2- were presented. Under optimal conditions, the sensors could be used for the determination of H2O2 ranging from 0.4 to 6.0 microM and NO2- ranging from 0.2 to 3.8 microM. The detection limits were 1.86 x 10(-9) M and 6.11 x 10(-7) M at 3sigma, respectively. HMS provided a good matrix for protein immobilization and biosensor preparation.  相似文献   

8.
For the first time glucose oxidase (GOx) was successfully co-deposited on nickel-oxide (NiO) nanoparticles at a glassy carbon electrode. In this paper we present a simple fabrication method of biosensor which can be easily operated without using any specific reagents. Cyclic voltammetry was used for electrodeposition of NiO nanoparticle and GOx immobilization. The direct electron transfer of immobilized GOx displays a pair of well defined and nearly reversible redox peaks with a formal potential (E(0')) of -0.420 V in pH 7 phosphate buffer solution and the response shows a surface controlled electrode process. The surface coverage and heterogeneous electron transfer rate constant (k(s)) of GOx immobilized on NiO film glassy carbon electrode are 9.45 x 10(-13)mol cm(-2) and 25.2+/-0.5s(-1), indicating the high enzyme loading ability of the NiO nanoparticles and great facilitation of the electron transfer between GOx and NiO nanoparticles. The biosensor shows excellent electrocatalytical response to the oxidation of glucose when ferrocenmethanol was used as an artificial redox mediator. Furthermore, the apparent Michaelis-Menten constant 2.7 mM, of GOx on the nickel oxide nanoparticles exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. In addition, this glucose biosensor shows fast amperometric response (3s) with the sensitivity of 446.2nA/mM, detection limit of 24 microM and wide concentration range of 30 microM to 5mM. This biosensor also exhibits good stability, reproducibility and long life time.  相似文献   

9.
In order to prepare biosensing electrodes which respond to hydrogen peroxide, horseradish peroxidase has been adsorbed to colloidal gold sols and electrodes prepared by deposition of these enzyme-gold sols onto glassy carbon using three methods: evaporation, electrodeposition and electrolyte deposition. In the latter method the enzyme-gold sol is applied to the surface of a glassy carbon disk electrode followed by an equal volume of 2 mM CaCl2. The electrolyte causes the sol to precipitate on the electrode surface, producing an immobilized enzyme electrode. Satisfactory electrodes which gave an electrochemical response to hydrogen peroxide in the presence of the electron transfer mediator ferrocenecarboxylic acid were produced by all three methods. Evaporation of horseradish peroxidase-gold sols produced electrodes with the best reproducibility and the widest linear amperometric response range. These electrodes can also easily be stored in a dry state. Although not as good as evaporation, electrodeposition also produced satisfactory electrodes. Electro-deposition provides the added advantage that it lends itself to the preparation of multi-enzyme/multi-analyte electrodes by the adsorption of different enzymes to separate gold sols, followed by sequential electrodeposition onto discrete areas of a multichannel electrode.  相似文献   

10.
Gold nanoparticles were used to enhance the immobilization amount and retain the immunoactivity of recombinant dust mite allergen Der f2 immobilized on a glassy carbon electrode (GCE). The interaction between allergen and antibody was studied by electrochemical impedance spectroscopy (EIS). Self-assembled Au colloid layer (?=16nm) deposited on (3-mercaptopropyl)trimethoxysilane (MPTS)-modified GCE offered a basis to control the immobilization of allergen Der f2. The impedance measurements were based on the charge transfer kinetics of the [Fe(CN)(6)](3-/4-) redox pair, compared with bare GCE, the immobilization of allergen Der f2 and the allergen-antibody interaction that occurred on the electrode surface altered the interfacial electron transfer resistance and thereby slowed down the charge transfer kinetics by reducing the active area of the electrode or by preventing the redox species in electrolyte solution from approaching the electrode. The interactions of allergen with various concentrations of monoclonal antibody were also monitored through the change of impedance response. The results showed that the electron transfer resistance increased with increasing concentrations of monoclonal antibody.  相似文献   

11.
Shan D  Han E  Xue H  Cosnier S 《Biomacromolecules》2007,8(10):3041-3046
A highly stable biological film was formed on the functional glassy carbon electrode (GCE) via step-by-step self-assembly of chitosan (CHT), laponite, and hemoglobin (Hb). Cyclic voltammetry (CV) of the Hb/laponite/CHT/GCE showed a pair of stable and quasi-reversible peaks for the Hb-Fe(III)/Fe(II) redox couple at about -0.035 V versus a saturated calomel electrode in pH 6.0 phosphate buffer at a scan rate of 0.1 V s(-1). The electrochemical reaction of Hb entrapped on the laponite/CHT self-assembled film exhibited a surface-controlled electrode process. The formal potential of the Hb-heme-Fe(III)/Fe(II) couple varied linearly with the increase of pH over the range of 3.0-8.0 with a slope of -63 mV pH(-1), which implied that an electron transfer was accompanied by single-proton transfer in the electrochemical reaction. The position of the Soret absorption band of this self-assembled Hb/laponite/CHT film suggested that the entrapped Hb kept its secondary structure similar to its native state. The self-assembled film showed excellent long-term stability, the CV peak potentials kept in the same positions, and the cathodic peak currents retained 90% of their values after 60 days. The film was used as a biological catalyst to catalyze the reduction of hydrogen peroxide. The electrocatalytic response showed a linear dependence on the H2O2 concentration ranging widely from 6.2 x 10(-6) to 2.55 x 10(-3) M with a detection limit of 6.2 x 10(-6) M at 3 sigma.  相似文献   

12.
Dai Z  Xu X  Ju H 《Analytical biochemistry》2004,332(1):23-31
The direct electrochemistry of myoglobin (Mb) immobilized on a hexagonal mesoporous silica (HMS)-modified glassy carbon electrode was described. The interaction between Mb and HMS was investigated by using Fourier transfer infrared spectroscopy, nitrogen adsorption isotherm, and cyclic voltammetry. Two couples of redox peaks corresponding to Fe(III) to Fe(II) conversion of the Mb intercalated in the mesopores and adsorbed on the surface of the HMS were observed with the formal potentials of -0.167 and -0.029V in 0.1M, pH 7.0, phosphate buffer solution, respectively. The electrode reaction showed a surface-controlled process with one proton transfer. The immobilized Mb displayed good electrocatalytic responses to the reduction of both hydrogen peroxide (H(2)O(2)) and nitrite (NO(2)(-)), which were used to develop novel sensors for H(2)O(2) and NO(2)(-). The apparent Michaelis-Menten constants of the immobilized Mb for H(2)O(2) and NO(2)(-) were 0.065 and 0.72mM, respectively, showing good affinity. Under optimal conditions, the sensors could be used for the determinations of H(2)O(2) ranging from 4.0 to 124microM and NO(2)(-) ranging from 8.0 to 216microM. The detection limits were 6.2x10(-8) and 8.0x10(-7)M at 3 sigma, respectively. The HMS provided a novel matrix for protein immobilization and the construction of biosensors via the direct electron transfer of immobilized protein.  相似文献   

13.
Carbonized TiO(2) nanotubes (TNT/C) prepared by carbonization with organic polymers possess advantages combined from high conductivity of carbon and nanostructure of TiO(2) nanotubes. The material was used as a supporting matrix to immobilize a redox protein, hemoglobin (Hb), to explore its direct electron transfer ability. The apparent heterogeneous electron transfer rate constant (k(ET)) of Hb on TNT/C is 108s(-1), which is much higher than that in the reported works, demonstrating excellent direct electrochemistry behavior. The TNT/C-Hb modified glassy carbon electrode (GCE) demonstrates significant electrocatalytic activity for reduction of hydrogen peroxide with a small apparent Michaelis-Menten constant (87.5 microM). The TNT/C-Hb based H(2)O(2) sensor has a low detection limit (0.92 microM), fast response time (3s) and high dynamic response range (10(-6) to 10(-4)M), a much better performance than the reported works. These results demonstrate that a direct electrochemistry behavior can be significantly enhanced through simple carbon coating on a nanostructured material for higher reaction surface area and better conductivity. This work suggests that Hb-immobilized TNT/C has potential applications in a sensitive H(2)O(2) sensor.  相似文献   

14.
A novel hydrogen peroxide biosensor was fabricated for the determination of H(2)O(2). The precursor film was first electropolymerized on the glassy carbon electrode with p-aminobenzene sulfonic acid (p-ABSA) by cyclic voltammetry (CV). Then thionine (Thi) was adsorbed to the film to form a composite membrane, which yielded an interface containing amine groups to assemble gold nanoparticles (nano-Au) layer for immobilization of horseradish peroxidase (HRP). The electrochemical characteristics of the biosensor were studied by CV and chronoamperometry. The factors influencing the performance of the resulting biosensor were studied in detail. The biosensor responded to H(2)O(2) in the linear range from 2.6 x 10(-6) mol/L to 8.8 x 10(-3) mol/L with a detection limit of 6.4 x 10(-7) mol/L. Moreover, the studied biosensor exhibited good accuracy and high sensitivity. The proposed method was economical and efficient, making it potentially attractive for the application to real sample analysis.  相似文献   

15.
Lu Q  Chen X  Wu Y  Hu S 《Biophysical chemistry》2005,117(1):55-63
Myoglobin (Mb), hemoglobin (Hb) and horseradish peroxidase (HRP) were incorporated in lecithin (PC) film on glassy carbon (GC) electrode by the method of vesicle-fusion. A pair of well-defined and quasi-reversible cyclic voltammetric peaks was obtained, which reflected the direct electron transfer of heme proteins. UV-Vis and reflectance absorption infrared (RAIR) spectroscopy showed that proteins in PC films remained at their secondary structure similar to their native states. Scanning electron microscopy (SEM) demonstrated the interaction between the proteins and PC would make the morphology of protein-PC films very different from the PC films alone. The immobilized proteins retained their biocatalytic activity to the reduction of NO and hydrogen peroxide, which provide the perspective to be the third generation sensors.  相似文献   

16.
On the top of a multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode (MWNTs/GCE), Pt nanoclusters were electrochemically deposited, fabricating a Pt/MWNTs composite modified electrode, Pt/MWNTs/GCE. X-ray photoelectron spectroscopy, powder X-ray diffraction and field emission scanning electron microscope were used for the surface characterization of the electrode, and demonstrated the formation and distribution of Pt clusters of Pt nanoparticles of 8.4 nm in averaged size in the MWNTs matrix. The preliminary study found that this composite modified electrode has strong electrocatalytic activity toward the oxidation of estrogens involving estradiol, estrone and estriol. The voltammetric behavior of estrogens on this electrode was investigated by cyclic voltammetry, linear sweep voltammetry and square-wave voltammetry. In comparison with the MWNTs/GCE or a Pt nanoparticles modified GCE prepared in the similar way, this composite modified electrode exhibited much higher current sensitivity and catalytic activity. This electrode is also stable. The linear range of square-wave voltammetric determination was 5.0 x 10(-7)-1.5 x 10(-5)mol/L for estradiol, 2.0 x 10(-6)-5.0 x 10(-5)mol/L for estrone, and 1.0 x 10(-6)-7.5 x 10(-5)mol/L for estriol. Under an assumption that the concentration ratio of estradiol:estrone:estriol is 2:2:1, the real sample of blood serums was tested for the determination using this electrode. Satisfactory result was obtained with averaged recovery of 105%.  相似文献   

17.
This paper introduces the use of multi walled carbon nanotubes (MWCNTs) with palladium (Pd) nanoparticles in the electrocatalytic reduction of hydrogen peroxide (H(2)O(2)). We have developed and characterized a biosensor for H(2)O(2) based on Nafion(?) coated MWCNTs-Pd nanoparticles on a glassy carbon electrode (GCE). The Nafion(?)/MWCNTs-Pd/GCE electrode was easily prepared in a rapid and simple procedure, and its application improves sensitive determination of H(2)O(2). Characterization of the MWCNTs-Pd nanoparticle film was performed with transmission electron microscopy (TEM), Raman, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) and amperometry (at an applied potential of -0.2V) measurements were used to study and optimize performance of the resulting peroxide biosensor. The proposed H(2)O(2) biosensor exhibited a wide linear range from 1.0 μM to 10 mM and a low detection limit of 0.3 μM (S/N=3), with a fast response time within 10s. Therefore, this biosensor could be a good candidate for H(2)O(2) analysis.  相似文献   

18.
A new amperometric biosensor for the detection of sugars was prepared. A glassy carbon electrode was modified with Prussian blue (PB) nanoparticles protected by chitosan (CS) and poly(diallyldimethylammonium chloride) (PDDA), and then gold nanoparticles were assembled onto the electrode followed by the assembly of 4-mercaptophenylboronic acid (MPBA) onto the surface of gold nanoparticles through a sulfur–Au bond to fabricate a self-assembled biosensor. The PB nanoparticles protected by CS and PDDA were characterized using transmission electron microscopy and UV–vis absorption spectroscopy. The characterization of the self-assembled electrode was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The pK a values of the MPBA monolayer before and after combining with sugars were determined. The fabricated electrode exhibited excellent performances for determining d(+)-glucose, d(+)-mannose, and d(−)-fructose on the basis of the change in i p of the Fe(CN)63−/4− ion in the presence of sugars.  相似文献   

19.
A novel enzymatic hydrogen peroxide sensor was successfully fabricated based on the nanocomposites containing of Ag/C nanocables and gold nanoparticles (AuNPs). Ag/C nanocables have been synthesized by a hydrothermal method and then AuNPs were assembled on the surface of Ag/C nanocables. The nanocomposites were confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDS). The above nanocomposites have satisfactory chemical stability and excellent biocompatibility. Cyclic voltammetry (CV) was used to evaluate the electrochemical performance of the Ag/C/Au nanocomposites at glassy carbon electrode (GCE). The results indicated that the Ag/C/Au nanocomposites exhibited excellent electrocatalytic activity to the reduction of H(2)O(2). It offered a linear range of 6.7×10(-9) to 8.0×10(-6) M, with a detection limit of 2.2×10(-9) M. The apparent Michaelis-Menten constant of the biosensor was 51.7×10(-6) M. These results indicated that Ag/C/Au nanocomposites have potential for constructing of a variety of electrochemical biosensors.  相似文献   

20.
Direct electrochemistry of hemoglobin in gold nanowire array   总被引:3,自引:0,他引:3  
Yang M  Qu F  Li Y  He Y  Shen G  Yu R 《Biosensors & bioelectronics》2007,23(3):414-420
Gold nanowire array has been proven to be efficient support matrixes for the immobilization of hemoglobin (Hb). The vertically oriented nanowire array provides an ordered well-defined 3D structure with nanowire density approximately 5 x 10(8)cm(2). The adsorption of ferritin onto the nanowire surface was visualized by transmission electron microscopy. When Hb was adsorbed, UV-vis absorption and Fourier transform infrared (FT-IR) spectra show no obvious denaturation of Hb in the nanowire array. The Hb-modified nanowire array exerted direct electron transfer and gave a well-defined, nearly reversible redox couple with formal potential of -0.225 V. The quantity of electroactive Hb varied with the changing of the morphology of the electrode and found to increase with the increasing of the nanowire length. Comparisons of voltammetric and quartz crystal microbalance measurements show that 70% of the Hb molecules adsorbed are electroactive when the length of the nanowire was 2 microm. Both of the Hb-modified nanowire array and the unmodified nanowire array demonstrate good electrocatalytic reduction ability for hydrogen peroxide. With the adsorption of glucose oxidase onto the bare nanowire surface, sensitive and selective glucose biosensors can be fabricated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号