首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As part of its aerobic metabolism, Streptococcus pneumoniae generates high levels of H(2)O(2) by pyruvate oxidase (SpxB), which can be further reduced to yield the damaging hydroxyl radicals via the Fenton reaction. A universal conserved adaptation response observed among bacteria is the adjustment of the membrane fatty acids to various growth conditions. The aim of the present study was to reveal the effect of endogenous reactive oxygen species (ROS) formation on membrane composition of S. pneumoniae. Blocking carbon aerobic metabolism, by growing the bacteria at anaerobic conditions or by the truncation of the spxB gene, resulted in a significant enhancement in fatty acid unsaturation, mainly cis-vaccenic acid. Moreover, reducing the level of OH(.) by growing the bacteria at acidic pH, or in the presence of an OH(.) scavenger (salicylate), resulted in increased fatty acid unsaturation, similar to that obtained under anaerobic conditions. RT-PCR results demonstrated that this change does not originate from a change in mRNA expression level of the fatty acid synthase II genes. We suggest that endogenous ROS play an important regulatory role in membrane adaptation, allowing the survival of this anaerobic organism at aerobic environments of the host.  相似文献   

2.
3.
4.
5.
Loss-of-function mutations in the following seven pneumococcal genes were detected and analyzed: pspA, spxB, xba, licD2, lytA, nanA, and atpC. Factors associated with these mutations included (i) frameshifts caused by reversible gain and loss of single bases within homopolymeric repeats as short as 6 bases, (ii) deletions caused by recombinational events between nontandem direct repeats as short as 8 bases, and (iii) substitutions of guanine residues caused at an increased frequency by the high levels of hydrogen peroxide (>2 mM) typically generated by this species under aerobic growth conditions. The latter accounted for a frequency as high as 2.8 x 10(-6) for spontaneous mutation to resistance to optochin and was 10- to 200-fold lower in the absence of detectable levels of H2O2. Some of these mutations appear to have been selected for in vivo during pneumococcal infection, perhaps as a consequence of immune pressure or oxidative stress.  相似文献   

6.
Streptococcus pneumoniae was shown to possess lactate oxidase in addition to well-documented pyruvate oxidase. The activities of both H(2)O(2)-forming oxidases in wild-type cultures were detectable even in the early exponential phase of growth and attained the highest levels in the early stationary phase. For each of these oxidases, a defective mutant was constructed and compared to the parent regarding the dynamics of pyruvate and lactate in aerobic cultures. The results obtained indicated that the energy-yielding metabolism in the wild type could be best described by the following scheme. (i) As long as glucose is available, approximately one-fourth of the pyruvate formed is converted to acetate by the sequential action of pyruvate oxidase and acetate kinase with acquisition of additional ATP; (ii) the rest of the pyruvate is reduced by lactate dehydrogenase to form lactate, with partial achievement of redox balance; (iii) the lactate is oxidized by lactate oxidase back to pyruvate, which is converted to acetate as described above; and (iv) the sequential reactions mentioned above continue to occur as long as lactate is present. As predicted by this model, exogenously added lactate was shown to increase the final growth yield in the presence of both oxidases.  相似文献   

7.
Endo-alpha-N-acetyl-D-galactosaminidase from Diplococcus pneumoniae was shown to have transglycosylation and transfer reaction (reversed hydrolysis) activities. Treatment of asialoglycoproteins having Gal beta 1----3GalNAc alpha 1----Ser/Thr linkages with enzyme preparations containing glycerol resulted in formation of nonreducing trisaccharides. The structure of the main trisaccharide (approximately 80%) was deduced to be Gal beta 1----3GalNAc alpha 1----1(3)-glycerol by analysis of sugar composition and the results of exoglycosidase treatment and periodate oxidation. The ability of the endoglycosidase to catalyze transfer of Gal beta 1----3GalNAc to various acceptors was also demonstrated by incubation of the enzyme with the disaccharide and the test compound. The following were found to show acceptor activity: glycerol, Tris, p-nitrophenol, threonine, serine, D-glucose, D-galactose, D-fucose, and 6-O-methylgalactose. Transfer to the primary hydroxyl groups of glycerol and hexoses appears to be favored since the major glycerol product was 1(3)-substituted and transfer to D-fucose and 6-O-methyl-D-galactose was less than that to D-galactose. In order to avoid spurious results, it is necessary to carry out incubations with this enzyme in the absence of glycerol and other hydroxy compounds. The potential use of this endoglycosidase in the synthesis of glycosides is indicated by our studies.  相似文献   

8.
Ferrous leghemoglobin reacts with hydrogen peroxide to form the stable product, leghemoglobin(IV). The reaction follows second order kinetics (k = 2.24 X 10(4) M-1 S-1 at 20 degrees C) and may be regarded as a single-step, two-electron oxidation. Ferric leghemoglobin is not an intermediate. The oxidation state of leghemoglobin(IV) is established by reductive titration with dithionite; 2 eq of dithionite are required to convert 1 mol of leghemoglobin(IV) to ferrous leghemoglobin. An outstanding property of leghemoglobin(IV) is its stability, little change is noted after 12 h at 25 degrees C. Leghemoglobin(IV) differs from the higher oxidation states of other hemoglobins and myoglobins in that it does not react with hydrogen peroxide to form the oxygenated protein.  相似文献   

9.
The reaction of cytochrome c oxidase (COX) from Rhodobacter sphaeroides with hydrogen peroxide has been studied at alkaline (pH 8.5) and acidic (pH 6.5) conditions with the aid of a stopped-flow apparatus. Absorption changes in the entire 350-800 nm spectral range were monitored and analyzed by a global fitting procedure. The reaction can be described by the sequential formation of two intermediates analogous to compounds I and II of peroxidases: oxidized COX + H2O2 --> intermediate I --> intermediate II. At pH as high as 8.5, intermediate I appears to be a mixture of at least two species characterized by absorption bands at approximately 607 nm (P607) and approximately 580 nm (F-I580) that rise synchronously. At acidic pH (6.5), intermediate I is represented mainly by a component with an alpha-peak around 575 nm (F-I575) that is probably equivalent to the so-called F* species observed with the bovine COX. The data are consistent with a pH-dependent reaction branching at the step of intermediate I formation. To get further insight into the mechanism of the pH-dependence, the peroxide reaction was studied using two mutants of the R. sphaeroides oxidase, K362M and D132N, that block, respectively, the proton-conducting K- and D-channels. The D132N mutation does not affect significantly the Ox --> intermediate I step of the peroxide reaction. In contrast, K362M replacement exerts a dramatic effect, eliminating the pH-dependence of intermediate I formation. The data obtained allow us to propose that formation of the acidic form of intermediate I (F-I575, F*) requires protonation of some group at/near the binuclear site that follows or is concerted with peroxide binding. The protonation involves specifically the K-channel. Presumably, a proton vacancy can be generated in the site as a consequence of the proton-assisted heterolytic scission of the O-O bond of the bound peroxide. The results are consistent with a proposal [Vygodina, T. V., Pecoraro, C., Mitchell, D., Gennis, R., and Konstantinov, A. A. (1998) Biochemistry 37, 3053-3061] that the K-channel may be involved in the delivery of the first four protons in the catalytic cycle (starting from reduction of the oxidized form) including proton uptake coupled to reduction of the binuclear site and transfer of protons driven by cleavage of the dioxygen O-O bond in the binculear site. Once peroxide intermediate I has been formed, generation of a strong oxene ligand at the heme a3 iron triggers a transition of the enzyme to the "peroxidase conformation" in which the K-channel is closed and the binuclear site becomes protonically disconnected from the bulk aqueous phase.  相似文献   

10.
Complex interspecies interactions occur constantly between oral commensals and the opportunistic pathogen Streptococcus mutans in dental plaque. Previously, we showed that oral commensal Streptococcus oligofermentans possesses multiple enzymes for H(2)O(2) production, especially lactate oxidase (Lox), allowing it to out-compete S. mutans. In this study, through extensive biochemical and genetic studies, we identified a pyruvate oxidase (pox) gene in S. oligofermentans. A pox deletion mutant completely lost Pox activity, while ectopically expressed pox restored activity. Pox was determined to produce most of the H(2)O(2) in the earlier growth phase and log phase, while Lox mainly contributed to H(2)O(2) production in stationary phase. Both pox and lox were expressed throughout the growth phase, while expression of the lox gene increased by about 2.5-fold when cells entered stationary phase. Since lactate accumulation occurred to a large degree in stationary phase, the differential Pox- and Lox-generated H(2)O(2) can be attributed to differential gene expression and substrate availability. Interestingly, inactivation of pox causes a dramatic reduction in H(2)O(2) production from lactate, suggesting a synergistic action of the two oxidases in converting lactate into H(2)O(2). In an in vitro two-species biofilm experiment, the pox mutant of S. oligofermentans failed to inhibit S. mutans even though lox was active. In summary, S. oligofermentans develops a Pox-Lox synergy strategy to maximize its H(2)O(2) formation so as to win the interspecies competition.  相似文献   

11.
The reaction of cytochrome c oxidase with hydrogen peroxide has been of great value in generating and characterizing oxygenated species of the enzyme that are identical or similar to those formed during turnover of the enzyme with dioxygen. Most previous studies have utilized relatively low peroxide concentrations (millimolar range). In the current work, these studies have been extended to the examination of the kinetics of the single turnover of the fully reduced enzyme using much higher concentrations of peroxide to avoid limitations by the bimolecular reaction. The flow-flash method is used, in which laser photolysis of the CO adduct of the fully reduced enzyme initiates the reaction following rapid mixing of the enzyme with peroxide, and the reaction is monitored by observing the absorbance changes due to the heme components of the enzyme. The following reaction sequence is deduced from the data. (1) The initial product of the reaction appears to be heme a(3) oxoferryl (Fe(4+)=O(2)(-) + H(2)O). Since the conversion of ferrous to ferryl heme a(3) (Fe(2+) to Fe(4+)) is sufficient for this reaction, presumably Cu(B) remains reduced in the product, along with Cu(A) and heme a. (2) The second phase of the reaction is an internal rearrangement of electrons and protons in which the heme a(3) oxoferryl is reduced to ferric hydroxide (Fe(3+)OH(-)). In about 40% of the population, the electron comes from heme a, and in the remaining 60% of the population, Cu(B) is oxidized. This step has a time constant of about 65 micros. (3) The third apparent phase of the reaction includes two parallel reactions. The population of the enzyme with an electron in the binuclear center reacts with a second molecule of peroxide, forming compound F. The population of the enzyme with the two electrons on heme a and Cu(A) must first transfer an electron to the binuclear center, followed by reaction with a second molecule of peroxide, also yielding compound F. In each of these reaction pathways, the reaction time is 100-200 micros, i.e., much faster than the rate of reaction of peroxide with the fully oxidized enzyme. Thus, hydrogen peroxide is an efficient trap for a single electron in the binuclear center. (4) Compound F is then reduced by the final available electron, again from heme a, at the same rate as observed for the reduction of compound F formed during the reaction of the fully reduced oxidase with dioxygen. The product is the fully oxidized enzyme (heme a(3) Fe(3+)OH(-)), which reacts with a third molecule of hydrogen peroxide, forming compound P. The rate of this final reaction step saturates at high concentrations of peroxide (V(max) = 250 s(-)(1), K(m) = 350 mM). The data indicate a reaction mechanism for the steady-state peroxidase activity of the enzyme which, at pH 7.5, proceeds via the single-electron reduction of the binuclear center followed by reaction with peroxide to form compound F directly, without forming compound P. Peroxide is an efficient trap for the one-electron-reduced state of the binuclear center. The results also suggest that the reaction of hydrogen peroxide to the fully oxidized enzyme may be limited by the presence of hydroxide associated with the heme a(3) ferric species. The reaction of hydrogen peroxide with heme a(3) is very substantially accelerated by the availability of an electron on heme a, which is presumably transferred to the binuclear center concomitant with a proton that can convert the hydroxide to water, which is readily displaced.  相似文献   

12.
Addition of hydrogen peroxide to ascorbate oxidase results in formation of a complex which has been analyzed kinetically. Since reduction of molecular oxygen to water by this enzyme occurs in more than one step, the peroxide complex may be a mimic for a catalytic intermediate. The properties of the complex are similar to those reported for a peroxide complex with laccase. Changes in the activity of ascorbate oxidase as a function of pH indicate the presence of a group in the enzyme with an apparent pK of 7.8 which must be protonated in order for the enzyme to function. The ascorbate Km is known to be insensitive to pH in this region and the present work indicates the same to be true for the oxygen Km. It would appear that the rate determining step in the catalytic mechanism involves protonation of an intermediate.  相似文献   

13.
To survive macrophage killing is critical in the pathogenesis of viridians streptococci-induced infective endocarditis (IE). Streptococcus mutans, an opportunistic IE pathogen, generally does not survive well phagocytic killing in murine macrophage RAW 264.7 cells. A putative two-component system (TCS), ScnR/ScnK from S. mutans, was investigated to elucidate the mechanisms underlying bacteria-cellular interaction in this study. Both the wild-type and mutant strains were phagocytosed by RAW 264.7 cells at a comparable rate and an increased intracellular susceptibility during a 5 h incubation period was observed with the scnRK-null mutants. The amount of reactive oxygen species (ROS) in activated macrophages was reduced significantly after ingesting wild-type, but not scnRK-null mutant strains, suggesting that increased macrophage killing of these mutants is due to the impaired ability of S. mutans to counteract ROS. Additionally, both scnR- or scnRK-null mutants were more susceptible to hydrogen peroxide. Interestingly, scnRK expression was unaffected by hydrogen peroxide. These experimental results indicate that scnRK is important in counteracting oxidative stress in S. mutans, and decreased susceptibility to phagocytic killing is at least partly attributable to inhibition of intracellular ROS formation.  相似文献   

14.
The rate of reaction of [Cr(III)Y]aq (Y is EDTA anion) with hydrogen peroxide was studied in aqueous nitrate media [μ = 0.10 M (KNO3)] at various temperatures. The general rate equation, Rate = k1 + k2K1[H+]?11 + K1[H+]?1 [Cr(III)Y]aq[H2O2] holds over the pH range 5–9. The decomposition reaction of H2O2 is believed to proceed via two pathways where both the aquo and hydroxo-quinquedentate EDTA complexes are acting as the catalyst centres. Substitution-controlled mechanisms are suggested and the values of the second-order rate constants k1 and k2 were found to be 1.75 × 10?2 M?1 s?1 and 0.174 M?1 s?1 at 303 K respectively, where k2 is the rate constant for the aquo species and k2 is that for the hydroxo complex. The respective activation enthalpies (ΔH*1 = 58.9 and ΔH*2 = 66.5 KJ mol?1) and activation entropies (ΔS*1 = ?85 and ΔS*2 = ?40 J mol?1 deg?1) were calculated from a least-squares fit to the Eyring plot. The ionisation constant pK1, was inferred from the kinetic data at 303 K to be 7.22. Beyond pH 9, the reaction is markedly retarded and ceases completely at pH ? 11. This inhibition was attributed in part to the continuous loss of the catalyst as a result of the simultaneous oxidation of Cr(III) to Cr(VI).  相似文献   

15.
The human bacterial pathogen Streptococcus pneumoniae dies spontaneously upon reaching stationary phase. The extent of S. pneumoniae death at stationary phase is unusual in bacteria and has been conventionally attributed to autolysis by the LytA amidase. In this study, we show that spontaneous pneumococcal death is due to hydrogen peroxide (H(2)O(2)), not LytA, and that the gene responsible for H(2)O(2) production (spxB) also confers a survival advantage in colonization. Survival of S. pneumoniae in stationary phase was significantly prolonged by eliminating H(2)O(2) in any of three ways: chemically by supplementing the media with catalase, metabolically by growing the bacteria under anaerobic conditions, or genetically by constructing DeltaspxB mutants that do not produce H(2)O(2). Likewise, addition of H(2)O(2) to exponentially growing S. pneumoniae resulted in a death rate similar to that of cells in stationary phase. While DeltalytA mutants did not lyse at stationary phase, they died at a rate similar to that of the wild-type strain. Furthermore, we show that the death process induced by H(2)O(2) has features of apoptosis, as evidenced by increased annexin V staining, decreased DNA content, and appearance as assessed by transmission electron microscopy. Finally, in an in vivo rat model of competitive colonization, the presence of spxB conferred a selective advantage over the DeltaspxB mutant, suggesting an explanation for the persistence of this gene. We conclude that a suicide gene of pneumococcus is spxB, which induces an apoptosis-like death in pneumococci and confers a selective advantage in nasopharyngeal cocolonization.  相似文献   

16.
F MacMillan  A Kannt  J Behr  T Prisner  H Michel 《Biochemistry》1999,38(29):9179-9184
Cytochrome c oxidase (COX) catalyzes the reduction of oxygen to water, a process which is accompanied by the pumping of four protons across the membrane. Elucidation of the structures of intermediates in these processes is crucial for understanding the mechanism of oxygen reduction. In the work presented here, the reaction of H(2)O(2) with the fully oxidized protein at pH 6.0 has been investigated with electron paramagnetic resonance (EPR) spectroscopy. The results reveal an EPR signal with partially resolved hyperfine structure typical of an organic radical. The yield of this radical based on comparison with other paramagnetic centers in COX was approximately 20%. Recent crystallographic data have shown that one of the Cu(B) ligands, His 276 (in the bacterial case), is cross-linked to Tyr 280 and that this cross-linked tyrosine is ideally positioned to participate in dioxygen activation. Here selectively deuterated tyrosine has been incorporated into the protein, and a drastic change in the line shape of the EPR signal observed above has been detected. This would suggest that the observed EPR signal does indeed arise from a tyrosine radical species. It would seem also quite possible that this radical is an intermediate in the mechanism of oxygen reduction.  相似文献   

17.
Role of the divalent metal cation in the pyruvate oxidase reaction   总被引:3,自引:0,他引:3  
Purified pyruvate oxidase requires a divalent metal cation for enzymatic activity. The function of the divalent metal cation was studied for unactivated, dodecyl sulfate-activated, and phosphatidylglycerol-activated oxidase. Assays performed in the presence of Mg2+, CA2+, Zn2+, Mn2+, Ba2+, Ni2+, Co2+, Cu2+, and Cr3+ in each of four different buffers, phosphate, 1,4-piperazinediethanesulfonic acid, imidazole, and citrate, indicate that any of these metal cations will fulfill the pyruvate oxidase requirement. Extensive steady state kinetics data were obtained with both Mg2+ and Mn2+. All the data are consistent with the proposition that the only role of the metal is to bind to the cofactor thiamin pyrophosphate (TPP) and that it is the Me2+-TPP complex which is the true cofactor. Values of the Mg2+ and Mn2+ dissociation constants with TPP were determined by EPR spectroscopy and these data were used to calculate the Michaelis constant for the Me2+-TPP complexes. The results show that the Michaelis constants for the Me2+-TPP complexes are independent of the metal cation in the complex. Fluorescence quenching experiments show that the Michaelis constant is equal to the dissociation constant of the Mn2+-TPP complex with the enzyme. It was also shown that Mn2+ will only bind to the enzyme in the presence of TPP and that one Mn2+ binds per subunit. Steady state kinetics experiments with Mn2+ were more complicated than those obtained with Mg2+ because of the formation of an abortive Mn2+-pyruvate complex. Both EPR and steady state kinetics data indicated complex formation with a dissociation constant of about 70 mM.  相似文献   

18.
Streptococcus pneumoniae is a major human pathogen that must adapt to unique nutritional environments in several host niches. The pneumococcus can metabolize a range of carbohydrates that feed into glycolysis ending in pyruvate, which is catabolized by several enzymes. We investigated how the pneumococcus utilizes these enzymes to metabolize different carbohydrates and how this impacts survival in the host. Loss of ldh decreased bacterial burden in the nasopharynx and enhanced bacteremia in mice. Loss of spxB, pdhC or pfl2 decreased bacteremia and increased host survival. In glucose or galactose, loss of ldh increased capsule production, whereas loss of spxB and pdhC reduced capsule production. The pfl2 mutant exhibited reduced capsule production only in galactose. In glucose, pyruvate was metabolized primarily by LDH to generate lactate and NAD+ and by SpxB and PDHc to generate acetyl-CoA. In galactose, pyruvate metabolism was shunted toward acetyl-CoA production. The majority of acetyl-CoA generated by PFL was used to regenerate NAD+ with a subset used in capsule production, while the acetyl-CoA generated by SpxB and PDHc was utilized primarily for capsule biosynthesis. These data suggest that the pneumococcus can alter flux of pyruvate metabolism dependent on the carbohydrate present to succeed in distinct host niches.  相似文献   

19.
Whereas the mixed lymphocyte reaction was essentially normal in inactive lepromatous leprosy and tuberculoid leprosy, it was severely impaired in active lepromatous leprosy. The impairment was found to be contributed by certain unknown factors in their plasma and subnormal reactivity of their T lymphocytes. The plasma derived from active lepromatous leprosy patients depressed the reaction of normal cells and normal plasma enhanced the reaction of active lepromatous lymphocytes. The cellular factor was studied by using a one-way reaction in which one of the two lymphocyte preparations was inactivated with mitomycin C. The impairment of blastogenesis of active lepromatous lymphocytes was partially reversed by substituting inactivated normal cells for similarly treated leprous cells, and conversely the response of normal allogeneic lymphocytes was depressed by substituting inactivated leprous lymphocytes as the stimulator cells.  相似文献   

20.
Mechanisms of antibiotic resistance and tolerance in Streptococcus pneumoniae   总被引:15,自引:0,他引:15  
Streptococcus pneumoniae is a major pathogen causing potentially life-threatening community-acquired diseases in both the developed and developing world. Since 1967, there has been a dramatic increase in the incidence of penicillin-resistant and multiply antibiotic-resistant pneumococci worldwide. Prevention of access of the antibiotic to the target, inactivation of the antibiotic and alteration of the target are mechanisms that S. pneumoniae has developed to resist antibiotics. Recent studies on antibiotic-tolerant pneumococcal mutants permitted development of a novel model for the control of bacterial cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号