首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
W J Deal 《Biopolymers》1975,14(6):1273-1281
Analysis of experimental equilibrium constants for the oxygenation of hemoglobin leads to a plausible mechanism for the effect of pH and of chloride ions on cooperativity in hemoglobin. According to this mechanism, the structural changes responsible for cooperativity in chloride- and 2,3-diphosphoglycerate-free hemoglobin are affected only slightly by changes in pH, and the effect of chloride can be accounted for by sequential binding and release of chloride ions during oxygenation.  相似文献   

2.
The kinetics of the reaction with oxygen and carbon monoxide of the homodimeric hemoglobin from the bivalve mollusc Scapharca inaequivalvis has been extensively investigated by flash and dye-laser photolysis, temperature jump relaxation, and stopped flow methods. The results indicate that cooperativity in ligand binding, already observed for oxygen at equilibrium, finds its kinetic counterpart in a large decrease of the oxygen dissociation velocity in the second step of the binding reaction. In the case of carbon monoxide, cooperativity is clearly evident in the increase of the combination velocity constant as the reaction proceeds. Therefore, the ligand-binding kinetics of this dimeric hemoglobin shows the characteristic features of the corresponding reactions of tetrameric hemoglobins. Analysis of the data in terms of the allosteric model proposed by Monod et al. (Monod, J., Wyman, J., and Changeux, J. P. (1965) J. Mol. Biol. 12, 88-118) has shown that the values of the allosteric parameters cannot be fixed uniquely for a dimeric hemoglobin. The rapid changes in absorbance observed at the isosbestic points of unliganded and liganded hemoglobin following laser photolysis provided a value of 7 X 10(4) S-1 at 20 degrees C for the rate of the ligand-free quarternary conformational change, postulated on the basis of cooperative ligand binding. Comparison of the rapid absorbance changes observed during ligand rebinding in this hemoglobin with those observed in tuna hemoglobin indicate that, at full photolysis, binding to the T state is followed by further binding and conversion to the liganded R state; at partial photolysis, population of the liganded T state occurs immediately and is followed by a decay to the liganded R state upon further ligand binding. These new results, in conjunction with previous equilibrium data on the same system, show unequivocally that the presence of two different types of chain is not an absolute prerequisite for cooperativity in hemoglobins, contrary to currently accepted ideas.  相似文献   

3.
The effect of calcium and magnesium ions on the oxygen equilibrium of Eisenia hemoglobin was investigated by using an automatic oxygenation apparatus. On addition of calcium chloride (20 mM, pH 7.5), oxygen affinity and cooperativity (nmax) of the hemoglobin increased markedly (p 50:3.82 mmHg, nmax :9.76). The effect of magnesium on the oxygen equilibrium was weaker than that of calcium. The top asymptotes of the oxygen equilibrium curve shifted to the left by adding cations whereas the bottom asymptotes remained almost unchanged. The free energy of heme-heme interaction (delta GR,T) also increased remarkably. These results imply the binding of calcium to Eisenia hemoglobin in the oxygenated form and its physiological role in modulating the oxygen affinity and cooperativity.  相似文献   

4.
Binding capacity is the homotropic second derivative of the binding potential with respect to the chemical potential of the ligand. It provides a measure of steepness of the binding isotherm and represents the extent of cooperativity. In the present study, the shape of the binding capacity curve for various systems was investigated and the relation between binding capacity and the extent of cooperativity examined. In this regard, a novel linear graphical method was introduced for binding data analysis. The stoichiometry of binding and the extent of cooperativity can be determined by this method. This method has been successfully applied to various systems such as binding of oxygen to hemoglobin, warfarin to human serum albumin and dodecyltrimethylammonium bromide to alpha-amylase.  相似文献   

5.
Holt JM  Klinger AL  Yarian CS  Keelara V  Ackers GK 《Biochemistry》2005,44(36):11925-11938
The complete binding cascade of human hemoglobin consists of eight partially ligated intermediates and 16 binding constants. Each intermediate binding constant can be evaluated via dimer-tetramer assembly when ligand configurations within the tetramer are fixed through the use of hemesite analogs. The Zn/Fe analog, in which the nonbinding Zn2+ heme substitutes for deoxy Fe2+ heme, also permits direct measurement of O2 binding to the remaining Fe2+ hemesites within the symmetrically ligated Hb tetramers. Measurement of O2 binding over a range of Zn/Fe Hb concentrations to both alpha-subunits (species 23) or to both beta-subunits (species 24) shows noncooperative binding and incomplete saturation of the available Fe2+ hemesites. In contrast, the asymmetrically ligated Zn/FeO2 species 21, in which both oxygens are bound to one of the dimers within the tetramer, exhibits positive cooperativity and >90% ligation under atmospheric conditions. These properties are confirmed in the present study by measurement of the rate constant for tetramer dissociation to free dimer. The binding constants thus derived for these partially ligated intermediates are consistent with the stoichiometric constants measured for native hemoglobin by standard O2 binding techniques, providing additional evidence that Zn2+-heme substitution provides an excellent deoxy hemoglobin analog. There is no evidence that Zn-substitution stabilizes a low-affinity form of the tetramer, as previously suggested. These characterizations demonstrate distinct, nonadditive physical properties of the doubly ligated tetrameric species, yielding an asymmetric distribution of cooperativity within the cascade of O2 binding by human hemoglobin.  相似文献   

6.
The binding of chlorpromazine (CPZ), an widely used tranquilizer, with hemoglobin (Hb) at pH 6.5 has been investigated by means of spectrophotometry, circular dichroism (CD), and equilibrium dialysis. In CD spectra Hb treated with CPZ exhibited a blue shift of 5 nm in the visible wavelength range. The positively cooperative nature of binding was revealed by equilibrium dialysis experiments. The basic parameters, namely, the cooperative binding constant (K), the degree of cooperativity (q), and the number of amino acids (n) occupied by one CPZ molecule were evaluated from spectrophotometric and dialysis experiments and found to be sensitive to NaCl concentration, suggesting the electrostatic nature of the binding process.  相似文献   

7.
The binding data for oxygenation of human hemoglobin, Hb, at various temperatures and in the absence and presence of 2,3-diphosphoglycerate, DPG, and inositol hexakis phosphate, IHP, were analyzed for extraction of mean intrinsic Gibbs free energy, DeltaGo, enthalpy, DeltaHo, and entropy, DeltaSo, of binding at various partial oxygen pressures. This method of analysis considers all the protein species present such as dimer and tetramer forms which were not considered by Imai et al. (Imai K et al., 1970, Biochim Biophys Acta 200: 189-196), in their analysis which was based on Adair equation. In this regard, the values of Hill equation parameters were estimated with high precision at all points of the binding curve and used for calculation of DeltaGo, DeltaHo and DeltaSo were also calculated by analysis of DeltaGo values at various temperatures using van't Hoff equation. The results represent the enthalpic nature of the cooperativity in Hb oxygenation and the compensation effect of intrinsic entropy. The interpretation of results also to be, into account the decrease of the binding affinity of sites for oxygen in the presence of DPG and IHP without any considerable changes in the site-site interaction (extent of cooperativity). In other words, the interactions between bound ligands, organic phosphates and oxygen, are more due to a decreasing binding affinity and not to the reduction of the cooperative interaction between sites. The results also document the more heterotropic effect of IHP compared to DPG.  相似文献   

8.
Computer simulations of equilibrium binding studies of a mixture of two labeled ligands binding competitively to a single class of identical and independent sites (receptors) were performed to investigate how ligand heterogeneity affects the observed data in such studies. The simulated data are presented in Scatchard plots. Ligand heterogeneity was generally found to be indistinguishable from the case of a homogeneous ligand when usual experimental conditions applied (that is, Scatchard plots of the data were straight lines). Some factors that increased the probability of recognizing heterogeneity in the system were identified, however. These are 1) a large difference between the dissociation constants of the two ligands, 2) a high concentration of receptors relative to the dissociation constant of the higher-affinity ligand, 3) a high concentration of the lower-affinity ligand relative to that of the higher-affinity ligand, 4) a high specific activity of the lower-affinity ligand relative to that of the higher-affinity ligand, and 5) lack of experimental error. When ligand heterogeneity (under certain conditions) did cause curvilinearity in the Scatchard plot, the curve formed was always concave-downwards. Thus, ligand heterogeneity may occasionally mimic positive cooperativity, but never mimics negative cooperativity or multiple classes of binding sites. Implications of these findings for equilibrium binding studies involving lipoproteins (which are generally isolated as heterogeneous mixtures of particles) are discussed in detail. These findings are also relevant to equilibrium binding studies using ligands which are mixtures of stereoisomers or which contain chemical or radiochemical impurities.  相似文献   

9.
The linkage between the four-step binding of oxygen and the binding of heterotropic anionic ligands in hemoglobin was investigated by accurately measuring and analyzing the oxygen equilibrium curves of human adult hemoglobin in the presence and absence of various concentrations of one or two of the following materials: chloride (Cl-), 2,3-diphosphoglycerate (DPG), and inositol hexaphosphate (IHP). Each equilibrium curve was analyzed according to the Adair equation to evaluate the four-step oxygen equilibrium constants (Adair constants) and the median oxygen pressure. The binding constants of the anions for the molecular species of hemoglobin carrying j oxygen molecules, Hb(O2)j(j=0,1,...,4), were evaluated from the dependences of the Adair constants and the median oxygen pressure on the anion concentration by introducing a model which takes the competitive binding of Cl- and DPG or IHP into account. Assumptions made in the model are: (a) the hemoglobin molecule has two oxygen-linked binding sites for Cl- which are equivalent and independent and (b) no Cl- can be bound to hemoglobin to which DPG or IHP is already bound and vice versa. Thus, we could obtain values for the intrinsic binding constants of Cl- and DPG, i.e., the constants in the absence of other competitive anions. For IHP, only the binding constants and apparent binding constants for Hb and Hb(O2)2 were obtained. Values of the Cl- binding constants and apparent binding constants for DPG and IHP, i.e., the binding constants in the presence of Cl- for Hb and Hb(O2)4, were in reasonable agreement with literature values. From the binding constants we calculated anion binding curves for Hb(O2)j(J=0,1,...,4), the number of anions bound to Hb(O2)J, And the relationship between fractional anion saturation of hemoglobin and fractional oxygen saturation. The numbers of released anions are not uniform with respect to oxygenation step. This non-uniformity is the reason for the changes in the shape of the oxygen equilibrium curve with anion concentration changes and for the non-uniform dependences of the Adair constants on anion concentration, and also results in non-linear relations between anion saturation and oxygen saturation. The anion binding constants and various binding properties of the anions derived from those constants are consistent with those observed by other investigators using different techniques, indicating that the present model describes the oxygen-linked competitive anion binding well.  相似文献   

10.
Summary The effects of both sodium chloride and CO2 on oxygen binding by component II of the hemoglobin fromArtemia franciscana have been determined. Sodium chloride decreases both the oxygen affinity and cooperativity: the Hill coefficient decreases from 2.4 to 1.7 in the presence of 0.5 M NaCl at pH 7.5, 20°C. In contrast, CO2 increases both the oxygen affinity and cooperativity. The effects of both agents are small and increase with the degree of oxygenation.  相似文献   

11.
The thermodynamic linkage between cooperative oxygenation and dimer-tetramer subunit assembly has been determined for cobaltous human hemoglobin in which iron(II) protoporphyrin IX is replaced by cobalt(II) protoporphyrin IX. The equilibrium parameters of the linkage system were determined by global nonlinear least-squares regression of oxygenation isotherms measured over a range of hemoglobin concentrations together with the deoxygenated dimer-tetramer assembly free energy determined independently from forward and reverse reaction rates. The total cooperative free energy of tetrameric cobalt hemoglobin (over all four binding steps) is found to be 1.84 (+/- 0.13) kcal, compared with the native ferrous hemoglobin value of 6.30 (+/- 0.14) kcal. Detailed investigation of stepwise cooperativity effects shows the following: (1) The largest change occurs at the first ligation step and is determined on model-independent grounds by knowledge of the intermediate subunit assembly free energies. (2) Cooperativity in the shape of the tetrameric isotherm occurs mainly during the middle two steps and is concomitant with the release of quaternary constraints. (3) Although evaluation of the pure tetrameric isotherm portrays identical binding affinity between the last two steps, this apparent noncooperativity is the result of a "hidden" oxygen affinity enhancement at the last step of 0.48 (+/- 0.12) kcal. This quaternary enhancement energy is revealed by the difference in subunit assembly free energies of the triply and fully ligated species and is manifested visually by the oxygenation isotherms at high versus low hemoglobin concentration. (4) Cobaltous hemoglobin dimers exhibit apparent anticooperativity of 0.49 (+/- 0.16) kcal (presumed to arise from heterogeneity of subunit affinities).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We have investigated the question of whether the gel mobility-shift assay can provide data that are useful to the demonstration of cooperativity in the site-specific binding of proteins to DNA. Three common patterns of protein-DNA interaction were considered: (i) the cooperative binding of a protein to two sites (illustrated by the Escherichia coli Gal repressor); (ii) the cooperative binding of a bidentate protein to two sites (illustrated by the E. coli Lac repressor); and (iii) the cooperative binding of a protein to three sites (illustrated by the lambda cI repressor). A simple, rigorous, and easily extendable statistical mechanical approach to the derivation of the binding equations for the different patterns is presented. Both simulated and experimental data for each case are analyzed. The mobility-shift assay provides estimates of the macroscopic binding constants for each step of ligation based on its separation of liganded species by the number of ligands bound. Resolution of the binding constants depends on the precision with which the equilibrium distribution of liganded species is determined over the entire range of titration of each of the sites. However, the evaluation of cooperativity from the macroscopic binding constants is meaningful only for data that are also accurate. Some criteria that are useful in evaluating accuracy are introduced and illustrated. Resolution of cooperative effects is robust only for the simplest case, in which there are two identical protein binding sites. In this case, cooperative effects of up to 1,000-fold are precisely determined. For heterogeneous sites, cooperative effects of greater than 1,000-fold are resolvable, but weak cooperativity is masked by the heterogeneity. For three-site systems, only averaged pair-wise cooperative effects are resolvable.  相似文献   

13.
The first direct equilibrium dialysis titration of the blood coagulation protein bovine prothrombin fragment 1 with Mg(II) is presented. Fragment 1 has fewer thermodynamic binding sites for Mg(II) than Ca(II), less overall binding affinity, and significantly less cooperativity. Several nonlinear curve fitting models were tested for describing the binding of fragment 1 with Mg(II), Ca(II), and mixed metal binding data. The Mg(II) data is represented by essentially five equivalent, noninteracting sites; for Ca(II), a model with three tight, cooperative sites and four "loose", equal affinity, noninteracting sites provides the best model. Based on the reported equilibrium dialysis data and in conjunction with other experimental data, a model for the binding of Ca(II) and Mg(II) to bovine prothrombin fragment 1 is proposed. The key difference between the binding of these divalent ions is that Ca(II) apparently causes a specific conformational change reflected by the cooperativity observed in the Ca(II) titration. The binding of Ca(II) ions to the three tight, cooperative sites establishes a conformation that is essential for phospholipid X Ca(II) X protein binding. The filling of the loose sites with Ca(II) ions leads to charge reduction and subsequent phospholipid X Ca(II) X protein complex interaction. Binding of Mg(II) to bovine prothrombin fragment 1 does not yield a complex with the necessary phospholipid-binding conformation. However, Mg(II) is apparently capable of stabilizing the Ca(II) conformation as is observed in the mixed metal ion binding data and the synergism in thrombin formation.  相似文献   

14.
The mode of interaction of human hemoglobin (Hb) with the red cell membrane was investigated with special reference to the effect on oxygen binding properties and Hb-membrane binding constants. Compared to free native Hb, the membrane-bound native Hb showed a strikingly lowered oxygen affinity and smaller response to organic phosphates such as 2,3-diphosphoglycerate and inositol hexaphosphate. Similar effects of membrane binding were also observed for intermediately cooperative Hbs such as N-ethylmaleimide-treated Hb (NES-Hb) and iodoacetamide-treated Hb (AA-Hb), but very small effects were observed for non-cooperative Hb, i.e., carboxypeptidase A-treated Hb (des-His-Tyr Hb). The magnitude of the affinity lowering was in the order: NES-Hb greater than native Hb greater than AA-Hb much greater than des-His-Tyr Hb. In the presence of inositol hexaphosphate, the three chemically modified Hbs showed an increased oxygen affinity when bound to the red cell membrane, probably due to partial replacement of bound inositol hexaphosphate by membrane. The binding to membrane caused a slight decrease in cooperativity for native Hb, but no distinct change in cooperativity was observed for the three modified Hbs. These results imply: a) the red cell membrane binds to deoxyHb more strongly than to oxyHb; b) the difference in membrane binding affinity between oxyHb and deoxyHb is closely related to the quaternary structure change in the Hb molecule occurring upon oxygenation. The higher affinity of the membrane for deoxyHb than for oxyHb apparently disagrees with the conclusion drawn by earlier investigators. However, the present binding experiments by means of ultrafiltration proved that the red cell membrane actually binds to deoxyHb much more strongly than to oxyHb, validating the present conclusion based on oxygenation experiments. Our results are consistent with those obtained recently by other investigators using a synthetic peptide or the cytoplasmic fragment of red cell membrane band 3.  相似文献   

15.
Calorimetric measurements at 25 degrees of the differential heat of CO binding by hemoglobin trout I have been examined together with the CO binding isotherms for the protein at 4 degrees and 20 degrees. Simultaneous treatment of these data sets by a statistically rigorous technique permits evaluation of all the thermodynamic parameters for both the Adair and the Monod, Wyman, Changeux (MWC) models. The results show the details of the unusual temperature dependent cooperativity which this hemoglobin exhibits. In the Adair formalism the increasingly favorable free energy change for successive steps of ligand binding are nearly linearly paralleled by increasingly negative enthalpy changes for these steps. This causes the enhanced cooperativity observed as the temperature is decreased. For the MWC case, lowering the temperature increases the stability of the unligated T state relative to the unligated R state since the enthalpy of the T leads to R transition is 29.4 kcal mol-1. Simultaneously, the favorability of ligating R forms relative to T is enhanced since R form ligation is 14.1 kcal (mol CO)-1 more exothermic than that of T. The balance between these opposing effects is to increase ligand binding cooperativity at low temperatures. The predicted temperature dependence of the Hill coefficient for the MWC and Adair models is identical at low and intermediate temperatures, but, interestingly, would show a strong divergence at high temperatures where negative cooperativity is suggested for the Adair case and positive cooperativity for the MWC case.  相似文献   

16.
An extensive and self-consistent set of thermodynamic properties has recently been established for the coupled processes of subunit assembly and ligand binding (oxygen and protons) in human hemoglobin. The resulting thermodynamic values permit a consideration of the possible sources of energetic terms accounting for stability of the tetrameric quaternary structures at different stages of ligation, and of the possible sources of cooperative energy. The analysis indicates that: (a) The change in buried surface ara upon oxygenation (i.e., hydrophobic stabilization) does not play a dominant role in stabilizing the unliganded tetramer relative to the liganded tetramer. (b) The pattern of enthalpic and entropic contributions to the free energies of dimer-tetramer. (c) The thermodynamic results are consistent with a dominant role of increased hydrogen bond formation in the deoxy quaternary structure. (d) Within tetramers the variation in free energy for successive oxygenation steps arises from both enthalpic and entropic contributions and the enthalpic contributions are almost entirely attributable to the heats of Bohr proton release. At pH 7.4 the pattern of thermodynamic values suggests that a large contribution to the free energy of cooperativity may arise from the energetics of Bohr proton release. It is suggested that a combination of proton ionization and hydrogen bonding may account for the main energetic features of cooperativity. Possible contributions from fluctuation behavior cannot presently be evaluated.  相似文献   

17.
Nearest-neighbor cooperative binding of a ligand covering n sites and binding with equilibrium constant K and cooperativity factor omega to a large molecule with m binding sites (m much greater than n omega, n/omega) can be approximately described by a Gaussian distribution P(q-qmax), where q is the number of ligands bound and qmax the most probable value of q. The variance of the Gaussian is equal to the derivative dqmax/d ln(L), where L is the free ligand concentration. This variance, sigma 2, is a complicated function of qmax. However, in the limits of very large cooperativity, omega much greater than 1, very large anticooperativity, omega much less than 1, or noncooperativity, omega = 1, simpler expressions for sigma 2 can be given. For qmax = m/(n + 1), where the most probable number of bound ligands equals the number of free binding sites, sigma 2 has a particularly simple form: sigma 2 = 2m omega 1/2/(n + 1)3. The Gaussian and the infinite lattice approximations for the average number of ligands bound are good approximations only if sigma is much smaller than the number of binding sites. The variance may therefore provide an easy check on the validity of the infinite lattice approximation, which is commonly used to analyze experimental binding data.  相似文献   

18.
Measurements of oxygen binding to bovine hemoglobin have been carried out over the temperature range 15-37 degrees C at pH 7.33. The standard enthalpy of oxygenation after correction for the heat of oxygen solution and of the Bohr protons is found to be -7.1 or -7.2 kcal/mol in the presence of 0.1 M chloride or bromide, respectively. This value is well below the -14.4 kcal/mol determined for human hemoglobin under identical experimental conditions. As reported by Fronticelli et al. (C. Fronticelli, E. Bucci and A. Razynska, J. Mol. Biol. 202 (1988) 343), the preferential binding of anions by bovine hemoglobin recognizes the various halides. Measurements at various temperatures reveal that this is true only above 25 degrees C. The halide recognition and the less exothermic enthalpy of oxygenation of bovine hemoglobin are probable due to oxygen-linked hydrophobic effects that are larger in bovine than in human hemoglobin.  相似文献   

19.
G Viggiano  N T Ho  C Ho 《Biochemistry》1979,18(23):5238-5247
The proton nuclear magnetic resonance spectrum of human adult deoxyhemoglobin in D2O in the region from 6 to 20 ppm downfield from the proton resonance of residual water shows a number of hyperfine shifted proton resonances that are due to groups on or near the alpha and beta hemes. The sensitivity of these resonances to the ligation of the heme groups and the assignment of these resonances to the alpha and beta chains provide an opportunity to investigate the cooperative oxygenation of an intact hemoglobin molecule in solution. By use of the nuclear magnetic resonance correlation spectroscopy technique, at least two resonances, one at approximately 18 ppm downfield from HDO due to the beta chain and the other at approximately 12 ppm due to the alpha chain, can be used to study the binding of oxygen to the alpha and beta chains of hemoglobin. The present results using approximately 12% hemoglobin concentration in 0.1 M Bistris buffer at pD 7 and 27 degrees C with and without organic phosphate show that there is no significant line broadening on oxygenation (from 0 to 50% saturation) to affect the determination of the intensities or areas of these resonances. It is found that the ratio of the intensity of the alpha-heme resonance at 12 ppm to that of the beta-heme resonance at 18 ppm is constant on oxygenation in the absence of organic phosphate but decreases in the presence of 2,3-diphosphoglycerate or inositol hexaphosphate, with the effect of the latter being the stronger. On oxygenation, the intensities of the alpha-heme resonance at 12 ppm and of the beta-heme resonance at 18 ppm decreases more than the total number of deoxy chains available as measured by the degree of O2 saturation of hemoglobin. This shows the sensitivity of these resonances to structural changes which are believed to occur in the unligated subunits upon the ligation of their neighbors in an intact tetrameric hemoglobin molecule. A comparison of the nuclear magnetic resonance data with the populations of the partially saturated hemoglobin tetramers (i.e., hemoglobin with one, two, or three oxygen molecules bound) leads to the conclusion that in the presence of organic phosphate the hemoglobin molecule with one oxygen bound maintains the beta-heme resonance at 18 ppm but not the alpha-heme resonance at 12 ppm. These resluts suggest that some cooperativity must exist in the deoxy quaternary structure of the hemoglobin molecule during the oxygenation process. Hence, these results are not consistent with the requirements of two-state concerted models for the oxygenation of hemoglobin. In addition, we have investigated the effect of D2O on the oxygenation of hemoglobin by measuring the oxygen dissociation curves of normal adult hemoglobin as a function of pH in D2O andH2O media. We have found that (1) the pH dependence of the oxygen equilibrium of hemoglobin (the Bohr effect) in higher pH in comparison to that in H2O medium and (2) the Hill coefficients are essentially the same in D2O and H2O media over the pH range from 6.0 to 8.2...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号