首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been suggested that the common (betaalpha)(8)-barrel enzyme fold has evolved by the duplication and fusion of identical (betaalpha)(4)-half barrels, followed by the optimisation of their interface. In our attempts to reconstruct these events in vitro we have previously linked in tandem two copies of the C-terminal half barrel HisF-C of imidazole glycerol phosphate synthase from Thermotoga maritima and subsequently reconstituted in the fusion construct HisF-CC a salt bridge cluster present in wild-type HisF. The resulting recombinant protein HisF-C*C, which was produced in an insoluble form and unfolded with low cooperativity at moderate urea concentrations has now been stabilised and solubilised by a combination of random mutagenesis and selection in vivo. For this purpose, Escherichia coli cells were transformed with a plasmid-based gene library encoding HisF-C*C variants fused to chloramphenicol acetyltransferase (CAT). Stable and soluble variants were identified by the survival of host cells on solid medium containing high concentrations of the antibiotic. The selected HisF-C*C proteins, which were characterised in vitro in the absence of CAT, contained eight different amino acid substitutions. One of the exchanges (Y143C) stabilised HisF-C*C by the formation of an intermolecular disulfide bond. Three of the substitutions (G245R, V248M, L250Q) were located in the long loop connecting the two HisF-C copies, whose subsequent truncation from 13 to 5 residues yielded the stabilised variant HisF-C*C Delta. From the remaining substitutions, Y143H and V234M were most beneficial, and molecular dynamics simulations suggest that they strengthen the interactions between the half barrels by establishing a hydrogen-bonding network and an extensive hydrophobic cluster, respectively. By combining the loop deletion of HisF-C*C Delta with the Y143H and V234M substitutions, the variant HisF-C**C was generated. Recombinant HisF-C**C is produced in soluble form, forms a pure monomer with its tryptophan residues shielded from solvent and unfolds with similar cooperativity as HisF. Our results show that, starting from two identical and fused half barrels, few amino acid exchanges are sufficient to generate a highly stable and compact (betaalpha)(8)-barrel protein with wild-type like structural properties.  相似文献   

2.
The (betaalpha)8-barrel, which is the most frequently encountered protein fold, is generally considered to consist of a single structural domain. However, the X-ray structure of the imidazoleglycerol phosphate synthase (HisF) from Thermotoga maritima has identified it as a (betaalpha) 8-barrel made up of two superimposable subdomains (HisF-N and HisF-C). HisF-N consists of the four N-terminal (betaalpha) units and HisF-C of the four C-terminal (betaalpha) units. It has been postulated, therefore, that HisF evolved by tandem duplication and fusion from an ancestral half-barrel. To test this hypothesis, HisF-N and HisF-C were produced in Escherichia coli, purified and characterized. Separately, HisF-N and HisF-C are folded proteins, but are catalytically inactive. Upon co-expression in vivo or joint refolding in vitro, HisF-N and HisF-C assemble to the stoichiometric and catalytically fully active HisF-NC complex. These findings support the hypothesis that the (betaalpha)8-barrel of HisF evolved from an ancestral half-barrel and have implications for the folding mechanism of the members of this large protein family.  相似文献   

3.
To visualize the formation of disulfide bonds in living cells, a pair of redox-active cysteines was introduced into the yellow fluorescent variant of green fluorescent protein. Formation of a disulfide bond between the two cysteines was fully reversible and resulted in a >2-fold decrease in the intrinsic fluorescence. Inter conversion between the two redox states could thus be followed in vitro as well as in vivo by non-invasive fluorimetric measurements. The 1.5 A crystal structure of the oxidized protein revealed a disulfide bond-induced distortion of the beta-barrel, as well as a structural reorganization of residues in the immediate chromophore environment. By combining this information with spectroscopic data, we propose a detailed mechanism accounting for the observed redox state-dependent fluorescence. The redox potential of the cysteine couple was found to be within the physiological range for redox-active cysteines. In the cytoplasm of Escherichia coli, the protein was a sensitive probe for the redox changes that occur upon disruption of the thioredoxin reductive pathway.  相似文献   

4.
DsbA, a 21-kDa protein from Escherichia coli, is a potent oxidizing disulfide catalyst required for disulfide bond formation in secreted proteins. The active site of DsbA is similar to that of mammalian protein disulfide isomerases, and includes a reversible disulfide bond formed from cysteines separated by two residues (Cys30-Pro31-His32-Cys33). Unlike most protein disulfides, the active-site disulfide of DsbA is highly reactive and the oxidized form of DsbA is much less stable than the reduced form at physiological pH. His32, one of the two residues between the active-site cysteines, is critical to the oxidizing power of DsbA and to the relative instability of the protein in the oxidized form. Mutation of this single residue to tyrosine, serine, or leucine results in a significant increase in stability (of approximately 5-7 kcal/mol) of the oxidized His32 variants relative to the oxidized wild-type protein. Despite the dramatic changes in stability, the structures of all three oxidized DsbA His32 variants are very similar to the wild-type oxidized structure, including conservation of solvent atoms near the active-site residue, Cys30. These results show that the His32 residue does not exert a conformational effect on the structure of DsbA. The destabilizing effect of His32 on oxidized DsbA is therefore most likely electrostatic in nature.  相似文献   

5.
Thioredoxin (Trx1) is a redox-active protein containing two active site cysteines (Cys-32 and Cys-35) that cycle between the dithiol and disulfide forms as Trx1 reduces target proteins. Examination of the redox characteristics of this active site dithiol/disulfide couple is complicated by the presence of three additional non-active site cysteines. Using the redox Western blot technique and matrix assisted laser desorption ionization time-of-flight mass spectrometry mass spectrometry, we determined the midpoint potential (E0) of the Trx1 active site (-230 mV) and identified a second redox-active dithiol/disulfide (Cys-62 and Cys-69) in an alpha helix proximal to the active site, which formed under oxidizing conditions. This non-active site disulfide was not a substrate for reduction by thioredoxin reductase and delayed the reduction of the active site disulfide by thioredoxin reductase. Within actively growing THP1 cells, most of the active site of Trx1 was in the dithiol form, whereas the non-active site was totally in the dithiol form. The addition of increasing concentrations of diamide to these cells resulted in oxidation of the active site at fairly low concentrations and oxidation of the non-active site at higher concentrations. Taken together these results suggest that the Cys-62-Cys-69 disulfide could provide a means to transiently inhibit Trx1 activity under conditions of redox signaling or oxidative stress, allowing more time for the sensing and transmission of oxidative signals.  相似文献   

6.
Shioi S  Imoto T  Ueda T 《Biochemistry》2004,43(18):5488-5493
Twenty-eight hen lysozyme variants that contained a pair of cysteines were constructed to examine the formation of the individual native and nonnative disulfide bonds. We analyzed the extent of the formation of a disulfide bond in each lysozyme variant using a redox buffer (pH 8) containing 1.0 mM reduced and 0.1 mM oxidized glutathione in the absence or presence of 6 M guanidine hydrochloride. In the presence of 6 M guanidine hydrochloride, the extent of the formation of the disulfide bond in each lysozyme variant was proportional to the distance between cysteine residues, indicating that reduced hen lysozyme under a highly denaturing condition adopted a randomly coiled structure. In aqueous solution, the formations of all disulfide bonds occurred much more easily than under a denatured condition. This finding indicated that reduced lysozyme had a somewhat compact structure. Moreover, the scattering data for the extents of the formation of the disulfide bonds among all lysozyme variants were observed. These results suggested that the nonrandom folding occurred in the early stage of the folding of reduced lysozyme, which should provide new insight into the early-stage events in the folding process of reduced lysozyme.  相似文献   

7.
The (betaalpha)(8)-barrel enzymes N'-[(5'-phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide isomerase (tHisA) and imidazole glycerol phosphate synthase (tHisF) from Thermotoga maritima catalyze two successive reactions in the biosynthesis of histidine. In both enzymes, aspartate residues at the C-terminal end of beta-strand 1 (Asp8 in tHisA and Asp11 in tHisF) and beta-strand 5 (Asp127 in tHisA and Asp130 in tHisF) are essential for catalytic activity. It was demonstrated earlier that in tHisA the substitution of Asp127 by valine (tHisA-D127V) generates phosphoribosylanthranilate isomerase (TrpF) activity, a related (betaalpha)(8)-barrel enzyme participating in tryptophan biosynthesis. It is shown here that in tHisF the corresponding substitution of Asp130 by valine (tHisF-D130V) also generates TrpF activity. To determine the effectiveness of individual amino acid exchanges in these conversions, each of the 20 standard amino acid residues was introduced at position 127 of tHisA and 130 of tHisF by saturation random mutagenesis. The tHisA-D127X and tHisF-D130X variants with TrpF activity were identified by selection in vivo, and the proteins purified and characterized. The results obtained show that removal of the negatively charged carboxylate side-chain at the C-terminal end of beta-strand 5 is sufficient to establish TrpF activity in tHisA and tHisF, presumably because it allows the binding of the negatively charged TrpF substrate, phosphoribosylanthranilate. In contrast, the double mutants tHisA-D8N+D127V and tHisF-D11N+D130V did not show detectable activity, demonstrating that the aspartate residues at the C-terminal end of beta-strand 1 are essential for catalysis of the TrpF reaction. The ease with which TrpF activity can be established on both the tHisA and tHisF scaffolds supports the evolutionary relationship of these three enzymes and highlights the functional plasticity of the (betaalpha)(8)-barrel enzyme fold.  相似文献   

8.
The arsenate reductase from the cyanobacterium Synechocystis sp. PCC 6803 has been characterized in terms of the redox properties of its cysteine residues and their role in the reaction catalyzed by the enzyme. Of the five cysteines present in the enzyme, two (Cys13 and Cys35) have been shown not to be required for catalysis, while Cys8, Cys80 and Cys82 have been shown to be essential. The as-isolated enzyme contains a single disulfide, formed between Cys80 and Cys82, with an oxidation-reduction midpoint potential (E(m)) value of -165mV at pH 7.0. It has been shown that Cys15 is the only one of the four cysteines present in Synechocystis sp. PCC 6803 glutaredoxin A required for its ability to serve as an electron donor to arsenate reductase, while the other three cysteines (Cys18, Cys36 and Cys70) play no role. Glutaredoxin A has been shown to contain a single redox-active disulfide/dithiol couple, with a two-electron, E(m) value of -220mV at pH 7.0. One cysteine in this disulfide/dithiol couple has been shown to undergo glutathionylation. An X-ray crystal structure, at 1.8? resolution, has been obtained for glutaredoxin A. The probable orientations of arsenate reductase disulfide bonds present in the resting enzyme and in a likely reaction intermediate of the enzyme have been examined by in silico modeling, as has the surface environment of arsenate reductase in the vicinity of Cys8, the likely site for the initial reaction between arsenate and the enzyme.  相似文献   

9.
All organisms possess specific cellular machinery that introduces disulfide bonds into proteins newly synthesized and transported out of the cytosol. In E. coli, the membrane-integrated DsbB protein cooperates with ubiquinone to generate a disulfide bond, which is transferred to DsbA, a periplasmic dithiol oxido-reductase that serves as the direct disulfide bond donor to proteins folding oxidatively in this compartment. Despite the extensive accumulation of knowledge on this oxidation system, molecular details of the DsbB reaction mechanisms had been controversial due partly to the lack of structural information until our recent determination of the crystal structure of a DsbA-DsbB-ubiquinone complex. In this review we discuss the structural and chemical nature of reaction intermediates in the DsbB catalysis and the illuminated molecular mechanisms that account for the de novo formation of a disulfide bond and its donation to DsbA. It is suggested that DsbB gains the ability to oxidize its specific substrate, DsbA, having very high redox potential, by undergoing a DsbA-induced rearrangement of cysteine residues. One of the DsbB cysteines that are now reduced then interacts with ubiquinone to form a charge transfer complex, leading to the regeneration of a disulfide at the DsbB active site, and the cycle can begin anew.  相似文献   

10.
The engineered disulfide bridge A23C/L203C in human carbonic anhydrase II, inserted from homology modeling of Neisseria gonorrhoeae carbonic anhydrase, significantly stabilizes the native state of the protein. The inserted cysteine residues are placed in the interior of the structure, and because of the conformationally restrained localization, the protein is expressed in the reduced state and the cysteines are not readily oxidized. However, upon exposure to low concentrations of denaturant (0.6 M guanidine hydrochloride), corresponding to the lower part of the denaturation curve for the first unfolding transition, the oxidation rate of correctly formed disulfide bridges was markedly increased. By entropy estimations it appears that the increased flexibility, induced by the denaturant, enables the cysteines to find each other and hence to form the disulfide bridge. The outlined strategy of facilitating formation of disulfide bonds by addition of adjusted concentrations of a denaturant should be applicable to other proteins in which engineered cysteine residues are located in nonideal conformations. Moreover, a S99C/V242C variant was constructed, in which the cysteine residues are located on the surface. In this mutant the disulfide bridge was spontaneously formed and the native state was considerably stabilized (midpoint concentration of unfolding was increased from 1.0 to 1.4 M guanidine hydrochloride).  相似文献   

11.
Among alpha 3-fucosyltransferases (alpha3-FucTs) from most species, four cysteine residues appear to be highly conserved. Two of these cysteines are located at the N-terminus and two at the C-terminus of the catalytic domain. FucT VII possesses two additional cysteines in close proximity to each other located in the middle of the catalytic domain. We identified the disulfide bridges in a recombinant, soluble form of human FucT VII. Potential free cysteines were modified with a biotinylated alkylating reagent, disulfide bonds were reduced and alkylated with iodoacetamide, and the protein was digested with either trypsin or chymotrypsin, before characterization by high-performance liquid chromatography/electrospray ionization mass spectrometry. More than 98% of the amino acid sequence for the truncated enzyme (beginning at amino acid 53) was verified. Mass spectrometry analysis also demonstrated that both potential N-linked sites are occupied. All six cysteines in the FucT VII sequence were shown to be disulfide-linked. The pairing of the cysteines was determined by proteolytic cleavage of nonreduced protein and subsequent analysis by mass spectrometry. The results demonstrated that Cys(68)-Cys(76), Cys(211)-Cys(214), and Cys(318)-Cys(321) are disulfide-linked. We have used this information, together with a method of fold recognition and homology modeling, using the (alpha/beta)(8)-barrel fold of Escherichia coli dihydrodipicolinate synthase as a template to propose a model for FucT VII.  相似文献   

12.
Natural molecular evolution supplies us with manifold examples of protein engineering. The imitation of these natural processes in the design of new enzymes has led to surprising and insightful results. Well-suited for design by evolutionary methods are enzymes with the common and versatile (betaalpha)(8)-barrel fold. Studies of enzyme stability, folding and design as well as the evolution of (betaalpha)(8)-barrel enzymes are discussed.  相似文献   

13.
Studies of structure-activity relationships of human interleukin-2   总被引:4,自引:0,他引:4  
Human interleukin-2 (IL-2) has 3 cysteine residues; cysteines 58 and 105 form an intramolecular disulfide bridge, whereas cysteine 125 has a free sulfhydryl group. In this study, site-specific mutagenesis has been used to modify the cysteine residues of recombinant Escherichia coli-derived IL-2 (rIL-2) to evaluate the functional structure of IL-2. Substitution or deletion of cysteine 105 disrupted the disulfide bridge and yielded a mutant protein which was 8-10 times less active than wild type rIL-2. A similar modification at position 58, however, reduced the activity of rIL-2 by more than 250-fold. Although substitution of serine for cysteine 125 did not affect IL-2 activity, deletion of cysteine 125 or deletion of amino acids in the vicinity of this cysteine yielded mutant proteins with little, if any, activity. These results indicate that the protein structure in the vicinity of both positions 58 and 125 is more critical than that close to position 105. These findings may provide a clue to the understanding of the functional structure of human IL-2.  相似文献   

14.
The (betaalpha)8-barrel is the most versatile and most frequently encountered fold among enzymes. It is an interesting question how the contemporary (betaalpha)8-barrels are evolutionarily related and by which mechanisms they evolved from more simple precursors. Comprehensive comparisons of amino acid sequences and three-dimensional structures suggest that a large fraction of the known (betaalpha)8-barrels have divergently evolved from a common ancestor. The mutational interconversion of enzymatic activities of several (betaalpha)8-barrels further supports their common evolutionary origin. Moreover, the high structural similarity between the N- and C-terminal (betaalpha)4 units of two (betaalpha)8-barrel enzymes from histidine biosynthesis indicates that the contemporary proteins evolved by tandem duplication and fusion of the gene of an ancestral 'half-barrel' precursor. In support of this hypothesis, recombinantly produced 'half-barrels' were shown to be folded, dimeric proteins.  相似文献   

15.
Malojcić G  Owen RL  Grimshaw JP  Glockshuber R 《FEBS letters》2008,582(23-24):3301-3307
Disulfide bond formation is a critical step in the folding of many secretory proteins. In bacteria, disulfide bonds are introduced by the periplasmic dithiol oxidase DsbA, which transfers its catalytic disulfide bond to folding polypeptides. Reduced DsbA is reoxidized by ubiquinone Q8, catalyzed by inner membrane quinone reductase DsbB. Here, we report the preparation of a kinetically stable ternary complex between wild-type DsbB, containing all essential cysteines, Q8 and DsbA covalently bound to DsbB. The crystal structure of this trapped DsbB reaction intermediate exhibits a charge-transfer interaction between Q8 and the Cys44 in the DsbB reaction center providing experimental evidence for the mechanism of de novo disulfide bond generation in DsbB.  相似文献   

16.
The majority of eukaryotic secretory and membrane proteins contain disulfide bonds, which are strongly conserved within protein families because of their crucial role in folding or function. The exact role of these disulfide bonds during folding is unclear. Using virus-driven evolution we generated a viral glycoprotein variant, which is functional despite the lack of an absolutely conserved disulfide bond that links two antiparallel β-strands in a six-stranded β-barrel. Molecular dynamics simulations revealed that improved hydrogen bonding and side chain packing led to stabilization of the β-barrel fold, implying that β-sheet preference codirects glycoprotein folding in vivo. Our results show that the interactions between two β-strands that are important for the formation and/or integrity of the β-barrel can be supported by either a disulfide bond or β-sheet favoring residues.  相似文献   

17.
Indole-3-glycerol phosphate synthase (IGPS) catalyzes the fifth step in the biosynthesis of tryptophan. It belongs to the large and versatile family of (betaalpha)(8)-barrel enzymes but has an unusual N-terminal extension of about 40 residues. Limited proteolysis with trypsin of IGPS from both Sulfolobus solfataricus (sIGPS) and Thermotoga maritima (tIGPS) removes about 25 N-terminal residues and one of the two extra helices contained therein. To assess the role of the extension, the N-terminally truncated variants sIGPSDelta(1-26) and tIGPSDelta(1-25) were produced recombinantly in Escherichia coli, purified, and characterized in comparison to the wild-type enzymes. Both sIGPSDelta(1-26) and tIGPSDelta(1-25) have unchanged oligomerization states and turnover numbers. In contrast, their Michaelis constants for the substrate 1-(o-carboxyphenylamino)-1-deoxyribulose 5-phosphate are increased, and their resistance toward unfolding induced by heat and guanidinium chloride is decreased. sIGPSDelta(1-26) was crystallized, and its X-ray structure was solved at 2.8 A resolution. The comparison with the known structure of sIGPS reveals small differences that account for its reduced substrate affinity and protein stability. The structure of the core of sIGPSDelta(1-26) is, however, unchanged compared to sIGPS, explaining its retained catalytic activity and consistent with the idea that it evolved from the same ancestor as the phosphoribosyl anthranilate isomerase and the alpha-subunit of tryptophan synthase. These (betaalpha)(8)-barrel enzymes catalyze the reactions preceding and following IGPS in tryptophan biosynthesis but lack an N-terminal extension.  相似文献   

18.
High-quality data about protein structures and their gene sequences are essential to the understanding of the relationship between protein folding and protein coding sequences. Firstly we constructed the EcoPDB database, which is a high-quality database of Escherichia coli genes and their corresponding PDB structures. Based on EcoPDB, we presented a novel approach based on information theory to investigate the correlation between cysteine synonymous codon usages and local amino acids flanking cysteines, the correlation between cysteine synonymous codon usages and synonymous codon usages of local amino acids flanking cysteines, as well as the correlation between cysteine synonymous codon usages and the disulfide bonding states of cysteines in the E. coli genome. The results indicate that the nearest neighboring residues and their synonymous codons of the C-terminus have the greatest influence on the usages of the synonymous codons of cysteines and the usage of the synonymous codons has a specific correlation with the disulfide bond formation of cysteines in proteins. The correlations may result from the regulation mechanism of protein structures at gene sequence level and reflect the biological function restriction that cysteines pair to form disulfide bonds. The results may also be helpful in identifying residues that are important for synonymous codon selection of cysteines to introduce disulfide bridges in protein engineering and molecular biology. The approach presented in this paper can also be utilized as a complementary computational method and be applicable to analyse the synonymous codon usages in other model organisms.  相似文献   

19.
The hydroxyl group of a serine residue at position 195 acts as a nucleophile in the catalytic mechanism of the serine proteases. However, the chemically similar residue, threonine, is rarely used in similar functional context. Our structural modeling suggests that the Ser 195 --> Thr trypsin variant is inactive due to negative steric interaction between the methyl group on the beta-carbon of Thr 195 and the disulfide bridge formed by cysteines 42 and 58. By simultaneously truncating residues 42 and 58 and substituting Ser 195 with threonine, we have successfully converted the classic serine protease trypsin to a functional threonine protease. Substitution of residue 42 with alanine and residue 58 with alanine or valine in the presence of threonine 195 results in trypsin variants that are 10(2) -10(4) -fold less active than wild type in kcat/KM but >10(6)-fold more active than the Ser 195 --> Thr single variant. The substitutions do not alter the substrate specificity of the enzyme in the P1'- P4' positions. Removal of the disulfide bridge decreases the overall thermostability of the enzyme, but it is partially rescued by the presence of threonine at position 195.  相似文献   

20.
Bovine pancreatic trypsin inhibitor (BPTI) is stabilized by 3 disulfide bonds, between cysteines 30-51, 5-55, and 14-38. To better understand the influence of disulfide bonds on local protein structure and dynamics, we have measured amide proton exchange rates in 2 folded variants of BPTI, [5-55]Ala and [30-51; 14-38]V5A55, which share no common disulfide bonds. These proteins resemble disulfide-bonded intermediates that accumulate in the BPTI folding pathway. Essentially the same amide hydrogens are protected from exchange in both of the BPTI variants studied here as in native BPTI, demonstrating that the variants adopt fully folded, native-like structures in solution. However, the most highly protected amide protons in each variant differ, and are contained within the sequences of previously studied peptide models of related BPTI folding intermediates containing either the 5-55 or the 30-51 disulfide bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号