首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The monoclonal antibody (mAb) 64D1 was found to inhibit cAMP binding by the cAMP receptor protein (CRP) from Escherichia coli (Li, X.-M., and Krakow, J. S. (1985) J. Biol. Chem. 260, 4378-4383). CRP is relatively resistant to attack by the Staphylococcus aureus V8 protease, chymotrypsin, trypsin, and subtilisin whereas both mAb 64D1-CRP and cAMP-CRP are attacked by these proteases yielding N-terminal core fragments. The fragment patterns resulting from proteolysis of mAb 64D1-CRP and cAMP-CRP differ indicating that the CRP in each complex is in a different conformation. The data presented indicate that the preferred conformation of the antigenic site for mAb 64D1 is present in unliganded CRP. Binding of mAb 64D1 to CRP is inhibited at high cAMP concentration. Formation of a stable cAMP-CRP-lac P+-RNA polymerase open promoter complex resistant to dissociation by mAb 64D1 occurs at a much lower cAMP concentration. The observed increase in resistance to mAb 64D1 may reflect a possible conformational change in CRP effected by contact with RNA polymerase in the open promoter complex.  相似文献   

4.
Won HS  Yamazaki T  Lee TW  Yoon MK  Park SH  Kyogoku Y  Lee BJ 《Biochemistry》2000,39(45):13953-13962
Cyclic AMP receptor protein (CRP) plays a key role in the regulation of more than 150 genes. CRP is allosterically activated by cyclic AMP and binds to specific DNA sites. A structural understanding of this allosteric conformational change, which is essential for its function, is still lacking because the structure of apo-CRP has not been solved. Therefore, we performed various NMR experiments to obtain apo-CRP structural data. The secondary structure of apo-CRP was determined by analyses of the NOE connectivities, the amide proton exchange rates, and the (1)H-(15)N steady-state NOE values. A combination of the CSI-method and TALOS prediction was also used to supplement the determination of the secondary structure of apo-CRP. This secondary structure of apo-CRP was compared with the known structure of cyclic AMP-bound CRP. The results suggest that the allosteric conformational change of CRP caused by cyclic AMP binding involves subunit realignment and domain rearrangement, resulting in the exposure of helix F onto the surface of the protein. Additionally, the results of the one-dimensional [(13)C]carbonyl NMR experiments show that the conformational change of CRP caused by the binding of cyclic GMP, an analogue of cyclic AMP, is different from that caused by cyclic AMP binding.  相似文献   

5.
Is DNA unwound by the cyclic AMP receptor protein?   总被引:18,自引:12,他引:6       下载免费PDF全文
Superhelical pBR 322 derivatives have been relaxed by eukaryotic topoisomerase I in the presence or in the absence of E. coli cyclic AMP receptor protein (CRP) and of cyclic AMP (cAMP). CRP alone, or cAMP alone do not affect the average linking number of the distribution of the relaxed topoisomers. Hence, they do not unwind the template. In the presence of cAMP, CRP induces a small unwinding. The extent of this unwinding is barely modified when the relaxation is carried out on a similar vector plasmid where the CRP binding site of the lac or of the gal operon has been inserted. Under these conditions, we checked that CRP occupies the lactose control site and that upon addition of RNA polymerase, the corresponding promoter is readily activated. These findings are difficult to reconcile with the proposal that activation of these promoters results from the binding of the CRP-cAMP complex to left-handed DNA sequences.  相似文献   

6.
Interdomain interaction of apo-cyclic AMP receptor protein (apo-CRP) was qualified using its isolated domains. The cAMP-binding domain was prepared by a limited proteolysis, while the DNA-binding domain was constructed as a recombinant protein. Three different regions making interdomain contacts in apo-CRP were identified by a sequence-specific comparison of the HSQC spectra. The results indicated that apo-CRP possesses characteristic modules of interdomain interaction that are properly organized to suppress activity and to sense and transfer the cAMP binding signals. Particularly, the inertness of the DNA-binding motif in apo-CRP was attributable to the participation of F-helices in the interdomain contacts.  相似文献   

7.
8.
9.
10.
The amount of asparaginase II in an Escherichia coli wild-type strain (cya+, crp+) markedly increased upon a shift from aerobic to anaerobic growth. However, no such increase occurred in a mutant (cya) lacking cyclic AMP synthesis unless supplemented with exogenous cyclic AMP. Since a mutant (crp) deficient in cyclic AMP receptor protein also did not support the anaerobic formation of this enzyme, it is concluded that the formation of E. coli asparaginase II depends on both cyclic AMP and cyclic AMP receptor protein.  相似文献   

11.
The binding of the cyclic adenosine 3',5' monophosphate receptor protein (CRP or CAP) of Escherichia coli to non-specific DNA and to a specific lac recognition sequence has been investigated by circular dichroism (c.d.) spectroscopy. The effect of cAMP and cGMP on the co-operative non-specific binding was also studied. For the non-specific binding in the absence of cAMP a c.d. change (decrease of the intensity of the positive band with a shift of its maximum to longer wavelength) indicates that the DNA undergoes a conformational change upon CRP binding. This change might reflect the formation of the solenoidal coil previously observed by electron microscopy. The amplitude of the c.d. change increases linearly with the degree of saturation of the DNA and does not depend on the size of the clusters of CRP bound. From the variation of the c.d. effect as a function of the ionic strength, the product K omega (K, the intrinsic binding constant and omega, the co-operativity parameter) could be determined. The number of ion pairs involved in complex formation between CRP and DNA was found to be six to seven. Experiments performed with several DNAs, including the alternating polymers poly[d(A-T)] and poly[d(G-C)], demonstrated that the conformational change does not depend on the DNA sequence. However, in the presence of cAMP the c.d. spectrum of the DNA shows only a small variation upon binding CRP. In contrast, in the presence of cGMP the conformational change of the DNA is similar to that observed when non-liganded CRP binds. For the specific lac operon binding, the c.d. change is different from those observed for non-specific binding in the presence or absence of cAMP. These results emphasize the high variability of the DNA structure upon binding the same protein.  相似文献   

12.
13.
Time-resolved, steady-state fluorescence and fluorescence-detected circular dichroism (FDCD) have been used to resolve the fluorescence contributions of the two tryptophan residues, Trp-13 and Trp-85, in the cyclic AMP receptor protein (CRP). The iodide and acrylamide quenching data show that in CRP one tryptophan residue, Trp-85, is buried within the protein matrix and the other, Trp-13, is moderately exposed on the surface of the protein. Fluorescence-quenching-resolved spectra show that Trp-13 has emission at about 350 nm and contributes 76–83% to the total fluorescence emission. The Trp-85, unquenchable by iodide and acrylamide, has the fluorescence emission at about 337 nm. The time-resolved fluorescence measurements show that Trp-13 has a longer fluorescence decay time. The Trp-85 exhibits a shorter fluorescence decay time. In the CRP-cAMP complex the Trp-85, previously buried in the apoprotein becomes totally exposed to the iodide and acrylamide quenchers. The FDCD spectra indicate that in the CRP-cAMP complex Trp-85 remains in the same environment as in the protein alone. It has been proposed that the binding of cAMP to CRP is accompanied by a hinge reorientation of two protein domains. This allows for penetration of the quencher molecules into the Trp-85 residue previously buried in the protein matrix.  相似文献   

14.
15.
H Aiba  A Hanamura  T Tobe 《Gene》1989,85(1):91-97
  相似文献   

16.
17.
cAMP receptor protein (CRP), allosterically activated by cAMP, regulates the expression of several genes in Escherichia coli. As binding of cAMP leads to undefined conformational changes in CRP, we performed a steady-state and time-resolved fluorescence study to show how the binding of the ligand influences the structure and dynamics of the protein. We used CRP mutants containing a single tryptophan residue at position 85 or 13, and fluorescently labeled with 1,5-I-AEDANS attached to Cys178. Binding of cAMP in the CRP-(cAMP)2 complex leads to changes in the Trp13 microenvironment, whereas its binding in the CRP-(cAMP)4 complex alters the surroundings of Trp85. Time-resolved anisotropy measurements indicated that cAMP binding in the CRP-(cAMP)2 complex led to a substantial increase in the rotational mobility of the Trp13 residue. Measurement of fluorescence energy transfer (FRET) between labeled Cys178 and Trp85 showed that the binding of cAMP in the CRP-(cAMP)2 complex caused a substantial increase in FRET efficiency. This indicates a decrease in the distance between the two domains of the protein from 26.6 A in apo-CRP to 18.7 A in the CRP-(cAMP)2 complex. The binding of cAMP in the CRP-(cAMP)4 complex resulted in only a very small increase in FRET efficiency. The average distance between the two domains in CRP-DNA complexes, possessing lac, gal or ICAP sequences, shows an increase, as evidenced by the increase in the average distance between Cys178 and Trp85 to approximately 20 A. The spectral changes observed provide new structural information about the cAMP-induced allosteric activation of the protein.  相似文献   

18.
The non-specific DNA binding of CRP and its N-terminal core, alpha CRP, to a 298 base pair DNA fragment, in the presence and absence of cAMP, has been studied using the nitrocellulose filter binding technique and analysed quantitatively using the theory of Clore et al. [J. Mol. Biol. (1982) 155, 447-466]. It is shown that both CRP and alpha CRP bind cooperatively to DNA. At an ionic strength of 100 mM and pH 7.5, the intrinsic equilibrium association constant for the binding of alpha CRP to DNA is approximately 10-times smaller than that for CRP, but the cooperativity parameter is approximately 17-times larger for alpha CRP than CRP. cAMP exerts its effect solely on the intrinsic equilibrium constant and does not alter the cooperativity. In the case of alpha CRP, cAMP reduces the intrinsic equilibrium association constant by a factor of 3, in contrast to the case of CRP where cAMP increases it by a factor of 3. The possible location of the DNA binding site present in the N-terminal core of CRP is discussed in the light of crystallographic data on the cAMP . CRP complex [McKay et al. (1982) J. Biol. Chem. 257, 9518-9524].  相似文献   

19.
A strain bearing an extragenic suppressor of cya mutation was isolated as a second-site revertant of an adenylate cyclase deficient strain. The mutant was unable to synthesize cAMP but showed normal fermentation profiles and growth properties on a variety of carbon sources. The site of reversion was mapped in, or near, the structural gene for the cAMP receptor protein. Structural alteration of the protein was directly demonstrated by the following biochemical observations: (i) A 10-fold decrease in the dissociation constant for cAMP, (ii) an acidic shift in the isoelectric point, and (iii) the altered binding properties to lambdah80dlac ps DNA.  相似文献   

20.
Regulation of acetylcholine receptor by cyclic AMP   总被引:6,自引:0,他引:6  
In primary cultures of chick 11-day embryonic tissue a number of phosphodiesterase inhibitors were found to elevate acetylcholine receptor levels. Of these agents, Ro20-1724 was the most effective, elevating surface receptor content by 2-fold after 48 h of treatment. 8-Br-cAMP and cholera toxin, a natural activator of adenylate cyclase, mimicked the effect of Ro20-1724, while 8-Br-cGMP and dibutyryl cGMP had no effect. Cholera toxin, 8-Br-cAMP, and Ro20-1724 all increased the insertion rate of new receptor into the surface membrane without altering degradation. The enhanced insertion appears related to an actual increase in synthesis since total acetylcholine receptor was elevated by exposure to cholera toxin. In contrast, no change in creatine phosphokinase activity, myosin heavy chain content, or [35S] methionine incorporation into total cellular protein was observed during cholera toxin treatment. These results suggest that cAMP plays a role in the regulation of acetylcholine receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号