首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exercise and digestive processes are known to elevate the metabolic rate of organisms independently. In this study, the effects of simultaneous exercise and digestion were examined in the graceful crab Cancer gracilis. This species exhibited resting oxygen uptake levels between 29 and 42 mg O(2) kg(-1) h(-1). In postprandial crabs, oxygen uptake was approximately double that of unfed crabs. During exercise, oxygen uptake increased three- to fourfold, reaching maximal levels of more than 130 mg O(2) kg(-1 ) h(-1). However, there was no difference in oxygen uptake during activity between unfed and postprandial animals. There was also no difference in exercise endurance levels between unfed and postprandial animals; both sets of animals were unable to right themselves after being turned on their backs, reaching exhaustion after 13-15 attempts. To determine whether increased activity affected gastric processes, the passage of a meal through the digestive system was followed using a fluoroscope. Passage of digesta through the gut system was slower in active animals than in resting crabs. Resting crabs cleared the foregut after approximately 18 h, which was significantly faster than the 34.5 h for constantly active animals. Likewise, the midgut region of resting animals was cleared at a faster rate than that of active animals. Because of residual amounts of digesta remaining in the hindgut, no difference in clearance rates of this section of the gut was evident. The slower clearance times of the foregut were due to a significantly slower rate of mastication of food, as evidenced by a lower cardiac stomach contraction rate. Contraction of the pyloric region of the foregut functions to move the digesta along the midgut, and there was a direct correlation between slower contraction rates of this region and the increased time of passage for digesta through the midgut of active animals. Because increased activity levels affected gastric processing, the crabs exhibited a behavioral response. During a 24-h period after feeding, there was a significant reduction in locomotor activity. The findings of this study suggest a prioritization of metabolic responses toward activity at the expense of digestion. This is discussed in relation to the ability of the crabs to balance the demands of competing physiological systems.  相似文献   

2.
Cyclic changes of the midgut epithelium were observed in females of 5 ticks species of the genus Ixodes during 7-10 days of feeding. The midgut epithelium of unfed females is represented by the digestive cells of nymphal phase and stem cells. The digestive cells of nymphal phase are functional during 1.5-2 days after attachment of the tick, and then, after the tearing away they go into the gut lumen. The secretory cells substitute the digestive cells of nymphal phase and finish their growth during the 4-4.5 days. Secretion of digestive enzymes is performed by the holocrine type with tearing away a whole cell. Intracellular digestion takes place in the digestive cells of four consequent generations. The secretory and digestive cells form a peritrophic matrix on their surface. The presence of peritrophic matrix gives an evidence the maturity and functional activity of the secretory and digestive cells. We suggest, that the peritrophic matrix takes part in intracellular digestion, namely in the process of micropinocytosis. The phagocytosis was not found in the ticks investigated. Digestion in the midgut lumen is performed by enzymes of the ruptured secretory and digestive cells, that is proved by the haemolysis of erythrocytes in the zone of their contact with these cells. The digestive cells of each generation functioned almost synchronously, with largest difference in starting about 12 hours.  相似文献   

3.
Vector blood-feeding frequency, parity, and ovarian development are important factors that can influence pathogen transmission. Parity rates of the dengue vectors Aedes aegypti and Ae. albopictus were determined from females collected from August 2002 to July 2004 in metropolitan Rio de Janeiro. A high frequency of parous Ae. aegypti (92.9%, n = 550) and Ae. albopictus (99.1%, n = 320) females suggested high survivorship of both species. A total of 69% of wild-caught Ae. aegypti females had blood in the midgut compared to 19% of Ae. albopictus. For Ae. aegypti, red-colored midgut contents were associated with ovaries in early stages of development, and brown-colored midguts were associated with ovaries in late stages of maturation. Ovaries of Ae. aegypti females without blood in the midgut were most frequently in stages I and V of Christophers.  相似文献   

4.
Lysozyme in the midgut of Manduca sexta during metamorphosis.   总被引:1,自引:0,他引:1  
Low levels of lysozyme were found in the midgut epithelium of the tobacco hornworm, Manduca sexta, during the early part of the fifth larval stadium. This was observed in control insects as well as in bacterially challenged insects. No lysozyme was detected in the gut contents of either group of insects which were actively eating or in the early stages of metamorphosis. However, high levels of lysozyme activity were detected in homogenates of midgut tissue collected from insects later in the stadium. Immunocytochemical studies demonstrated that lysozyme accumulates in large apical vacuoles in regenerative cells of the midgut during the larval-pupal molt. These cells, initially scattered basally throughout the larval midgut epithelium, multiply and form a continuous cell layer underneath the larval midgut cells. At the larval/pupal ecdysis the larval midgut epithelium is sloughed off and the regenerative cells, now forming the single cell layer of the midgut, release the contents of their vacuoles into the midgut lumen. This release results in high lysozyme activity in the lumen of the pupal midgut and is thought to confer protection from bacterial infection. This is the first indication that the lysozyme gene may be developmentally regulated in a specific tissue in the absence of a bacterial infection.  相似文献   

5.
The neurosecretory system of the earwig, Euborellia annulipes, contained material similar to that of FMRFamide, as shown by immunocytochemistry. Within the brain were two pairs of darkly staining perikarya in the medial protocerebrum, and up to four pairs of immunoreactive cells in the lateral protocerebrum. The corpora allata appeared immunoreactive in 10-day females, but not in 2-day-old adults. Additionally, immunoreactive material was detected in midgut endocrine cells of both 2- and 10-day-old females. FMRFamide at 1 to 100 nM did not inhibit juvenile hormone production by earwig corpora allata in vitro. This was true of glands of low activity from 2-day cat food-fed or starved virgin females, 10-day starved females, and those of relatively high activity from 10-day-old, cat food-fed females. In contrast, FMRFamide at 50 and 100 (but not at 1) nM stimulated gut motility in vitro in distended guts from 2-day fed females. Preparations from starved females and those from 10-day fed females (in which feeding behavior is on the decline) did not respond to exogenous FMRFamide with enhanced rates of contraction. Lastly, preparations from females starved for 7 days and subsequently fed for 3 days responded to 10 nM FMRFamide with increases in gut motility.  相似文献   

6.
Digestive proteases of the digestive tract of the apple snail Pomacea canaliculata were studied. Luminal protease activity was found in the crop, the style sac and the coiled gut and was significantly higher in the coiled gut. Several protease bands and their apparent molecular weights were identified in both tissue extracts and luminal contents by gel zymography: (1) a 125 kDa protease in salivary gland extracts and in the crop content; (2) a 30 kDa protease throughout all studied luminal contents and in extracts of the midgut gland and of the endosymbionts isolated from this gland; (3) two proteases of 145 and 198 kDa in the coiled gut content. All these proteases were inhibited by aprotinin, a serine-protease inhibitor, and showed maximum activity between 30°C and 35°C and pH between 8.5 and 9.5. Tissue L-alanine-N-aminopeptidase activity was determined in the wall of the crop, the style sac and the coiled gut and was significantly higher in the coiled gut. Our findings show that protein digestion in P. canaliculata is carried out through a battery of diverse proteases originated from the salivary glands and the endosymbionts lodged in the midgut gland and by proteases of uncertain origin that occur in the coiled gut lumen.  相似文献   

7.
The spectra of Tribolium castaneum and T. confusum larval digestive peptidases were characterized with respect to the spatial organization of protein digestion in the midgut. The pH of midgut contents in both species increased from 5.6–6.0 in the anterior to 7.0–7.5 in the posterior midgut. However, the pH optimum of the total proteolytic activity of the gut extract from either insect was pH 4.1. Approximately 80% of the total proteolytic activity was in the anterior and 20% in the posterior midgut of either insect when evaluated in buffers simulating the pH and reducing conditions characteristic for each midgut section. The general peptidase activity of gut extracts from either insect in pH 5.6 buffer was mostly due to cysteine peptidases. In the weakly alkaline conditions of the posterior midgut, the serine peptidase contribution was 31 and 41% in T. castaneum and T. confusum, respectively. A postelectrophoretic peptidase activity assay with gelatin also revealed the important contribution of cysteine peptidases in protein digestion in both Tribolium species. The use of a postelectrophoretic activity assay with p‐nitroanilide substrates and specific inhibitors revealed a set of cysteine and serine endopeptidases, 8 and 10 for T. castaneum, and 7 and 9 for T. confusum, respectively. Serine peptidases included trypsin‐, chymotrypsin‐, and elastase‐like enzymes, the latter being for the first time reported in Tenebrionid insects. These data support a complex system of protein digestion in the Tribolium midgut with the fundamental role of cysteine peptidases. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
Mosquito midgut plays a crucial role in its vector susceptibility and pathogen interaction. Identification of the sustainable microflora of the midgut environment can therefore help in evaluating its contribution in mosquito-pathogen interaction and in turn vector competence. To understand the bacterial diversity in the midgut of Aedes aegypti mosquitoes, we conducted a screening study of the gut microbes of these mosquitoes which were either collected from fields or reared in the laboratory "culture-dependent" approach. This work demonstrated that the microbial flora of larvae and adult Ae. aegypti midgut is complex and is dominated by Gram negative proteobacteria. Serratia odorifera was found to be stably associated in the midguts of field collected and laboratory reared larvae and adult females. The potential influence of this sustainable gut microbe on DENV-2 susceptibility of this vector was evaluated by co-feeding S. odorifera with DENV-2 to adult Ae. aegypti females (free of gut flora). The observations revealed that the viral susceptibility of these Aedes females enhanced significantly as compared to solely dengue-2 fed and another gut inhabitant, Microbacterium oxydans co-fed females. Based on the results of this study we proposed that the enhancement in the DENV-2 susceptibility of Ae. aegypti females was due to blocking of prohibitin molecule present on the midgut surface of these females by the polypeptide of gut inhabitant S. odorifera.  相似文献   

9.
Abstract In Gryllus bimaculatus, more digestive enzymes (amylase, trypsin, aminopeptidase) are secreted in the caecum of fed crickets than in unfed crickets, but the enzymes are released continuously at a basal rate in unfed animals. The rate of synthesis of the enzymes appears to parallel their rate of release. Digestive enzymes are released in response to a specific ratio of nutrients, although a high nutrient component in the food does not necessarily induce a high digestive enzyme release for that component. Rinsed flat‐sheet preparations of the caecum are incubated with specific nutrients (carbohydrates and proteins) and various concentrations of a neuropeptide (type‐A allatostatin), which affects generally the basal rates of secretion. Both maltose and glucose increase the release of amylase in vitro, but starch produces an inhibition of amylase release at lower concentrations. Bovine serum albumin (BSA), peptone and a mixture of amino acids have almost no effect on the release of aminopeptidase or carboxypeptidase, and only low concentrations of peptone increase trypsin release. High concentrations of both BSA and peptone strongly inhibit trypsin activity, perhaps by excess substrate binding to the trypsin active site. The allatostatin Grybi‐AST 5 elevates the release of amylase in vitro, but not of trypsin or aminopeptidase, in 2‐day‐old fed females. In the caeca from 1‐day‐old unfed crickets, both amylase and the trypsin release are stimulated in the presence of AST 5. The paracrine AST 5 is probably released from the gut endocrine cells and binds to the enzyme‐producing caecal cells.  相似文献   

10.
Proteinases and peptidases from the intestinal tract of fifth-instar larvae of Heliothis (= Helicoverpa) zea (Boddie) (Lepidoptera:Noctuidae) were characterized based on their substrate specificity, tissue of origin, and pH optimum. Activity corresponding to trypsin, chymotrypsin, carboxypeptidases A and B, and leucine aminopeptidase was detected in regurgitated fluids, midgut contents, and midgut wall. High levels of proteinase activity were detected in whole midgut homogenates, with much lower levels being observed in foregut and salivary gland homogenates. In addition, enzyme levels were determined from midgut lumen contents, midgut wall homogenates, and regurgitated fluids. Proteinase activities were highest in the regurgitated fluids and midgut lumen contents, with the exception of leucine aminopeptidase activity, which was found primarily in the midgut wall. Larvae fed their natural diet of soybean leaves had digestive proteinase levels that were similar to those of larvae fed artificial diet. No major differences in midgut proteinase activity were detected between larvae reared under axenic or xenic conditions, indicating that the larvae are capable of digesting proteins in the absence of gut microorganisms. The effect of pH on the activity of each proteinase was studied. The pH optima for the major proteinases were determined to be pH 8.0-8.5 for trypsin, when tosyl-L-arginine methyl ester was used as the substrate; and pH 7.5-8.0 for chymotrypsin, when benzoyl-L-tyrosine ethyl ester was used as the substrate.  相似文献   

11.
Representative species, two from each of the cockroach families Blattidae, Blattellidae, and Blaberidae, have similar morphology of the digestive tract but differ in the physiology of digestion. The pH of crop and along the midgut varies in different species from 5.9 to 9.0 and the redox parameter from 10.1 to 12.9. Activities of proteinases and amylases in comparable gut regions differ among the species up to 100 times. Proteolytic activity is high in the midgut and moderate in the crop of Blattidae; in the other species, it is very low in the crop and increases to a moderate level in the posterior half of midgut (PM). The level of amylolytic activity is similar in the examined gut compartments of Blattidae and Blattellidae but low in the PM of Blaberidae. Blaberidae are also characterized by a high potential of the salivary glands, crop, and midgut to inhibit subtilisin, trypsin, and chymotrypsin. Inhibition of these proteinases by the extracts of salivary glands and gut is several orders of magnitude lower and often undetectable in the representatives of Blattidae and Blattellidae.  相似文献   

12.
Amber disease of the New Zealand grass grub Costelytra zealandica (Coleoptera: Scarabaeidae) is caused by ingestion of pADAP plasmid carrying isolates of Serratia entomophila or Serratia proteamaculans (Enterobacteriaceae) and causes infected larvae to cease feeding and clear their midgut to a pale amber colour where midgut serine protease activities are virtually eliminated. Using bacterial strains and mutants expressing combinations of the anti-feeding (afp) and gut clearance (sep) gene clusters from pADAP, we manipulated the disease phenotype and demonstrated directly the relationship between gene clusters, phenotype and loss of enzyme activity. Treatment with afp-expressing strains caused cessation of feeding without gut clearance where midgut protease activity was maintained at levels similar to that of healthy larvae. Treatment with strains expressing sep-genes caused gut clearance followed by a virtual elimination of trypsin and chymotrypsin titre in the midgut indicating both the loss of pre-existing enzyme from the lumen and a failure to replenish enzyme levels in this region by secretion from the epithelium. Monitoring of enzymatic activity through the alimentary tract during expression of disease showed that loss of serine protease activity in the midgut was matched by a surge of protease activity in the hindgut and frass pellets, indicating a flushing and elimination of the midgut contents. The blocking of enzyme secretion through amber disease appears to be selective as leucine aminopeptidase and α-amylase were still detected in the midgut of diseased larvae.  相似文献   

13.
Oxygen levels were measured in the foregut and midgut lumens of ten species of caterpillars and three species of grasshoppers. In most species, the foregut was nearly anoxic, with oxygen levels ranging from 0 to 2.5 mm Hg. However, two caterpillar species with large foreguts (Malacosoma disstria and Lymantria dispar) had elevated oxygen levels (27.9 and 32.1 mm Hg) in this region when they were fed artificial diet. In all of the species surveyed, the anterior and posterior midgut were nearly anoxic, with oxygen levels ranging from 0 to 7.3 mm Hg. Oxygen levels in the midgut lumen of Helicoverpa zea did not differ when caterpillars were fed artificial diet or tomato foliage, suggesting that the insect is capable of reducing the level of ingested oxygen in its gut. An examination of the radial microgradient of oxygen in the gut lumen demonstrated that the midgut epithelium is not a sink for ingested oxygen. However, the midgut contents of larvae fed artificial diet were capable of depleting oxygen. This capacity was reduced by boiling, suggesting that the nearly anoxic state of the midgut lumen in some insects is maintained by endogenous chemical processes. We conclude that low oxygen levels in the gut lumens of most herbivorous insects may greatly reduce the rates of oxidation of ingested plant compounds by oxygen-dependent reactions.  相似文献   

14.
In view of the antioxidant role of glutathione (GSH) and ascorbic acid (AA), we have examined capacity of the GSH–AA redox cycle in relation to oxidative stress effects in the midgut of the Colorado potato beetle Leptinotarsa decemlineata. Adult gut harbors a higher capacity to cope with oxidative stress than the larval gut. Protein carbonylation was pronounced in the wall of anterior larval midgut and was generally lower in the food digest than in the gut wall. Restriction of oxidative stress effects in anterior gut lumen manifested by lipid peroxidation and protein carbonylation is interpreted as a mechanism favoring digestion and absorption in the posterior midgut. Presence of high GSH in the posterior midgut and AA in both posterior and anterior midguts of adults points to higher utility of the GSH–AA redox system in limiting oxidative stress to manageable levels. The presence, gene expression and activity of thioredoxin reductase (TrxR) were demonstrated for the first time in L. decemlineata which was markedly higher in the anterior than in the posterior midgut in both stages. It is probably central to the maintenance of reduced GSH levels in the whole gut, despite a GSSG/2GSH redox potential tending towards oxidizing ranging from ?183.5 to ?124.4 mV. Glutathione-dehydroascorbate reductase (GDHAR) activity was markedly augmented in adult gut compared with larva, pointing to a more efficient conversion of dehydroascorbate (DHA) to AA. Also, ascorbate peroxidase (APOX) activity was significantly elevated in all gut compartments of adult except the wall of posterior midgut. The results emphasize the potential importance and role of the GSH–AA redox cycle as a defense strategy against oxidative stress in the gut of L. decemlineata.  相似文献   

15.
Abstract The distributions of lysozyme and protease activities and of amino acids was measured in the guts of five species of higher termites, Macrotermes annandalei, Odontotermes formosanus, Pericaproitermes nitobei , Termes comis and Nasutitermes takasagoensis . Lysozyme activity was found only in M. annandalei, P. nitobei and N. takasagoensis. Protease activity was high in the midgut of all species but negligible elsewhere in the gut. Amino acid concentration was highest in the midgut of all species of workers.  相似文献   

16.
The Egyptian armyworm Spodoptera littoralis is a polyphagous insect attacking a number of plant species including those belonging to the Solanaceae and Cruciferaceae families. Its digestive physiology must therefore adapt to the food plant to ensure maximum extraction of nutrients with minimum trade-off in terms of growth retardation by pro-oxidant allelochemicals. To investigate this, the caterpillars of S. littoralis were fed on a semi-artificial diet (Manduca Premix-Heliothis Premix) and for 24 h on potato plants (Solanum tuberosum), respectively, at the mature 6th instar, and the levels of oxidative radicals and antioxidant enzymes in their guts were compared. The gut pH, standard redox potential (Eh) and electron availability (pe) revealed that oxidizing conditions prevail which promote oxidation of pro-oxidant allelochemicals in foliage. Oxidative stress in the foregut and midgut tissue and the gut contents was assessed from the generation of superoxide radical, total peroxide content and protein carbonyl content. Antioxidant defense was measured by the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX) and glutathione S-transferase peroxidase (GSTpx). A significant (p < 0.001) increase in the superoxide radical production (in foregut tissue, foregut and midgut contents), concomitant with an increase in total peroxide (in foregut contents) and protein carbonyl levels (in foregut and midgut tissue) were noted in larvae fed on the plants in contrast to those fed the semi-artificial diet. Similarly, a significant up-regulation of antioxidant enzymes SOD (in midgut tissues), CAT (in foregut, midgut tissue and contents), APOX (in foregut contents, midgut tissue and contents) and GSTpx (in foregut tissues) was recorded on the plant diet in comparison to the semi-artificial diet. The pro-oxidant allelochemicals in the plant diet are thus eliminated by the insect at the expense of up-regulation of antioxidative enzymes in response to increased oxidative stress from oxidizable allelochemicals. The results are consistent with the hypothesis that increased concentrations of antioxidants form an important component of the defense of herbivorous insects against both exogenous and endogenous oxidative radicals.  相似文献   

17.
18.
Microfeeding of Hylobius pales with as few as 40 conidia of Metarrhizium anisopliae, under conditions that excluded any possibility of integumental contaminations, resulted in high mortality. When larger doses were employed, the insects succumbed faster. Histological sections revealed that the fungus invaded the host from within the buccal cavity. There was no evidence of germination and penetration inside the intestinal tract. Spores retained their viability after passing through the gut. In vitro, conidia mixed with the liquid contents of the midgut germinated within 20 hr. Germination occurred even though both yeasts and bacteria were present in the midgut contents. Fungus-killed Hylobius contained hyphae inside their digestive system, but the intima always remained intact.  相似文献   

19.
The midgut of the females of Syringophilopsis fringilla (Fritsch) composed of anterior midgut and excretory organ (=posterior midgut) was investigated by means of light and transmission electron microscopy. The anterior midgut includes the ventriculus and two pairs of midgut caeca. These organs are lined by a similar epithelium except for the region adjacent to the coxal glands. Four cell subtypes were distinguished in the epithelium of the anterior midgut. All of them evidently represent physiological states of a single cell type. The digestive cells are most abundant. These cells are rich in rough endoplasmic reticulum and participate both in secretion and intracellular digestion. They form macropinocytotic vesicles in the apical region and a lot of secondary lysosomes in the central cytoplasm. After accumulating various residual bodies and spherites, the digestive cells transform into the excretory cells. The latter can be either extruded into the gut lumen or bud off their apical region and enter a new digestive cycle. The secretory cells were not found in all specimens examined. They are characterized by the presence of dense membrane-bounded granules, 2–4 μm in diameter, as well as by an extensive rough endoplasmic reticulum and Golgi bodies. The ventricular wall adjacent to the coxal glands demonstrates features of transporting epithelia. The cells are characterized by irregularly branched apical processes and a high concentration of mitochondria. The main function of the excretory organ (posterior midgut) is the elimination of nitrogenous waste. Formation of guanine-containing granules in the cytoplasm of the epithelial cells was shown to be associated with Golgi activity. The excretory granules are released into the gut lumen by means of eccrine or apocrine secretion. Evacuation of the fecal masses occurs periodically. Mitotic figures have been observed occasionally in the epithelial cells of the anterior midgut.  相似文献   

20.
利用放射化学的方法分别检测了棉铃虫Helicoverpaarmigera、粘虫Mythimnaseparata幼虫和成虫肠中咽侧体静止激素 (allatostatin ,AS)样的活性物质。发现在棉铃虫、粘虫幼虫和成虫肠中均存在的AS样活性物质 ,可以在体外抑制咽侧体 (corporaallata,CA)的保幼激素 ( juvenilehormone,JH)的生物合成。生物测定的结果表明 ,粘虫幼虫肠中AS样活性物质的含量较棉铃虫的高 ;粘虫 1个幼虫肠当量对CA的JH合成的抑制率达 4 3% ,而棉铃虫幼虫肠只有 2 6%。无论是棉铃虫还是粘虫 ,雌成虫中肠对CA的抑制比雄成虫中肠的高 ,后肠对CA的JH合成的抑制明显的低于中肠对CA的抑制。中肠对CA的JH合成的抑制是可回复的。中肠粗提物经蛋白酶水解后对CA合成JH的抑制率降低 ,表明肠中AS样的活性物质是肽或蛋白质  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号