首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time-dependent effect of hypoxia on carotid body chemosensory function   总被引:4,自引:0,他引:4  
The time-dependent effects of hypoxia on the discharge rate carotid chemoreceptors were measured in anesthetized cats. Hypoxic exposure of two different durations were used: a short-term exposure (2-3 h) was used to measure the response of the same carotid chemoreceptors; and a long-term exposure (28 days at inspired PO2 of 70 Torr) to study carotid chemoreceptor properties in one group of cats relative to those of a control group. In the chronically hypoxic and control groups, determinations were made of the 1) steady-state responses to four levels of arterial PO2 (PaO2) at constant levels of arterial PCO2; 2) steady-state responses to acute hypercapnia during hyperoxia; and 3) maximal discharge rates during anoxia. We found that the acute responses of carotid chemoreceptor afferents to a given level of hypoxia (PaO2 = 30-40 Torr) did not significantly change within 2-3 h. After long-term exposure the carotid chemoreceptor responses to hypoxia significantly increased, with no significant changes in the hypercapnic response and in the maximal discharge rate during anoxia. We conclude that isocapnic hypoxia may not elicit a sufficient cellular response within 2-3 h in the cat carotid body to sensitize the O2 responsive mechanism, but hypoxia of longer duration will sensitize such a mechanism, thereby augmenting the chemosensory activity.  相似文献   

2.
The hypothesis that augmentation of the carotid chemoreceptor response to hypoxia by almitrine is due in part to an increased response to CO2 was tested by using single or few fiber preparation of carotid body chemosensory fibers in 12 cats anesthetized with alpha-chloralose. To differentiate between the plausible mechanisms of effects, we also tested the responsiveness of the afferents to cyanide and nicotine before and after almitrine. After a saturation dose of almitrine (1 mg.kg-1 followed by 0.5 mg.kg-1.h-1) the chemosensory responses to CO2 strikingly increased even during hyperoxia: the afferents showing an increased transient peak activity at the onset of hypercapnia, an augmented steady-state response to CO2 stimulus, and a decreased arterial PCO2 stimulus threshold. Thus, the effect of almitrine on carotid chemoreceptor response to hypoxia could be explained, at least in part, by its multiplicative stimulus interaction with CO2. After almitrine, the chemoreceptor response to cyanide, which is dependent on arterial PO2, was not particularly augmented relative to those of nicotine. Accordingly, the O2-sensing mechanism does not appear to be the primary site of almitrine effect. The results also indicate that the site of CO2 chemoreception resides downstream from those of hypoxia.  相似文献   

3.
Effects of oligomycin on carotid chemoreceptor responses to O2 and CO2 were investigated using an in situ perfusion technique. Cats were anesthetized, paralyzed, and artificially ventilated. To avoid a possible reaction between an oligomycin-ethanol mixture and blood, we administered oligomycin to the carotid body via cell- and protein-free perfusate. Except for the perfusion periods, the carotid body received its own natural blood supply. Responses to O2, CO2, sodium cyanide, and nicotine of the same carotid chemoreceptor afferents were studied before and after each perfusion. An appropriate low dose of oligomycin completely blocked carotid chemoreceptor response to O2 while preserving the CO2 response. At the same time cyanide response was attenuated leaving nicotine response intact. Additional doses of oligomycin attenuated carotid chemoreceptor response to CO2 as well. Perfusion with a blank solution containing ethanol did not change the carotid body chemoreceptor responses. These effects of oligomycin on carotid chemoreceptor responses to O2 and CO2 were reversible, and restoration of the response to CO2 preceded that to O2. In addition, oligomycin administered into the blood with close intra-arterial injection produced similar differential blockade of O2 and CO2 chemoreception, preserving the nicotine and dopamine effects. This study confirmed the previous findings and provided new evidence showing that 1) the responses of carotid chemoreceptor to O2 and CO2 were separable by oligomycin due to the inhibition of oxidative phosphorylation and 2) the responses to nicotine and dopamine were intact even after blockade of O2 response.  相似文献   

4.
Because cobalt administration is known to elicit erythropoietin response, it is a reasonable hypothesis that cobalt would also stimulate the O2-sensing process in the peripheral chemoreceptors. We tested this hypothesis by measuring the effects of cobalt chloride on carotid chemosensory fibers in pentobarbital-anesthetized cats that were paralyzed and artificially ventilated. Responses of carotid chemoreceptor afferents to graded doses of cobalt given by intra-arterial injections (0.08-2.10 mumols) were measured at constant blood gases. Responses of the same chemoreceptor afferents to hypoxia, before and after a saturation dose of cobalt, were measured. In two experiments carotid body tissue PO2 was also simultaneously measured. The chemosensory fibers showed prolonged excitation after a brief period of inhibition subsequent to cobalt administration. The stimulatory effect showed a dose-dependent saturation response. Cobalt augmented rather than blocked carotid chemoreceptor response to hypoxia. The effect of cobalt was not mediated by tissue PO2. These results are consistent with the hypothesis that cobalt stimulates the O2-sensing mechanism, although a direct effect of cobalt on the excitability of the chemosensory terminal remains a possibility.  相似文献   

5.
The effects of intravenous infusion of dopamine (20 microgram.min) on the steady-state ventilatory and carotid chemoreceptor responses to successive levels of isocapnic hypoxia and hyperoxic hypercapnia were investigated in cats anesthetized with alpha-chloralose. Dopamine infusion was followed by a maximal decrease in ventilation in about 20 s. Thereafter, the effect diminished and stabilized. Termination of dopamine infusion was promptly followed by an increase in ventilation. These ventilatory responses were smaller than the corresponding carotid chemoreceptor responses. The steady-state effect of dopamine infusion was to diminish ventilation at all levels of arterial O2 tension, the decrease being greater during hypoxia than that during hyperoxia. Bilateral section of the carotid sinus nerves significantly diminished but did not abolish the inhibitory effect of dopamine on ventilation during hyperoxia. Thus the ventilatory depression due to dopamine infusion is not entirely due to its effect on the carotid chemoreceptors. Dopamine decreased ventilatory responses to successive levels of hypercapnia by the same magnitude without changing the slope of the response curves. The steady-state relationship between chemoreceptor activity and ventilation shows that the ventilatory equivalent for carotid chemoreceptor activity is increased during dopamine infusion because of its greater inhibitory effect on carotid chemoreceptor activity than on ventilation with the decrease of arterial O2 tension.  相似文献   

6.
Role of substance P in hypercapnic excitation of carotid chemoreceptors   总被引:1,自引:0,他引:1  
Experiments were performed on 17 anesthetized, paralyzed, and artificially ventilated cats to evaluate the importance of substance P-like peptide (SP) on the carotid body responses to CO2. Single or paucifiber carotid chemoreceptor activity was recorded from the peripheral end of the cut carotid sinus nerve. In eight of the cats the influence of SP on hyperoxic hypercapnic responses was studied. While the animals breathed 100% O2, intracarotid infusion of SP (1 microgram.kg-1.min-1, 3 min) increased chemoreceptor activity by +4.8 +/- 0.3 impulses/s. After SP infusion, inhalation of CO2 in O2 caused a rapid increase in activity that reached a peak and then adapted to a lower level, whereas similar levels of CO2 before SP caused only a gradual increase in carotid body discharge rate without any overshoot in response. Furthermore SP significantly increased the magnitude and slope of the CO2 response. In the other nine cats the effect of intracarotid infusion of an SP antagonist, [D-Pro2,D-Trp7,9] SP (10-15 micrograms.kg-1.min-1), on carotid body responses to 1) hyperoxic hypercapnia (7% CO2-93% O2), 2) isocapnic hypoxia (11% O2-89% N2), and 3) hypoxic hypercapnia (11% O2-7% CO2-82% N2) was examined. SP antagonist had no effect on carotid body response to hyperoxic hypercapnia but significantly attenuated the chemoreceptor excitation caused by isocapnic hypoxia and hypoxic hypercapnia. These results suggest that 1) SP may play an important role in carotid body responses to hypoxia but not to CO2, and 2) the mechanisms of stimulation of the carotid body by hypercapnia and by hypoxia differ.  相似文献   

7.
During ventilatory acclimatization to hypoxia (VAH), time-dependent increases in ventilation lower Pco(2) levels, and this persists on return to normoxia. We hypothesized that plasticity in the caudal nucleus tractus solitarii (NTS) contributes to VAH, as the NTS receives the first synapse from the carotid body chemoreceptor afferents and also contains CO(2)-sensitive neurons. We lesioned cells in the caudal NTS containing the neurokinin-1 receptor by microinjecting the neurotoxin saporin conjugated to substance P and measured ventilatory responses in awake, unrestrained rats 18 days later. Lesions did not affect hypoxic or hypercapnic ventilatory responses in normoxic control rats, in contrast to published reports for similar lesions in other central chemosensitive areas. Also, lesions did not affect the hypercapnic ventilatory response in chronically hypoxic rats (inspired Po(2) = 90 Torr for 7 days). These results suggest functional differences between central chemoreceptor sites. However, lesions significantly increased ventilation in normoxia or acute hypoxia in chronically hypoxic rats. Hence, chronic hypoxia increases an inhibitory effect of neurokinin-1 receptor neurons in the NTS on ventilatory drive, indicating that these neurons contribute to plasticity during chronic hypoxia, although such plasticity does not explain VAH.  相似文献   

8.
Discharges from aortic and carotid body chemoreceptor afferents were simultaneously recorded in 18 anesthetized cats to test the hypothesis that aortic chemoreceptors, because of their proximity to the heart, respond to changes in arterial blood gases before carotid chemoreceptors. We found that carotid chemoreceptor responses to the onset of hypoxia and hypercapnia, and to the intravenously administered excitatory drugs (cyanide, nicotine, and doxapram), preceded those of aortic chemoreceptors. Postulating that this unexpected result was due to differences in microcirculation and mass transport, we also investigated their relative speed of responses to changes in arterial blood pressure. The aortic chemoreceptors responded to decreases in arterial blood pressure before the carotid chemoreceptors, supporting the idea that the aortic body has microcirculatory impediments not generally present in the carotid body. These findings strengthened the concept that carotid bodies are more suited for monitoring blood gas changes due to respiration, whereas aortic bodies are for monitoring circulation.  相似文献   

9.
An in vitro perfused carotid body preparation was developed to study its chemosensory responses to physiological and pharmacological stimuli. The carotid bifurcation with the carotid body was vascularly isolated and excised from pentobarbital sodium-anesthetized cats. The CB was perfused in a chamber by gravity (80 Torr) with modified Tyrode's solution (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid-NaOH at pH 7.40) equilibrated at a given Po2 and superfused with the same medium at (Po2 of 20 Torr). The temperature was maintained at 35.5 +/- 0.5 degrees C. The frequency of chemosensory discharges (CD) was recorded from the whole carotid sinus nerve (n = 24), and the responses were tested by repeated interruptions of perfusate flow (SF), perfusion with hypoxic medium, and injections of nicotine and cyanide (0.1 nmol to 1 mumol) and hypercapnic medium. During hyperoxic perfusion, SF resulted in a sigmoidal increase in CD, reaching a maximum that was 23.6 +/- 4.4-fold greater than the basal activity. Restoration of flow returned CD promptly to basal values. After normoxic perfusion, SF led to a similar maximal activity more rapidly, but the duration was shorter. Reduction of the perfusate PO2 (Po2 from 450 Torr to 150, 30, and less than 10 Torr) caused a nonlinear increase in CD. CO2 stimuli (PCo2 38-110 Torr) resulted in a linear increase in CD. Nicotine or cyanide increased CD in a dose-dependent manner. The preparation retained its initial responsiveness for 2-3 h, making extensive experimental studies feasible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Effects on ventilatory responses to progressive isocapnic hypoxia of a synthetic potent progestin, chlormadinone acetate (CMA), were determined in the halothane-anesthetized male rat. Ventilation during the breathing of hyperoxic gas was largely unaffected by treatment with CMA when carotid chemoreceptor afferents were kept intact. The sensitivity to hypoxia evaluated by hyperbolic regression analysis of the response curve did not differ between the control and CMA groups. The reduction of ventilation after bilateral section of the carotid sinus nerve (CSN) in hyperoxia was less severe in CMA-treated than in untreated animals. Furthermore, the CMA-treated rats showed a larger increase in ventilation during the hypoxia test and a lower PO2 break point for ventilatory depression. Inhibition of hypoxic ventilatory depression by CMA persisted even after the denervation of CSN. We conclude that exogenous progestin likely protects regulatory mechanism(s) for respiration against hypoxic depression through a stimulating action independent of carotid chemoreceptor afferents and without a change in the sensitivity of the ventilatory response to hypoxia.  相似文献   

11.
Peripheral chemoreceptors in respiratory oscillations   总被引:2,自引:0,他引:2  
The hypothesis that instability of cardiorespiratory control may depend on the response and sensitivity of carotid body chemoreceptors to arterial blood gases was studied in anesthetized cats under three different experimental conditions. 1) Following administration of the peripheral dopamine receptor blocker [domperidone (0.6-0.8 mg X kg-1, iv)], carotid chemoreceptor activity and its sensitivity to CO2 during hypoxia increased, leading to cardiorespiratory oscillations at low arterial PO2 in four of eight cats. Inhalation of 100% O2 promptly decreased chemoreceptor activity and eliminated the oscillations. Inhalation of CO2 stimulated the chemoreceptor activity and ventilation but did not eliminate the oscillations. Bilateral section of carotid sinus nerves abolished the cardiorespiratory oscillations. The implication is that the dopaminergic system in the carotid body keeps chemoreceptor responses to blood gas stimuli suppressed and hence cardiorespiratory oscillations damped. 2) Hypotension and circulatory delay induced by the partial occlusion of venous return led to cardiorespiratory oscillations at low but not at high arterial PO2. 3) A few cats developed cardiorespiratory oscillations without any particular experimental intervention. These oscillations were independent of arterial PO2 and chemoreceptor activity. Thus it is reasonable to conclude that the peripheral chemoreflex can play a critical role in developing cardiorespiratory oscillations in certain instances.  相似文献   

12.
The objective of the present study was to examine the impact of early stages of lung injury on ventilatory control by hypoxia and hypercapnia. Lung injury was induced with intratracheal instillation of bleomycin (BM; 1 unit) in adult, male Sprague-Dawley rats. Control animals underwent sham surgery with saline instillation. Five days after the injections, lung injury was present in BM-treated animals as evidenced by increased neutrophils and protein levels in bronchoalveolar lavage fluid, as well as by changes in lung histology and computed tomography images. There was no evidence of pulmonary fibrosis, as indicated by lung collagen content. Basal core body temperature, arterial Po(2), and arterial Pco(2) were comparable between both groups of animals. Ventilatory responses to hypoxia (12% O(2)) and hypercapnia (7% CO(2)) were measured by whole body plethysmography in unanesthetized animals. Baseline respiratory rate and the hypoxic ventilatory response were significantly higher in BM-injected compared with control animals (P = 0.003), whereas hypercapnic ventilatory response was not statistically different. In anesthetized, spontaneously breathing animals, response to brief hyperoxia (Dejours' test, an index of peripheral chemoreceptor sensitivity) and neural hypoxic ventilatory response were augmented in BM-exposed relative to control animals, as measured by diaphragmatic electromyelograms. The enhanced hypoxic sensitivity persisted following bilateral vagotomy, but was abolished by bilateral carotid sinus nerve transection. These data demonstrate that afferent sensory input from the carotid body contributes to a selective enhancement of hypoxic ventilatory drive in early lung injury in the absence of pulmonary fibrosis and arterial hypoxemia.  相似文献   

13.
Increased levels of endothelin-1 (ET-1) in the carotid body (CB) contribute to the enhancement of chemosensory responses to acute hypoxia in cats exposed to chronic intermittent hypoxia (CIH). However, it is not known if the ET receptor types A (ETA-R) and B (ETB-R) are upregulated. Thus, we studied the expression and localization of ETA-R and ETB-R using Western blot and immunohistochemistry (IHC) in CBs from cats exposed to cyclic hypoxic episodes, repeated during 8 hr for 4 days. In addition, we determined if ET-1 is expressed in the chemoreceptor cells using double immunofluorescence for ET-1 and tyrosine hydroxylase (TH). We found that ET-1 expression was ubiquitous in the blood vessels and CB parenchyma, although double ET-1 and TH-positive chemoreceptor cells were mostly found in the parenchyma. ETAR was expressed in most chemoreceptor cells and blood vessels of the CB vascular pole. ETB-R was expressed in chemoreceptor cells, parenchymal capillaries, and blood vessels of the vascular pole. CIH upregulated ETB-R expression by approximately 2.1 (Western blot) and 1.6-fold (IHC) but did not change ETA-R expression. Present results suggest that ET-1,ETA-R, and ETB-R are involved in the enhanced CB chemosensory responses to acute hypoxia induced by CIH.  相似文献   

14.
We tested the hypothesis that nitric oxide (NO) produced within the carotid body is a tonic inhibitor of chemoreception and determined the contribution of neuronal and endothelial nitric oxide synthase (eNOS) isoforms to the inhibitory NO effect. Accordingly, we studied the effect of NO generated from S-nitroso-N-acetylpenicillamide (SNAP) and compared the effects of the nonselective inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME) and the selective nNOS inhibitor 1-(2-trifluoromethylphenyl)-imidazole (TRIM) on chemosensory dose-response curves induced by nicotine and NaCN and responses to hypoxia (Po(2) approximately 30 Torr). CBs excised from pentobarbitone-anesthetized cats were perfused in vitro with Tyrode at 38 degrees C and pH 7.40, and chemosensory discharges were recorded from the carotid sinus nerve. SNAP (100 microM) reduced the responses to nicotine and NaCN. l-NAME (1 mM) enhanced the responses to nicotine and NaCN by increasing their duration, but TRIM (100 microM) only enhanced the responses to high doses of NaCN. The amplitude of the response to hypoxia was enhanced by l-NAME but not by TRIM. Our results suggest that both isoforms contribute to the NO action, but eNOS being the main source for NO in the cat CB and exerting a tonic effect upon chemoreceptor activity.  相似文献   

15.
Mechanisms of ventilatory acclimatization to chronic hypoxia remain unclear. To determine whether the sensitivity of peripheral chemoreceptors to hypoxia increases during acclimatization, we measured ventilatory and carotid sinus nerve responses to isocapnic hypoxia in seven cats exposed to simulated altitude of 15,000 ft (barometric pressure = 440 Torr) for 48 h. A control group (n = 7) was selected for hypoxic ventilatory responses matched to the preacclimatized measurements of the experimental group. Exposure to 48 h of hypobaric hypoxia produced acclimatization manifested as decrease in end-tidal PCO2 (PETCO2) in normoxia (34.5 +/- 0.9 Torr before, 28.9 +/- 1.2 after the exposure) as well as in hypoxia (28.1 +/- 1.9 Torr before, 21.8 +/- 1.9 after). Acclimatization produced an increase in hypoxic ventilatory response, measured as the shape parameter A (24.9 +/- 2.6 before, 35.2 +/- 5.6 after; P less than 0.05), whereas values in controls remained unchanged (25.7 +/- 3.2 and 23.1 +/- 2.7; NS). Hypoxic exposure was associated with an increase in the carotid body response to hypoxia, similarly measured as the shape parameter A (24.2 +/- 4.7 in control, 44.5 +/- 8.2 in acclimatized cats). We also found an increased dependency of ventilation on carotid body function (PETCO2 increased after unilateral section of carotid sinus nerve in acclimatized but not in control animals). These results suggest that acclimatization is associated with increased hypoxic ventilatory response accompanied by enhanced peripheral chemoreceptor responsiveness, which may contribute to the attendant rise in ventilation.  相似文献   

16.
Reactive oxygen species (ROS) induce DNA damage with the ensuing activation of the chromosomal repair enzyme poly(ADP-ribose) polymerase (PARP). ROS also interact with the function of carotid body chemoreceptor cells. The possibility arises that PARP is part of the carotid chemosensing process. This study seeks to determine the presence of PARP and its changes in response to contrasting chemical stimuli, hypoxia and hyperoxia, both capable of generating ROS, in cat carotid bodies. The organs were dissected from anesthetized cats exposed in vivo to acute normoxic (PaO2 approximately 90 mmHg), hypoxic (PaO2 approximately 25 mmHg), and hyperoxic (PaO2 > 400 mmHg) conditions. Carotid body homogenate was the source of PARP and [adenine 14C] NAD was the substrate in the assay. Specimens of the superior cervical ganglion and brainstem were used as reference tissues. We found that PARP activity amounted to 27 pmol/mg protein/min in the normoxic carotid body. The activity level more than doubled in both hypoxic and hyperoxic carotid bodies. Changes of PARP in the reference tissues were qualitatively similar. We conclude that PARP is present in the carotid body but the augmentation of the enzyme activity in both hypoxia and hyperoxia reflects DNA damage, induced likely by ROS and being universal for neural tissues, rather than a specific involvement of PARP in the chemosensing process.  相似文献   

17.
Carotid chemoreceptor activity during acute and sustained hypoxia in goats   总被引:6,自引:0,他引:6  
The role of carotid body chemoreceptors in ventilatory acclimatization to hypoxia, i.e., the progressive, time-dependent increase in ventilation during the first several hours or days of hypoxic exposure, is not well understood. The purpose of this investigation was to characterize the effects of acute and prolonged (up to 4 h) hypoxia on carotid body chemoreceptor discharge frequency in anesthetized goats. The goat was chosen for study because of its well-documented and rapid acclimatization to hypoxia. The response of the goat carotid body to acute progressive isocapnic hypoxia was similar to other species, i.e., a hyperbolic increase in discharge as arterial PO2 (PaO2) decreased. The response of 35 single chemoreceptor fibers to an isocapnic [arterial PCO2 (PaCO2) 38-40 Torr)] decrease in PaO2 of from 100 +/- 1.7 to 40.7 +/- 0.5 (SE) Torr was an increase in mean discharge frequency from 1.7 +/- 0.2 to 5.8 +/- 0.4 impulses. During sustained isocapnic steady-state hypoxia (PaO2 39.8 +/- 0.5 Torr, PaCO2, 38.4 +/- 0.4 Torr) chemoreceptor afferent discharge frequency remained constant for the first hour of hypoxic exposure. Thereafter, single-fiber chemoreceptor afferents exhibited a progressive, time-related increase in discharge (1.3 +/- 0.2 impulses.s-1.h-1, P less than 0.01) during sustained hypoxia of up to 4-h duration. These data suggest that increased carotid chemoreceptor activity contributes to ventilatory acclimatization to hypoxia.  相似文献   

18.
The abundance of neuropeptide Y (NPY)-, vasoactive intestinal polypeptide (VIP)-, substance P (SP)-, and calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibers in the carotid body was examined in chronically hypercapnic hypoxic rats (10% O2 and 6-7% CO2 for 3 months), and the distribution and abundance of these four peptidergic fibers were compared with those of previously reported hypocapnic- and isocapnic hypoxic carotid bodies to evaluate the effect of arterial CO2 tension. The vasculature in the carotid body of chronically hypercapnic hypoxic rats was found to be enlarged in comparison with that of normoxic control rats, but the rate of vascular enlargement was smaller than that in the previously reported hypocapnic- and isocapnic hypoxic carotid bodies. In the chronically hypercapnic hypoxic carotid body, the density per unit area of parenchymal NPY fibers was significantly increased, and that of VIP fibers was unchanged, although the density of NPY and VIP fibers in the previously reportetd chronically hypocapnic and isocapnic hypoxic carotid bodies was opposite to that in hypercapnic hypoxia as observed in this study. The density of SP and CGRP fibers was decreased. These results along with previous reports suggest that different levels of arterial CO2 tension change the peptidergic innervation in the carotid body during chronically hypoxic exposure, and altered peptidergic innervation of the chronically hypercapnic hypoxic carotid body is one feature of hypoxic adaptation.  相似文献   

19.
We have previously observed that the guinea-pig appears to have a relatively poor ventilatory (V (E)) response to hypoxia, compared to other mammals. Therefore, in this study, we questioned the ability of the carotid bodies (primary peripheral chemoreceptors) in the guinea-pig to detect hypoxia. The ventilatory responses to poikilocapnic hypoxia (8% O(2)), poikilooxic hypercapnia (8% CO(2)), hyperoxia (100% O(2)) and cyanide (NaCN - 200 mug/kg, i.v.) were assessed before and after carotid body denervation (CBD) in anaesthetized guinea-pigs. Although CBD attenuated the V (E) responses to hypercapnia and cyanide, it had no effect on normoxic breathing or the V (E) responses to hypoxia or hyperoxia. In a separate group of guinea-pigs, nerve activity was recorded from single or few-fibre preparations of the carotid sinus nerve (CSN). Basal chemoreceptor activity could not be detected from any of the nerve preparations. NaCN and hypercapnia consistently provoked an increase in neural activity. In contrast, hypoxia never clearly increased activity in any of the single or few-fibre preparations isolated from the CSN. In conclusion, although the carotid bodies of the guinea-pig, like those of other mammals, are able to detect hypercapnia and histotoxic hypoxia and elicit a reflex increase in V (E), they are essentially hypoxia-insensitive. The latter may explain, at least in part, the relatively poor V (E) response to hypoxia shown by the guinea-pig.  相似文献   

20.
Amiodarone, lamotrigine, and phenytoin, common antiarrhythmic and antiepileptic drugs, inhibit a persistent sodium current in neurons (I(NaP)). Previous results from our laboratory suggested that I(NaP) is critical for functionality of peripheral chemoreceptors. In this study, we determined the effects of therapeutic levels of amiodarone, lamotrigine, and phenytoin on peripheral chemoreceptor and ventilatory responses to hypoxia. Action potentials (APs) of single chemoreceptor afferents were recorded using suction electrodes advanced into the petrosal ganglion of an in vitro rat peripheral chemoreceptor complex. AP frequency (at Po(2) approximately 150 Torr and Po(2) approximately 90 Torr), conduction time, duration, and amplitude were measured before and during perfusion with therapeutic dosages of the drug or vehicle. Hypoxia-induced catecholamine secretion within the carotid body was measured using amperometry. With the use of whole body plethysmography, respiration was measured in unanesthesized rats while breathing room air, 12% O(2), and 5% CO(2), before and after intraperitoneal administration of amiodarone, lamotrigine, phenytoin, or vehicle. Lamotrigine (10 microM) and phenytoin (5 microM), but not amiodarone (5 microM), decreased chemoreceptor AP frequency without affecting other AP parameters or magnitude of catecholamine secretion. Similarly, lamotrigine (5 mg/kg) and phenytoin (10 mg/kg) blunted the hypoxic but not the hypercapnic ventilatory response. In contrast, amiodarone (2.5 mg/kg) did not alter the ventilatory response to hypoxia or hypercapnia. We conclude that lamotrigine and phenytoin at therapeutic levels impair peripheral chemoreceptor function and ventilatory response to acute hypoxia. These are consistent with I(NaP) serving an important function in AP generation and may be clinically important in the care of patients using these drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号