首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Synaptotagmin IV (Syt IV) is a fourth member of the Syt family and has been shown to regulate some forms of memory and learning by analysis of Syt IV null mutant mice (Ferguson, G. D., Anagnostaras, S. G., Silva, A. J., and Herschman, H. R. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 5598-5603). However, the involvement of Syt IV protein in vesicular trafficking and even its localization in secretory vesicles are still matters of controversy. Here we present several lines of evidence showing that the Syt IV protein in PC12 cells is normally localized in the Golgi or immature vesicles at the cell periphery and is sorted to fusion-competent mature dense-core vesicles in response to short nerve growth factor (NGF) stimulation. (i) In undifferentiated PC12 cells, Syt IV protein is mainly localized in the Golgi and small amounts are also present at the cell periphery, but according to the results of an immunocytochemical analysis, they do not colocalize with conventional secretory vesicle markers (Syt I, Syt IX, Rab3A, Rab27A, vesicle-associated membrane protein 2, and synaptophysin) at all. By contrast, limited colocalization of Syt IV protein with dense-core vesicle markers is found in the distal parts of the neurites of NGF-differentiated PC12 cells. (ii) Immunoelectron microscopy with highly specific anti-Syt IV antibody revealed that the Syt IV protein in undifferentiated PC12 cells is mainly present on the Golgi membranes and immature secretory vesicles, whereas after NGF stimulation Syt IV protein is also present on the mature dense-core vesicles. (iii) An N-terminal antibody-uptake experiment indicated that Syt IV-containing vesicles in the neurites of NGF-differentiated PC12 cells undergo Ca(2+)-dependent exocytosis, whereas no uptake of the anti-Syt IV-N antibody was observed in undifferentiated PC12 cells. Our results suggest that Syt IV is a stimulus (e.g. NGF)-dependent regulator for exocytosis of dense-core vesicles.  相似文献   

2.
Synaptotagmin IV (Syt IV) was originally described as an immediate early gene product induced by forskolin or membrane depolarization in PC12 cells; however, nothing is known about the subcellular localization and transport of the newly translated Syt IV protein in PC12 cells. In this study, we investigated the transport mechanism of Syt IV protein induced by forskolin and found that forskolin treatment dramatically increases the Syt IV protein level (approximately 10-fold, to a level comparable to that of Syt IX) and promotes the transport of Syt IV protein from the Golgi to the cell periphery by a microtubule-dependent motor(s). The expression levels and subcellular localizations of two major Syt isoforms (I and IX) in PC12 cells, on the other hand, were unaffected by such treatment. Immunoelectron microscopic analysis showed that some Syt IV signals are clearly associated with dense-core vesicles in forskolin-treated PC12 cells, although the majority of the Syt IV molecules at the cell periphery were present on clear vesicular structures other than dense-core vesicles. An N-terminal antibody-uptake experiment indicated that Syt IV-containing vesicles in forskolin-treated PC12 cells undergo Ca(2+)-dependent exocytosis, because uptake of the anti-Syt IV-N antibody from the culture medium was slightly, but significantly, increased after forskolin treatment. Our results indicate that forskolin (or the increased cAMP level) is important for the transport of the Syt IV protein from the Golgi to the cell periphery, but not sufficient for the sorting of all Syt IV molecules to mature dense-core vesicles.  相似文献   

3.
It has recently been proposed that synaptotagmin (Syt) VII functions as a plasma membrane Ca2+ sensor for dense-core vesicle exocytosis in PC12 cells based on the results of transient overexpression studies using green fluorescent protein (GFP)-tagged Syt VII; however, the precise subcellular localization of Syt VII is still a matter of controversy (plasma membrane versus secretory granules). In this study we established a PC12 cell line "stably expressing" the Syt VII-GFP molecule and demonstrated by immunocytochemical and immunoelectron microscopic analyses that the Syt VII-GFP protein is localized on dense-core vesicles as well as in other intracellular membranous structures, such as the trans-Golgi network and lysosomes. Syt VII-GFP forms a complex with endogenous Syts I and IX, but not with Syt IV, and it colocalize well with Syts I and IX in the cellular processes (where dense-core vesicles are accumulated) in the PC12 cell line. We further demonstrated by an N-terminal antibody-uptake experiment that Syt VII-GFP-containing dense-core vesicles undergo Ca2+ -dependent exocytosis, the same as endogenous Syt IX-containing vesicles. Moreover, silencing of Syt VII-GFP with specific small interfering RNA dramatically reduced high KCl-dependent neuropeptide Y secretion from the stable PC12 cell line (approximately 60% of the control cells), whereas the same small interfering RNA had little effect on neuropeptide Y secretion from the wild-type PC12 cells (approximately 85-90% of the control cells), indicating that the level of endogenous expression of Syt VII molecules must be low. Our results indicate that the targeting of Syt VII-GFP molecules to specific membrane compartment(s) is affected by the transfection method (transient expression versus stable expression) and suggested that Syt VII molecule on dense-core vesicles functions as a vesicular Ca2+ sensor for exocytosis in endocrine cells.  相似文献   

4.
Synaptotagmins (Syts) are a family of vesicle proteins that have been implicated in both regulated neurosecretion and general membrane trafficking. Calcium-dependent interactions mediated through their C2 domains are proposed to contribute to the mechanism by which Syts trigger calcium-dependent neurotransmitter release. Syt IV is a novel member of the Syt family that is induced by cell depolarization and has a rapid rate of synthesis and a short half-life. Moreover, the C2A domain of Syt IV does not bind calcium. We have examined the biochemical and functional properties of the C2 domains of Syt IV. Consistent with its non-calcium binding properties, the C2A domain of Syt IV binds syntaxin isoforms in a calcium-independent manner. In neuroendocrine pheochromocytoma (PC12) cells, Syt IV colocalizes with Syt I in the tips of the neurites. Microinjection of the C2A domain reveals that calcium-independent interactions mediated through this domain of Syt IV inhibit calcium-mediated neurotransmitter release from PC12 cells. Conversely, the C2B domain of Syt IV contains calcium binding properties, which permit homo-oligomerization as well as hetero-oligomerization with Syt I. Our observation that different combinatorial interactions exist between Syt and syntaxin isoforms, coupled with the calcium stimulated hetero-oligomerization of Syt isoforms, suggests that the secretory machinery contains a vast repertoire of biochemical properties for sensing calcium and regulating neurotransmitter release accordingly.  相似文献   

5.
Neurons and certain kinds of endocrine cells, such as adrenal chromaffin cells, have large dense-core vesicles (LDCVs) and synaptic vesicles or synaptic-like microvesicles (SLMVs). These secretory vesicles exhibit differences in Ca(2+) sensitivity and contain diverse signaling substances. The present work was undertaken to identify the synaptotagmin (Syt) isoforms present in secretory vesicles. Fractionation analysis of lysates of the bovine adrenal medulla and immunocytochemistry in rat chromaffin cells indicated that Syt 1 was localized in LDCVs and SLMVs, whereas Syt 7 was the predominant isoform present in LDCVs. In contrast to PC12 cells and the pancreatic β cell line INS-1, Syt 9 was not immunodetected in LDCVs in rat chromaffin cells. Double-staining revealed that Syt 9-like immunoreactivity was nearly identical with fluorescent thapsigargin binding, suggesting the presence of Syt 9 in the endoplasmic reticulum (ER).The exogenous expression of Syt 1-GFP in INS-1 cells, which had a negligible level of endogenous Syt 1, resulted in an increase in the amount of Syt 9 in the ER, suggesting that Syt 9 competes with Syt 1 for trafficking from the ER to the Golgi complex. We conclude that LDCVs mainly contain Syt 7, whereas SLMVs contain Syt 1, but not Syt 7, in rat and bovine chromaffin cells.  相似文献   

6.
Synaptotagmins (Syts) are calcium-binding proteins which are conserved from nematodes to humans. Fifteen Syts have been identified in mammalian species. Syt I is recognized as a Ca2+ sensor for the synchronized release of synaptic vesicles in some types of neurons, but its role in the secretion of dense core vesicles (DCVs) remains unclear. The function of Syt IV is of particular interest because it is rapidly up-regulated by chronic depolarization and seizures. Using RNAi-mediated gene silencing, we have explored the role of Syt I and IV on secretion in a pituitary gonadotrope cell line. Downregulation of Syt IV clearly reduced Ca2+-triggered exocytosis of dense core vesicles (DCVs) in LβT2 cells. Syt I silencing, however, had no effect on vesicular release.  相似文献   

7.
In neuroendocrine PC12 cells, immature secretory granules (ISGs) mature through homotypic fusion and membrane remodeling. We present evidence that the ISG-localized synaptotagmin IV (Syt IV) is involved in ISG maturation. Using an in vitro homotypic fusion assay, we show that the cytoplasmic domain (CD) of Syt IV, but not of Syt I, VII, or IX, inhibits ISG homotypic fusion. Moreover, Syt IV CD binds specifically to ISGs and not to mature secretory granules (MSGs), and Syt IV binds to syntaxin 6, a SNARE protein that is involved in ISG maturation. ISG homotypic fusion was inhibited in vivo by small interfering RNA-mediated depletion of Syt IV. Furthermore, the Syt IV CD, as well as Syt IV depletion, reduces secretogranin II (SgII) processing by prohormone convertase 2 (PC2). PC2 is found mostly in the proform, suggesting that activation of PC2 is also inhibited. Granule formation, and the sorting of SgII and PC2 from the trans-Golgi network into ISGs and MSGs, however, is not affected. We conclude that Syt IV is an essential component for secretory granule maturation.  相似文献   

8.
Synaptotagmin (Syt) I-deficient phaeochromocytoma (PC12) cell lines show normal Ca(2+)-dependent norepinephrine (NE) release (Shoji-Kasai, Y., Yoshida, A., Sato, K., Hoshino, T., Ogura, A., Kondo, S., Fujimoto, Y., Kuwahara, R., Kato, R., and Takahashi, M. (1992) Science 256, 1821-1823). To identify an alternative Ca(2+) sensor, we searched for other Syt isoforms in Syt I-deficient PC12 cells and identified Syt IX, an isoform closely related to Syt I, as an abundantly expressed dense-core vesicle protein. Here we show that Syt IX is required for the Ca(2+)-dependent release of NE from PC12 cells. Antibodies directed against the C2A domain of either Syt IX or Syt I inhibited Ca(2+)-dependent NE release in permeable PC12 cells indicating that both Syt proteins function in dense-core vesicle exocytosis. Our results support the idea that Syt family proteins that co-reside on secretory vesicles may function cooperatively and redundantly as potential Ca(2+) sensors for exocytosis.  相似文献   

9.
Synaptotagmin (Syt) family members consist of six separate domains: a short amino terminus, a single transmembrane domain, a spacer domain, a C2A domain, a C2B domain and a short carboxyl (C) terminus. Despite sharing the same domain structures, several synaptotagmin isoforms show distinct subcellular localization. Syt IV is mainly localized at the Golgi, while Syt I, a possible Ca(2+)-sensor for secretory vesicles, is localized at dense-core vesicles and synaptic-like microvesicles in PC12 cells. In this study, we sought to identify the region responsible for the Golgi localization of Syt IV by immunocytochemical and biochemical analyses as a means of defining the distinct subcellular localization of the synaptotagmin family. We found that the unique C-terminus of the spacer domain (amino acid residues 73-144) between the transmembrane domain and the C2A domain is essential for the Golgi localization of Syt IV. In addition, the short C-terminus is probably involved in proper folding of the protein, especially the C2B domain. Without the C-terminus, Syt IVdeltaC proteins are not targeted to the Golgi and seem to colocalize with an endoplasmic reticulum (ER) marker (i.e. induce crystalloid ER-like structures). On the basis of these results, we propose that the divergent spacer domain among synaptotagmin isoforms may contain certain signals that determine the final destination of each isoform.  相似文献   

10.
Ca2+ influx induced by membrane depolarization triggers the exocytosis of secretory vesicles in various cell types such as endocrine cells and neurons. Peptidyl growth factors enhance Ca2+-evoked release, an effect that may underlie important adaptive responses such as the long-term potentiation of synaptic transmission induced by growth factors. Here, we show that activation of the c-Jun N-terminal kinase (JNK) plays an essential role in nerve growth factor (NGF) enhancement of Ca2+-evoked release in PC12 neuroendocrine cells. Moreover, JNK associated with phosphorylated synaptotagmin-4 (Syt 4), a key mediator of NGF enhancement of Ca2+-evoked release in this system. NGF treatment led to phosphorylation of endogenous Syt 4 at Ser135 and translocation of Syt 4 from immature to mature secretory vesicles in a JNK-dependent manner. Furthermore, mutation of Ser135 abrogated enhancement of Ca2+-evoked release by Syt 4. These results provide a molecular basis for the effect of growth factors on Ca2+-mediated secretion.  相似文献   

11.
Exocytosis in pheochromocytoma cells was induced by electric stimulation. To chase the movement of vesicles by electric stimulation, dense-core secretory vesicles were visualized by expression of the fusion protein between neuropeptide Y and enhanced green fluorescent protein (EGFP) in these differentiated PC12 rat pheochromocytoma cells. When the cells were stimulated with constant voltage potential at –300 mV, the movement of dense-core secretory vesicles could be regulated.  相似文献   

12.
PC12 cells, a rat pheochromocytoma cell line, have been found to express carboxypeptidase E (CPE) enzymatic activity and CPE, furin, and peptidylglycine alpha-amidating monooxygenase (PAM) mRNAs. PC12 cells secrete CPE activity in response to depolarization induced by 50 mM KCl. Short-term (1- to 3-h) treatments of PC12 cells with KCl stimulates the secretion of CPE but does not appear to stimulate the synthesis of new CPE protein, based on the measurement of CPE activity and incorporation of [35S]-Met into CPE. Also, CPE mRNA is not altered by 2-h treatments with KCl. In contrast, prolonged treatment (24-48 h) of PC12 cells with 50 mM KCl continues to stimulate the secretion of CPE activity, without altering the cellular level of CPE. Levels of CPE mRNA are significantly elevated after long-term treatment of the cells with KCl, with increases of 35% after 5 h and 55-75% after 24 to 72 h of treatment. The level of PAM mRNA is also elevated approximately 70% after 24 h of stimulation with KCl. In contrast, the mRNA levels of furin and dopamine beta-hydroxylase (DBH) do not change on treatment of PC12 cells with KCl. These findings indicate that long-term depolarization, which leads to a prolonged stimulation of PC12 cells to secrete CPE, also stimulates the synthesis of CPE and PAM but not furin or DBH.  相似文献   

13.
Synaptotagmins are a family of proteins that function in membrane fusion events, including synaptic vesicle exocytosis. Within this family, synaptotagmin IV (Syt IV) is unique in being a depolarization-induced immediate early gene (IEG). Experimental perturbation of Syt IV modulates neurotransmitter release in mice, flies, and PC12 cells, and modulates learning in mice. Despite these features, induction of Syt IV expression by a natural behavior has not been previously reported. We used the zebra finch, a songbird species, to investigate Syt IV because song is a naturally learned behavior whose neuroanatomical basis is largely identified. We observed that, similar to rodents, Syt IV is inducible in songbirds. This induction was selective and depended on the nature of neuronal depolarization. Generalized seizures caused by the GABA(A) receptor antagonist, metrazole, induced the IEG, ZENK, in zebra finch brain. However, these same seizures failed to induce Syt IV in song control areas. In contrast, when nontreated birds sang, three song control areas showed striking Syt IV induction. Further, this induction appeared sensitive to the social context in which song was sung. Together, these data suggest that neural activity during singing can drive Syt IV expression within song circuitry whereas generalized seizure activity fails to do so even though song control areas are depolarized. Our findings indicate that, within this neural circuit for a procedurally learned sensorimotor behavior, Syt IV is selective and requires precisely patterned neural activity and/or neuromodulation associated with singing.  相似文献   

14.
Synaptotagmins (Syts) constitute a large family of at least 16 members and individual Syt isoforms exhibit distinct Ca2+-binding properties and subcellular localization. It remains to be demonstrated whether multiple Syt isoforms can function independently or cooperatively on certain type of vesicle. In the current study, we have developed NPY-pHluorin to specifically assess exocytosis of large dense core vesicles (LDCVs) and studied the requirement of Syt I and Syt IX for LDCV exocytosis in PC12 cells. We found that down-regulation of both Syt I and Syt IX resulted in a significant loss of Ca2+-dependent LDCV exocytosis. Moreover, our results suggest Syt I and Syt IX play redundant role in controlling the choice of fusion modes. Down-regulation of both Syt I and Syt IX renders more fusion in the kiss-and-run mode. We conclude that Syt I and Syt IX function redundantly in Ca2+-sensing and fusion pore dilation on LDCVs in PC12 cells.  相似文献   

15.
Synaptotagmin I (Syt I), an evolutionarily conserved integral membrane protein of synaptic vesicles, is now known to regulate Ca2+-dependent neurotransmitter release. Syt I protein should undergo several post-translational modifications before maturation and subsequent functioning on synaptic vesicles (e.g. N-glycosylation and fatty acylation in vertebrate Syt I), because the apparent molecular weight of Syt I on synaptic vesicles (mature form, 65,000) was much higher than the calculated molecular weight (47,400) predicted from the cDNA sequences both in vertebrates and invertebrates. Common post-translational modification(s) of Syt I conserved across phylogeny, however, have never been elucidated. In the present study, I discovered that dithreonine residues (Thr-15 and Thr-16) at the intravesicular domain of mouse Syt I are post-translationally modified by a complex form of O-linked sugar (i.e. the addition of sialic acids) in PC12 cells and that the O-glycosylation of Syt I in COS-7 cells depends on the coexpression of vesicle-associated membrane protein-2 (VAMP-2)/synaptobrevin. I also showed that a transmembrane domain of Syt I directly interacts with isolated VAMP-2, but not VAMP-2, in the heterotrimeric SNARE (SNAP receptor) complex (vesicle SNARE, VAMP-2, and two target SNAREs, syntaxin IA and SNAP-25). Since di-Thr or di-Ser residues are often found at the intravesicular domain of invertebrate Syt I, and VAMP-dependent O-glycosylation was also observed in squid Syt expressed in COS-7 cells, I propose that VAMP-dependent O-glycosylation of Syt I is a common modification during evolution and may have important role(s) in synaptic vesicle trafficking.  相似文献   

16.
In response to stimuli, secretary cells secrete a variety of signaling molecules packed in vesicles (e.g., neurotransmitters and peptide hormones) into the extracellular space by exocytosis. The vesicle secretion is often triggered by calcium ion (Ca2+) entered into secretary cells and achieved by the fusion of secretory vesicles with the plasma membrane. Recent accumulating evidence has indicated that members of the synaptotagmin (Syt) family play a major role in Ca2+-dependent exocytosis, and Syt I, in particular, is now widely accepted as the major Ca2+-sensor for synchronous neurotransmitter release. Involvement of other Syt isoforms in Ca2+-dependent exocytotic events other than neurotransmitter release has also been reported, and the Syt IV isoform is of particular interest, because Syt IV has several unique features not found in Syt I (e.g., immediate early gene product induced by deporalization and postsynaptic localization). In this article, we summarize the literature on the multi-functional role of Syt IV in Ca2+-dependent exocytosis.  相似文献   

17.
18.
Synaptotagmins (Syts) III, V, VI, and X are classified as a subclass of Syt, based on their sequence similarities and biochemical properties (Ibata, K., Fukuda, M., and Mikoshiba, K. (1998) J. Biol. Chem. 273, 12267-12273; Fukuda, M., Kanno, E., and Mikoshiba, K. (1999) J. Biol. Chem. 274, 31421-31427). Although they have been suggested to be involved in vesicular trafficking, as in the role of the Syt I isoform in synaptic vesicle exocytosis, their exact functions remain to be clarified, and even their precise subcellular localization is still a matter of controversy. In this study, we established rat pheochromocytoma (PC12) cell lines that stably express Syts III-, V-, VI-, and X-GFP (green fluorescence protein) fusion proteins, respectively, to determine their precise subcellular localizations. Surprisingly, Syts III-, V-, VI-, and X-GFP proteins were found to be targeted to specific organelles: Syt III-GFP to near the plasma membrane, Syt V-GFP to dense-core vesicles, Syt VI-GFP to endoplasmic reticulum-like structures, and Syt X-GFP to vesicles (other than dense-core vesicles) present in cytoplasm. We showed that Syt V-containing vesicles at the neurites of PC12 cells were processed to exocytosis in a Ca2+-dependent manner. Immunohistochemical analysis further showed that endogenous Syt V was also localized on dense-core vesicles in the mouse brain and specifically expressed in glucagon-positive alpha-cells in mouse pancreatic islets, but not in beta- or delta-cells. Based on these results, we propose that Syt V is a dense-core vesicle-specific Syt isoform that controls a specific type of Ca2+-regulated secretion.  相似文献   

19.
Vesicular catecholamine release has been measured amperometrically from undifferentiated rat PC12 cells using carbon fiber microelectrodes. During superfusion with high K(+) saline, vesicular release was detected from approximately 50% of 200 cells investigated. On repeated stimulation the releasable pool of vesicles is rapidly depleted, while vesicle contents remains constant. Vesicular catecholamine release is not restored within 1 h after depletion of the releasable pool. Although the distribution of the cube root of vesicle contents of many cells is apparently Gaussian, maximum likelihood analysis of single cell data demonstrates double Gaussian distributions with median vesicle contents of 141 and 293 zeptomole. It is concluded that the releasable pool of vesicles in PC12 cells is heterogeneous. In the presence of l-DOPA mean vesicle contents increases, but cessation of release cannot be prevented, indicating that the number of releasable vesicles in PC12 cells is limited by a slow rate of vesicle cycling.  相似文献   

20.
Synaptotagmin IV     
We isolated the rat synaptotagmin IV (Syt IV) cDNA in a screen for sequences that are specifically induced in neuronal cells. The Syts are a large family of genes thought to mediate synaptic function. Syt IV is brain-specific, induced in hippocampus by depolarization, and predominantly vesicular. To assess the function role of Syt IV in vivo, we generated Syt IV(-/-) mutant mice. Syt IV (-/-) mice are viable and appear normal, indicating this gene is not essential for survival or gross development. However, Syt IV (-/-) mutants, when compared to wild-type littermates, have deficits in fine motor coordination and hippocampus-dependent memory, suggesting Syt IV has a role in normal brain function. The human Syt IV ortholog maps to a region of chromosome 18 previously associated with the human psychiatric disorders, schizophrenia and bipolar disease. These results suggest that Syt IV is required in certain types of neurons for optimal functionality, that perturbations in the levels of Syt IV can result in memory loss in mice, and that Syt IV alterations may lead to psychiatric disease in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号