首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Dersch P  Isberg RR 《The EMBO journal》1999,18(5):1199-1213
Invasin allows efficient entry into mammalian cells by Yersinia pseudotuberculosis. It has been shown that the C-terminal 192 amino acids of invasin are essential for binding of beta1 integrin receptors and subsequent uptake. By analyzing the internalization of latex beads coated with invasin derivatives, an additional domain of invasin was shown to be required for efficient bacterial internalization. A monomeric derivative encompassing the C-terminal 197 amino acids was inefficient at promoting entry of latex beads, whereas dimerization of this derivative by antibody significantly increased uptake. By using the DNA-binding domain of lambda repressor as a reporter for invasin self-interaction, we have demonstrated that a region of the invasin protein located N-terminal to the cell adhesion domain of invasin is able to self-associate. Chemical cross-linking studies of purified and surface-exposed invasin proteins, and the dominant-interfering effect of a non-functional invasin derivative are consistent with the presence of a self-association domain that is located within the region of invasin that enhances bacterial uptake. We conclude that interaction of homomultimeric invasin with multiple integrins establishes tight adherence and receptor clustering, thus providing a signal for internalization.  相似文献   

2.
The Yersinia pseudotuberculosis invasin protein mediates bacterial entry into mammalian cells by binding multiple beta 1-chain integrins. Invasin binding to purified alpha 5 beta 1 integrin is inhibited by Arg-Gly-Asp (RGD)-containing peptides, although invasin contains no RGD sequence. Fifteen mutations that diminished binding and bacterial entry were isolated after mutagenesis of the entire inv gene. All of the mutations altered residues within the C-terminal 192 amino acids of invasin, previously delineated as the integrin binding domain, and 10 of the mutations fell within an 11 residue region. This small region was subjected to site-directed mutagenesis and almost half of the 35 mutations generated decreased invasin-mediated entry. D911 within this region was the most critical residue, as even a conservative glutamate substitution abolished bacterial penetration. Purified invasin derivatives altered at this residue were defective in promoting cell attachment and this defect was reflected in a 10-fold or greater increase in IC50 for integrin binding. D911 may have a function similar to that of the aspartate residue in RGD-containing sequences.  相似文献   

3.
R R Isberg  J M Leong 《Cell》1990,60(5):861-871
Mammalian cell receptors that promote entry of intracellular bacteria into nonphagocytic cells have not been identified. We show here that multiple members of the integrin superfamily of cell adhesion receptors bind the Y. pseudotuberculosis invasin protein prior to bacterial penetration into mammalian cells. Affinity chromatography of crude detergent extracts demonstrated that integrins containing the subunit structures alpha 3 beta 1, alpha 5 beta 1, and alpha 6 beta 1 bound to immobilized invasin. Furthermore, phospholipid vesicles containing isolated integrin proteins were able to attach to invasin. Specificity for invasin binding to the identified integrin receptors was also demonstrated, as immunoprobing and phospholipid reconstitution studies showed that the alpha 2 beta 1 integrin, beta 2 chain integrins, and vitronectin receptor (alpha v beta 3) were not involved in cellular attachment to invasin.  相似文献   

4.
The invasin protein encoded by enteropathogenic Yersinia allows entry of bacteria into intestinal M cells by binding to integrin receptors. In cultured cells, invasin-mediated uptake requires proteins involved in endocytosis and signaling to the cell cytoskeleton. At least four different factors have been demonstrated to play a role in regulating the efficiency of invasin-promoted uptake. These include receptor-ligand affinity, receptor clustering, signaling through focal adhesion kinase, and stimulation of cytoskeletal rearrangements by small GTP binding proteins.  相似文献   

5.
The invasin protein of the pathogenic Yersinia pseudotuberculosis mediates entry of the bacterium into cultured mammalian cells by binding several beta 1 chain integrins. In this study, we identified the region of invasin responsible for cell recognition. Thirty-two monoclonal antibodies directed against invasin were isolated, and of those, six blocked cell attachment to invasin. These six antibodies recognized epitopes within the last 192 amino acids of invasin. Deletion mutants of invasin and maltose-binding protein (MBP)--invasin fusion proteins were generated and tested for cell attachment. All of the invasin derivatives that carried the carboxyl-terminal 192 amino acids retained cell binding activity. One carboxyl-terminal invasin fragment and seven MBP--invasin fusion proteins were purified. The purified derivatives that retained binding activity inhibited bacterial entry into cultured mammalian cells. These results indicated that the carboxyl-terminal 192 amino acids of invasin contains the integrin-binding domain, even though this region does not contain the tripeptide sequence Arg-Gly-Asp.  相似文献   

6.
Phagocytosis of Yersinia pseudotuberculosis by macrophages is initiated by interactions between host cell integrin receptors and the bacterial adhesins, invasin and YadA. Two non-receptor protein tyrosine kinases, FAK and Pyk2, have been implicated in this process. In this study, we investigated the mechanisms of activation and functional requirements for these kinases during phagocytosis. A panel of Yersinia strains that differentially express invasin and YadA were used to infect cells in which FAK and/or Pyk2 expression was reduced by RNA interference. Bacterial strains that simultaneously express invasin and YadA activated FAK and Pyk2 signalling pathways that perform non-redundant functions required for Yersinia internalization. In contrast, FAK activation was found to be sufficient for phagocytosis of bacteria expressing invasin alone, and Pyk2 activation was sufficient when YadA was expressed in the absence of invasin. Based on these data, we suggest that the activation states of FAK and Pyk2, as well as the subsequent signalling events that lead to phagocytosis, are differentially regulated through the unique mechanisms of integrin engagement utilized by invasin and YadA. These findings lend insight into the molecular events that control bacterial phagocytosis as well as other integrin-based processes such as cell adhesion and migration.  相似文献   

7.
CAS/Crk signalling mediates uptake of Yersinia into human epithelial cells   总被引:4,自引:2,他引:2  
Uptake of Yersinia pseudotuberculosis into mammalian cells involves engagement of β1 integrin receptors by the bacterial protein invasin. This triggers a host response that involves tyrosine phosphorylation of proteins and the induction of actin rearrangements that lead to cellular uptake of bacteria. In this report, we show that the focal adhesion protein CAS plays an important role in Yersinia uptake, and that its function is linked to the phosphorylation-dependent interaction between CAS and Crk. These studies demonstrate that Yersinia binding to host cell receptors initiates a cascade of events involving tyrosine phosphorylation of CAS, subsequent formation of functional CAS–Crk complexes and the activity of the small GTP-binding protein Rac1. The delineation of this pathway lends support for a model in which Yersinia uptake into human epithelial cells is dependent upon aspects of host signalling pathways that govern actin cytoskeleton remodelling and cell migration.  相似文献   

8.
In this study, we observed the intracellular behavior of recombinant invasin, a 103-kDa outer membrane protein of Yersinia pseudotuberculosis. To mimic the in vivo behavior of bacterial invasin, a polyvalent form of invasin was generated by incubation of biotinylated GST-fused invasin C-terminal portion protein (GST-INVS) with avidin. Several experiments confirmed that the recombinant invasin could consistently reproduce the invasin-mediated entry to mammalian epithelial cells. We analyzed the molecular kinetics of polyvalent INVS by western blotting, (125) I-uptake, and immunofluorescent microscopy. The internalized polyvalent INVS was rapidly translocated to the RIPA-insoluble (polymerized-actin enriched) fraction and formed cytoplasmic vesicles, while monovalent invasin did not show such kinetics. From these observations, we concluded that our bacterial-free system is able to analyze the action of invasin for Yersinia pseudotuberculosis entry.  相似文献   

9.
The inv locus of Yersinia enterocolitica is sufficient to convert a non-invasive Escherichia coli K12 strain into a microorganism that is able to penetrate cultured mammalian cells. The nucleotide sequence of inv reveals an open reading frame corresponding to an 835-amino-acid protein that is homologous to the invasin protein from Yersinia pseudotuberculosis. A polyclonal antiserum elicited by a synthetic peptide corresponding to the C-terminal 88 amino acids of this open reading frame detected a unique 100 kD protein in cell lysates of Y. enterocolitica strain 8081 c and in an E. coli strain harbouring the cloned inv gene. This protein localized to the outer membranes of both microorganisms and was cleaved by low concentrations of extracellular trypsin. HEp-2 cells were shown to attach to surfaces coated with bacterial outer membranes containing invasin and this attachment was destroyed by treatment of the membranes with trypsin. Thus it appears that the invasin protein from Y. enterocolitica is able to mediate both attachment to and entry of cultured epithelial cells.  相似文献   

10.
Escherichia coli strains harbouring the Yersinia pseudotuberculosis inv gene are able to enter cultured mammalial cells. We show here that this property is not shared by all enteric bacteria, since Shigella flexneri 2a cured of its virulence-associated plasmid and harbouring the inv gene is unable to enter mammalian cells efficiently. Mapping studies showed that the region of the chromosome responsible for this phenotype includes rfaB, a locus involved in the production of O antigen. S. flexneri 2a strains that express O antigen were unable to enter mammalian cells, even though invasin was efficiently expressed and localized, showing that this structure interferes with invasin activity. The O antigen either masks invasin or sterically hinders the ability of the mammalian cell receptor to bind this protein.  相似文献   

11.
Nakajima H  Shimbara N  Shimonishi Y  Mimori T  Niwa S  Saya H 《Gene》2000,260(1-2):121-131
The protein invasin expressed on the cell surface of the pathogenic bacteria Yersinia pseudotuberculosis mediates the entry of this bacterium into cultured mammalian cells. We have developed a system for expression of random peptides on the cell surface of Escherichia coli (E. coli) by creation of a fusion hybrid between a peptide and the invasin protein. The fusion protein constructs consist of part of the outer membrane domain of the invasin protein, six proline spacers, and a decamer of random peptides flanked by cysteine residues (CX(10)C). Peptides were constitutively expressed on the cell surface in the resulting random decamer peptide library, which we designated as ESPEL (E. coli Surface Peptide Expression Library). The ESPEL was systematically screened for its binding affinity toward human cultured cells. Several bacterial clones were identified whose binding to human cells was mediated by peptides expressed on the bacterial cell surface. Flow cytometric analysis showed that both the identified bacterial clones and these corresponding chemically synthesized peptides bound to human cells specifically. The techniques described provide a new method that uses E. coli random peptide library to select targeting peptides for mammalian cells without any knowledge of the human cellular receptors.  相似文献   

12.
Enteropathogenic Yersinia species encode invasin, which promotes uptake into host cells by binding beta1 integrins. Invasin may cluster integrin heterodimers extracellularly and cause the integrin alpha and beta chains to splay apart in the cytoplasm. Cdc42 signaling is not essential for Yersinia uptake, whereas invasin crucially triggers Rac1-mediated signals that enable internalization. The signals linking invasin-mediated adhesion to Rac1 activation are not clear, but a novel kinase may release it from RhoGDI so that Rac1 can be activated, for example by Dock180. Rac1 may act via Arp2/3, phosphatidylinositol 4,5-bisphosphate and capping-proteins in the formation of nascent phagosomes during Yersinia uptake.  相似文献   

13.
The Yersinia pseudotuberculosis invasin protein promotes bacterial penetration into mammalian cells by binding to several beta 1 chain integrins. We show here that proteins containing the cell-binding domain of invasin bind to the fibronectin receptor alpha 5 beta 1 isolated from human placenta and immobilized on a filter membrane. Two forms of the receptor, each having a molecular weight of about 290,000, were immunodepleted by monoclonal antibodies specific for the beta 1 subunit or the alpha 5 beta 1 heterodimer. The binding of invasin to the receptor immobolized on the filter, or to whole JAR cells, reaches saturation after 90 min and has an apparent dissociation constant (Kd) of 5.0 x 10(-9) M. Invasin binding to alpha 5 beta 1 is inhibited by the 120-kDa chymotryptic fragment of fibronectin in a competitive manner with an inhibition constant (Ki) of 7.5 x 10(-7) M. Furthermore, invasin-receptor binding is also inhibited by the hexapeptide GRGDSP, and monoclonal antibodies that block cell attachment to invasin-coated surfaces also block cell attachment to fibronectin-coated surfaces. These results indicate that invasin and fibronectin bind to the same, or closely located sites on alpha 5 beta 1, although invasin binds with a much higher affinity than does fibronectin.  相似文献   

14.
Efficient uptake of Yersinia pseudotuberculosis into cultured mammalian cells is the result of high-affinity binding of invasin to beta1 chain integrins. We demonstrate here that uptake requires Rac1 and Arp 2/3 function. Bacterial uptake was stimulated by GTPgammaS, but was inhibited in mammalian cells transfected with the interfering Rac1-N17 derivative. Rac1 was found to be activated in response to integrin engagement by invasin, whereas Rac1 and Arp 2/3 were found to be intensely localized around phagosomes bearing bacteria, indicating a specific role for Rac1 signalling from the nascent phagosome to downstream effectors. To determine whether the Arp 2/3 complex was a component of this proposed pathway, cells overproducing various derivatives of Scar1/WAVE1, an Arp 2/3-binding protein, were analysed. Sequestration of Arp 2/3 away from the phagocytic cup as a result of Scar1/WAVE1 overproduction dramatically inhibited uptake. To determine whether signalling from Rac1 to Arp 2/3 occurred via N-WASP, uptake was analysed in a cell line lacking expression of WASP and N-WASP. Uptake was unaffected by the absence of these proteins, indicating that beta1 integrin signalling from Rac1 to Arp 2/3 can occur in the absence of N-WASP function.  相似文献   

15.
Enterohaemorrhagic Escherichia coli (EHEC) has emerged as an important agent of diarrhoeal disease. Attachment to host cells, an essential step during intestinal colonization by EHEC, is associated with the formation of a highly organized cytoskeletal structure containing filamentous actin, termed an attaching and effacing (A/E) lesion, directly beneath bound bacteria. The outer membrane protein intimin is required for the formation of this structure, as is Tir, a bacterial protein that is translocated into the host cell and is thought to function as a receptor for intimin. To understand intimin function better, we fused EHEC intimin to a homologous protein, Yersinia pseudotuberculosis invasin, or to maltose-binding protein. The N-terminal 539 amino acids of intimin were sufficient to promote outer membrane localization of the C-terminus of invasin and, conversely, the N-terminal 489 amino acids of invasin were sufficient to promote the localization of the C-terminus of intimin. The C-terminal 181 residues of intimin were sufficient to bind mammalian cells that had been preinfected with an enteropathogenic E. coli strain that expresses Tir but not intimin. Binding of intimin derivatives to preinfected cells correlated with binding to recombinant Tir protein. Finally, the 181-residue minimal Tir-binding region of intimin, when purified and immobilized on latex beads, was sufficient to trigger A/E lesions on preinfected mammalian cells.  相似文献   

16.
The afa operons from Escherichia coli associated with extra-intestinal and intestinal infections have been characterized and the AfaD protein has been shown to be involved in the low internalization of laboratory strains expressing the afa-3 operon. The aim of this study was to determine the role of the AfaD invasin during the interaction of pathogenic E. coli with epithelial cells. We show that AfaD is implicated in the entry of a clinical isolate into both HeLa and undifferentiated Caco-2 cells. Once in the cytoplasm of these cells, the bacteria formed inclusions in which they were able to survive for at least 72 h. Internalization assays using polystyrene beads coated with His6-tagged purified AfaD (rAfaD) demonstrated that this invasin mediates entry into cells derived from various tissues (intestine and urothelium) that are targets for afa-positive strains. Consistent with the previous observation that an antibody blockade involving anti-alpha5beta1 integrin abolishes bacterial internalization, we show here that the entry of rAfaD-coated beads was dependent on the production and accessibility of beta1 integrins on the cells. The AfaD proteins belong to a family of invasins that are at least 45% identical. Despite their differences, the recombinant rAfaD-III and rAfaD-VIII proteins both bound to beta1 integrins. Our results suggest that beta1 integrin is a common receptor for AfaD invasins and that additional AfaD-type-specific receptors exist.  相似文献   

17.
The outer membrane proteins YadA and invasin of Yersinia pseudotuberculosis promote invasion into mammalian cells through β1-integrins and trigger the production of interleukin (IL)-8. FAK, c-Src and the PI3 kinase were previously found to be important for both YadA- and invasin-promoted uptake. Here, we demonstrate that two different downstream effectors of PI3 kinase, Akt and phospholipase Cγ1 are required for efficient cell invasion. Inhibition of Akt or phospholipase C-γ (PLC-γ)1 by pharmaceutical agents as well as reduced expression of the isoforms Akt1 and Akt2, and of PLC-γ1 by RNA interference decreased entry of YadA- and Inv-expressing bacteria significantly. In addition, we report that the conventional protein kinases C (PKC)α and -β, positioned downstream of PLC-γ1, are activated upon Inv- or YadA-promoted cell entry. They colocalize with intracellular bacteria and their depletion by siRNA treatment also resulted in a strong reduction of cell entry. In contrast, neither Akt nor PLC-γ1, and the PKCs are essential for YadA- and Inv-mediated IL-8 synthesis and release. We conclude that YadA and invasin of Y. pseudotuberculosis both trigger similar signal transduction pathways during integrin-mediated phagocytosis into epithelial cells, which lead to the activation of Akt, PLC-γ1, PKCα and -β downstream of PI3 kinase, separate from the MAPK-dependent pathway that triggers IL-8 production.  相似文献   

18.
Beta1 integrins are anchored on the basal membrane of enterocytes, but little is known about their localization in M cells, which are the main entry route into the intestinal mucosa for many bacterial pathogens. In particular, it has been suggested that adhesion of enteropathogenic Yersinia to M cells is mediated by interaction of the bacterial protein invasin and apical beta1 integrins. Using a novel in vitro model of M cells, we demonstrate an augmented apical and basolateral targeting of beta1 integrins in M cells associated with increased total alpha chain synthesis. The alpha3 and alpha6 subunits were targeted to the basal pole, but alpha2 subunit was targeted at both poles. No other alpha subunit was found associated with apical beta1 integrins on M cells. Interestingly, Y. enterocolitica still adhered to the apical surface of M cells, despite the fact that alpha2beta1 is not a receptor for invasin. We therefore studied the adhesive properties of invasin-mutant Y. enterocolitica and invasin-expressing Escherichia coli on the apical surface of M cells. We show that it is not invasin, but the product of an as yet unidentified bacterial chromosomal gene, that is involved in the adhesion of Y. enterocolitica to the apical membrane of M cells.  相似文献   

19.
Yersinia enterocolitica, a facultative intracellular pathogen of mammals, readily enters (i.e., invades) cultured eukaryotic cells, a process that can be conferred by the cloned inv locus of the species. We have studied the mechanism by which the product of inv, a microbial outer membrane protein termed "invasin," mediates the internalization of bacteria by HEp-2 cells and chicken embryo fibroblasts. Invasin-bearing bacteria initially bound the filopodia and the leading edges of cultured cells. Multiple points of contact between the bacterial surface and the surface of the cell ensued and led to the internalization of the bacterium within an endocytic vacuole; the same multi-step process could be induced by an inert particle coated with invasin-containing membranes. Both adherence and internalization were blocked by an antisera directed against the beta 1 integrin cell-adherence molecule. Ultrastructural studies of detergent-insoluble cytoskeletons from infected cells and immunofluorescence microscopy of phalloidin-labeled cells showed alterations in the structure of the cytoskeleton during the internalization process including the accumulation of polymerized actin around entering bacteria. Bacterial entry was prevented by cytochalasin D indicating that the internalization process requires actin microfilament function. Possible linkages between beta 1 containing integrins and the cytoskeleton were examined during the internalization process through the use of protein-specific antibodies and immunofluorescence microscopy. Like actin, the actin-associated proteins filamin, talin and the beta 1 integrin subunit were also found to accumulate around entering bacteria. These findings suggest that the invasin-mediated internalization process is associated with cytoskeletal reorganization.  相似文献   

20.
R R Isberg  D L Voorhis  S Falkow 《Cell》1987,50(5):769-778
Bacterial strains harboring the Yersinia pseudotuberculosis inv locus were analyzed in order to investigate the mechanism of host cell penetration by an invasive pathogen. The inv locus was found to be necessary for Y. pseudotuberculosis to enter HEp-2 cells and sufficient to convert E. coli into a microorganism able to penetrate cultured cells. Both E. coli and Y. pseudotuberculosis strains harboring inv mutations were defective for entry into HEp-2 cells. Furthermore, molecular clones containing inv, and little additional DNA, converted E. coli into a microorganism that was indistinguishable from the parental Yersinia strain with regard to the entry of cultured cells. Data from in vitro protein synthesis indicated that a 103 kd protein was synthesized from inv, saturating the coding capacity of the locus. The nucleotide sequence shows an open reading frame corresponding to a protein of similar size. This protein, called invasin, is necessary for the microorganisms to penetrate HEp-2 cells, and is compartmentalized on the outer surface of the bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号