首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteria belonging to the Burkholderia cepacia complex (BCC) are important opportunistic pathogens in patients with cystic fibrosis (CF). Since approximately 80% of the CF isolates examined produce exopolysaccharide (EPS), it was hypothesized that this EPS may play a role in the colonization and persistence of these bacteria in the CF lung. The present study describes the identification and physical organization of the EPS biosynthetic gene cluster. This bce gene cluster was identified following the isolation of three EPS-defective mutants from the highly mucoid CF isolate IST408, belonging to BCC genomovar I, based on random plasposon insertion mutagenesis and comparison of the nucleotide sequence of the interrupted genes with the available genome of Burkholderia cenocepacia J2315. This 16.2 kb cluster includes 12 genes and is located on chromosome 2. Database searches for homologous proteins and secondary structure analysis for the deduced Bce amino acid sequences revealed genes predicted to encode enzymes required for the formation of nucleotide sugar precursors, glycosyltransferases involved in the repeat-unit assembly, and other proteins involved in polymerization and export of bacterial surface polysaccharides.  相似文献   

2.
The bceA J gene from the cystic fibrosis isolate Burkholderia cenocepacia J2315 encodes a 56-kDa bifunctional protein, with phosphomannose isomerase (PMI) and guanosine diphosphate (GDP)-mannose pyrophosphorylase (GMP) activities, a new member of the poorly characterised type II PMI class of proteins. Due to the lack of homology between the type II PMIs and the human PMI, this class of proteins are being regarded as interesting potential targets to develop new antimicrobials. The BceAJ protein conserves the four typical motifs of type II PMIs: the pyrophosphorylase signature, the GMP active site, the PMI active site and the zinc-binding motif. After overproduction of BceAJ by Escherichia coli as a histidine tag derivative, the protein was purified to homogeneity by affinity chromatography. The GMP activity is dependent on the presence of Mg2+ or Ca2+ as cofactors, while the PMI activity uses a broader range of divalent ions, in the order of activation Mg2+ > Ca2+ > Mn2+ > Co2+ > Ni2+. The kinetic parameters K m, V max and K cat/K m for the PMI and GMP activities were determined. Results suggest that the enzyme favours the formation of GDP-mannose instead of mannose catabolism, thus channelling precursors to the formation of glycoconjugates.  相似文献   

3.
4.
The Neurospora crassa mutant frost has a hyperbranching phenotype that can be corrected by adding Ca(2+), suggesting that characterization of this gene might clarify the mechanism of Ca(2+)-dependent tip growth. The wild-type allele was cloned by sib selection using protoplasts from arthroconidia. RFLP analysis revealed that the cloned DNA fragment mapped to the fr locus. The nucleotide sequence of genomic and cDNA was determined. The deduced amino acid sequence showed homology to the Saccharomyces cerevisiae CDC1 protein, implicated in manganese homeostasis. The fr mutant was sensitive to Mn(2+), and a revertant allele whose product differs by one amino acid was tolerant to Mn(2+). Mn(2+) depletion induced the wild-type strain to hyperbranch, resulting in a morphology similar to that of fr. The fr mutant was also sensitive to calcineurin inhibitors. These results suggest that fr is involved in Mn(2+) homeostasis and point to a role for Mn(2+) in Neurospora branching.  相似文献   

5.
In Paramecium, ciliary reversal is coupled with voltage-gated Ca(2+) channels on the ciliary membrane. We previously isolated a P. caudatum mutant, cnrC, with a malfunction of the Ca(2+) channels and discovered that the channel activity of cnrC was restored by transfection of the P. caudatum centrin (Pccentrin1p) gene, which encodes a member of the Ca(2+)-binding EF-hand protein family. In this study, we injected various mutated Pccentrin1p genes into cnrC and investigated whether these genes restore the Ca(2+) channel activity of cnrC. A Pccentrin1p mutant gene lacking Ca(2+) sensitivity of the third and fourth EF-hands lost the ability to restore the channel function of cnrC, and mutation of the fourth EF-hand caused more serious impairment than mutation of the third EF-hand. Moreover, a Pccentrin1p gene lacking the N-terminal 34-amino acid sequence also lost the ability to restore the channel activity. Native-PAGE analysis demonstrated that the N-terminal sequence is important for the Ca(2+)-dependent structural change of Pccentrin1p. These results demonstrate that Pccentrin1p Ca(2+)-dependently regulates the Ca(2+) channel activity in vivo.  相似文献   

6.
Omega-amino acid monooxygenases (EC 1.14.13.-), catalysing the formation of hydroxamate precursors of microbial siderophores (e.g., pyoverdine), have so far eluded structural and biochemical characterisation. Here, the expression of recombinant L-ornithine-Ndelta-oxygenase (PvdA) from Pseudomonas aeruginosa PAO1 is reported. A library of eight monoclonal antibodies (MAbs) directed against PvdA has been generated. Two MAb families recognising the N- and C-terminal regions of PvdA were identified. The MAbs made it possible to demonstrate that 45-48 kDa PvdA homologues are expressed in response to iron limitation by different species and strains of fluorescent pseudomonads. Despite the different degrees in sequence similarity between P. aeruginosa PvdA and putative homologues from Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas syringae, Burkholderia cepacia, and Ralstonia solanacearum, in silico domain scanning predicts an impressive conservation of putative cofactor and substrate binding domains. The MAb library was also used to monitor PvdA expression during the transition of P. aeruginosa from iron-sufficient to iron-deficient growth.  相似文献   

7.
Bacteria belonging to the Burkholderia cepacia complex (Bcc) are interesting for their involvement in pulmonary infections in patients affected by cystic fibrosis (CF) or chronic granulomatous disease. Many Bcc strains isolated from CF patients produce high amounts of exopolysaccharides (EPS). Although different strains sometimes biosynthesise different EPS, the majority of Bcc bacteria produce only one type of polysaccharide, which is called cepacian. The polymer has a unique heptasaccharidic repeating unit, containing three side chains, and up to three O-acetyl substituents.. We here report for the first time the isolation and characterisation of a lyase active towards cepacian produced by a Bacillus sp., which was isolated in our laboratory. The enzyme molecular mass, evaluated by size-exclusion chromatography, is 32,700+/-1500Da. The enzyme catalyses a beta-elimination reaction of the disaccharide side chain beta-d-Galp-(1-->2)-alpha-d-Rhap-(1--> from the C-4 of the glucuronic acid residue present in the polymer backbone. Although active on both native and de-acetylated cepacian, the enzyme showed higher activity on the latter polymer.  相似文献   

8.
The discovery and biochemical characterization of the secretory pathway Ca(2+)-ATPase, PMR1, in Saccharomyces cerevisiae, has paved the way for identification of PMR1 homologues in many species including rat, Caenorhabditis elegans, and Homo sapiens. In yeast, PMR1 has been shown to function as a high affinity Ca(2+)/Mn(2+) pump and has been localized to the Golgi compartment where it is important for protein sorting, processing, and glycosylation. However, little is known about PMR1 homologues in higher organisms. Loss of one functional allele of the human gene, hSPCA1, has been linked to Hailey-Hailey disease, characterized by skin ulceration and improper keratinocyte adhesion. We demonstrate that expression of hSPCA1 in yeast fully complements pmr1 phenotypes of hypersensitivity to Ca(2+) chelators and Mn(2+) toxicity. Similar to PMR1, epitope-tagged hSPCA1 also resides in the Golgi when expressed in yeast or in chinese hamster ovary cells. (45)Ca(2+) transport by hSPCA1 into isolated yeast Golgi vesicles shows an apparent Ca(2+) affinity of 0.26 microm, is inhibitable by Mn(2+), but is thapsigargin-insensitive. In contrast, heterologous expression of vertebrate sarcoplasmic reticulum and plasma membrane Ca(2+)-ATPases in yeast complement the Ca(2+)- but not Mn(2+)-related phenotypes of the pmr1-null strain, suggesting that high affinity Mn(2+) transport is a unique feature of the secretory pathway Ca(2+)-ATPases.  相似文献   

9.
The Saccharomyces cerevisiae MID1 gene product (Mid1) is a stretch-activated Ca(2+)-permeable channel component required for Ca2+ influx and the maintenance of viability of cells exposed to the mating pheromone, alpha-factor. It is composed of 548-amino-acid (aa) residues with four hydrophobic segments, H1 (aa 2-22), H2 (aa 92-111), H3 (aa 337-356) and H4 (aa 366-388). It also has 16 putative N-glycosylation sites. In this study, sequentially truncated Mid1 proteins conjugated with GFP were expressed in S. cerevisiae cells. The truncated protein containing the region from H1 to H3 (Mid1(1-360)-GFP) localized normally in the plasma and endoplasmic reticulum (ER) membranes and complemented the low viability and Ca(2+)-uptake activity of the mid1 mutant, whereas Mid1(1-133)-GFP containing the region from H1 to H2 did not. Mid1(Delta3-22)-GFP lacking the H1 region failed to localize in the plasma membrane. Membrane fractionation showed that Mid1(1-22)-GFP containing only H1 localized in the plasma membrane in the presence of alpha-factor, suggesting that H1 is a signal sequence responsible for the alpha-factor-induced Mid1 delivery to the plasma membrane. The region from H1 to H3 is required for the localization of Mid1 in the plasma and ER membranes. Finally, trafficking of Mid1-GFP to the plasma membrane was dependent on the N-glycosylation of Mid1 and the transporter protein Sec12.  相似文献   

10.
Acyl-homoserine lactone (acyl-HSL) quorum sensing is common to many Proteobacteria including a clinical isolate of Burkholderia cepacia. The B. cepacia isolate produces low levels of octanoyl-HSL. We have examined an environmental isolate of Burkholderia vietnamiensis. This isolate produced several acyl-HSLs. The most abundant species was decanoyl-HSL. Decanoyl-HSL in B. vietnamiensis cultures reached concentrations in excess of 20 microM. We isolated a B. vietnamiensis DNA fragment containing a gene for the synthesis of decanoyl-HSL (bviI) and an open reading frame that codes for a putative signal receptor (bviR). A B. vietnamiensis bviI mutant did not produce detectable levels of decanoyl-HSL.  相似文献   

11.
In the budding yeast Saccharomyces cerevisiae, mutations in the essential gene CDC1 cause defects in Golgi inheritance and actin polarization. However, the biochemical function of Cdc1p is unknown. Previous work showed that cdc1 mutants accumulate intracellular Ca(2+) and display enhanced sensitivity to the extracellular Mn(2+) concentration, suggesting that Cdc1p might regulate divalent cation homeostasis. By contrast, our data indicate that Cdc1p is a Mn(2+)-dependent protein that can affect Ca(2+) levels. We identified a cdc1 allele that activates Ca(2+) signaling but does not show enhanced sensitivity to the Mn(2+) concentration. Furthermore, our studies show that Cdc1p is an endoplasmic reticulum-localized transmembrane protein with a putative phosphoesterase domain facing the lumen. cdc1 mutant cells accumulate an unidentified phospholipid, suggesting that Cdc1p may be a lipid phosphatase. Previous work showed that deletion of the plasma membrane Ca(2+) channel Cch1p partially suppressed the cdc1 growth phenotype, and we find that deletion of Cch1p also suppresses the Golgi inheritance and actin polarization phenotypes. The combined data fit a model in which the cdc1 mutant phenotypes result from accumulation of a phosphorylated lipid that activates Ca(2+) signaling.  相似文献   

12.
In plant cells, Al ion plays dual roles as an inducer and an inhibitor of Ca(2+) influx depending on the concentration. Here, the effects of Al on Ca(2+) signaling were assessed in tobacco BY-2 cells expressing aequorin and a putative plant Ca(2+) channel from Arabidopsis thaliana, AtTPC1 (two-pore channel 1). In wild-type cells (expressing only aequorin), Al treatment induced the generation of superoxide, and Ca(2+) influx was secondarily induced by superoxide. Higher Al concentrations inhibited the Al-stimulated and superoxide-mediated Ca(2+) influx, indicating that Ca(2+) channels responsive to reactive oxygen species (ROS) are blocked by high concentration of Al. H(2)O(2)-induced Ca(2+) influx was also inhibited by Al. Thus, inhibitory action of Al against ROS-induced Ca(2+) influx was confirmed. Similarly, known Ca(2+) channel blockers such as ions of La and Gd inhibited the H(2)O(2)-induced Ca(2+) influx. While La also inhibited the hypoosmotically induced Ca(2+) influx, Al showed no inhibitory effect against the hypoosmotic Ca(2+) influx. The effects of Al and La on Ca(2+) influx were also tested in the cell line overexpressing AtTPC1 and the cell line AtTPC1-dependently cosuppressing the endogenous TPC1 equivalents. Notably, responsiveness to H(2)O(2) was lost in the cosuppression cell line, thus TPC1 channels are required for ROS-responsive Ca(2+) influx. Data also suggested that hypoosmotic shock induces TPC1-independent Ca(2+) influx and Al shows no inhibitory action against the TPC1-independent event. In addition, AtTPC1 overexpression resulted in a marked increase in Al-sensitive Ca(2+) influx, indicating that TPC1 channels participate in osmotic Ca(2+) influx only when overexpressed. We concluded that members of TPC1 channel family are the only ROS-responsive Ca(2+) channels and are the possible targets of Al-dependent inhibition.  相似文献   

13.
Thirteen strains of Burkholderia cepacia from various origins with mucoid and non-mucoid phenotypes were assayed for exopolysaccharide (EPS) production. The EPS were characterized by glycosyl composition analysis and examination of the products resulting from lithium-ethylenediamine and Smith degradations. The results showed that all strains, including the non-mucoid strains, were able to produce EPS exhibiting the same structural features, i.e. presence of one rhamnosyl, three galactosyl, one mannosyl, one glucosyl and one glucuronosyl residues, suggesting that this EPS is representative of the B. cepacia species.  相似文献   

14.
The CCZ1 (YBR131w) gene encodes a protein required for fusion of various transport intermediates with the vacuole. Ccz1p, in a complex with Mon1p, is a close partner of Ypt7p in the processes of fusion of endosomes to vacuoles and homotypic vacuole fusion. In this work, we exploited the Ca(2+)-sensitivity of the ccz1Delta mutant to identify genes specifically interacting with CCZ1, basing on functional multicopy suppression of calcium toxicity. The presented results indicate that Ccz1p functions in the cell either in association with Mon1p and Ypt7p in fusion at the vacuolar membrane, or--separately--with Arl1p at early steps of vacuolar transport. We also show that suppression of calcium toxicity by the calcium pumps Pmr1p and Pmc1p is restricted only to the subset of mutants defective in vacuole morphology. The mechanisms of Ca(2+)-pump-mediated suppression also differ from each other, since the action of Pmr1p, but not Pmc1p, appears to require Arl1p function.  相似文献   

15.
Using probes constructed from Ralstonia solanacearum and Burkholderia pseudomallei, putative type III secretion (TTS) genes were identified in Burkholderia cepacia J2315 (genomovar III). A cosmid clone containing DNA with homology to five TTS genes was sub-cloned and regions were sequenced in order to design oligonucleotides for polymerase chain reaction assays. These indicated that two putative TTS genes (bcscQ and bcscV) were present in all members of the B. cepacia complex with the exception of strains from genomovar I. Southern blot assays confirmed this observation, suggesting that the lack of a TTS gene cluster may define a major difference between B. cepacia genomovar I and other members of the B. cepacia complex, including genomovar III. In contrast to TTS gene clusters in other bacteria, a putative gene homologous to the virB1 gene of Brucella suis was located directly downstream of bcscQR.  相似文献   

16.
Mutants of the plasma membrane Ca(2+) pump (human isoform 4xb) with deletions in the linker between domain A and transmembrane segment M3 (A(L) region) were constructed and expressed in Chinese hamster ovary cells. The total or partial removal of the amino acid segment 300-349 did not change the maximal Ca(2+) transport activity, but mutants with deletions involving residues 300-338 exhibited a higher apparent affinity for Ca(2+) than the wild type h4xb enzyme. Deletion of the putative acidic lipid interacting sequence (residues 339-349) had no observable functional consequences. The removal of either residues 300-314 or 313-338 resulted in a similar increase in the apparent Ca(2+) affinity of the pump although the increase was somewhat lower than that obtained by the deletion 300-349 suggesting that both deletions affected the same structural determinant. The results show that alterations in the region of the alternative splicing site A change the sensitivity to Ca(2+) of the human isoform 4 of the PMCA.  相似文献   

17.
The O-chain polysaccharide of the lipopolysaccharide from the endophytic bacterium Burkholderia cepacia strain was characterized. The structure was studied by means of chemical analysis and 2D NMR spectroscopy and shown to be the following: -->2)-beta-D-Ribf-(1-->6)-alpha-D-Glcp-(1-->.  相似文献   

18.
Calcium ions, present inside all eukaryotic cells, are important second messengers in the transduction of biological signals. In mammalian cells, the release of Ca(2+) from intracellular compartments is required for signaling and involves the regulated opening of ryanodine and inositol-1,4,5-trisphosphate (IP3) receptors. However, in budding yeast, no signaling pathway has been shown to involve Ca(2+) release from internal stores, and no homologues of ryanodine or IP3 receptors exist in the genome. Here we show that hyperosmotic shock provokes a transient increase in cytosolic Ca(2+) in vivo. Vacuolar Ca(2+), which is the major intracellular Ca(2+) store in yeast, is required for this response, whereas extracellular Ca(2+) is not. We aimed to identify the channel responsible for this regulated vacuolar Ca(2+) release. Here we report that Yvc1p, a vacuolar membrane protein with homology to transient receptor potential (TRP) channels, mediates the hyperosmolarity induced Ca(2+) release. After this release, low cytosolic Ca(2+) is restored and vacuolar Ca(2+) is replenished through the activity of Vcx1p, a Ca(2+)/H(+) exchanger. These studies reveal a novel mechanism of internal Ca(2+) release and establish a new function for TRP channels.  相似文献   

19.
The assembly of sarcomeres, the smallest contractile units in striated muscle, is a complex and highly coordinated process that relies on spatio-temporal organization of sarcomeric proteins, a process requiring spontaneous Ca(2+) transients. To investigate the relationship between Ca(2+) transients and sarcomere assembly in C2C12 myotubes, we employed electric pulse stimulation (EPS), which allows the frequency of Ca(2+) transients to be manipulated. We monitored contractile activity as a means of evaluating functional sarcomere establishment using the differential image subtraction (DIS) method. C2C12 myotubes initially displayed no contractility with EPS, due to a lack of sarcomere architecture. However, C2C12 myotubes showed remarkable contractile activity with EPS-induced repetitive Ca(2+) transients (1 Hz) within only 2 h. This activity was concurrent with the development of sarcomere structure. Importantly, the period required for the acquisition of contractile activity in response to excitation was dependent upon the frequency of Ca(2+) oscillations, but a sustained increase in intracellular Ca(2+) (not oscillatory) by high-frequency EPS (10 Hz) was incapable of conferring either contractility or sarcomere assembly on the myotubes. The EPS-facilitated de novo functional sarcomere assembly appeared to require calpain-mediated proteolysis. In addition, modulation of integrin signals, by adding collagen IV or RGD-peptide, significantly affected the EPS-induced development of contractility. Taken together, these observations indicate that the frequency of the Ca(2+) oscillation determines the time required to establish functionally active sarcomere assembly and also suggest that the Ca(2+) oscillatory signal may be decoded through reorganization of the integrin-cytoskeletal protein complex via calpain-mediated proteolysis.  相似文献   

20.
Plants can grow in soils containing highly variable amounts of mineral nutrients, like Ca(2+) and Mn(2+), though the mechanisms of adaptation are poorly understood. Here, we report the first genetic study to determine in vivo functions of a Ca(2+) pump in plants. Homozygous mutants of Arabidopsis harboring a T-DNA disruption in ECA1 showed a 4-fold reduction in endoplasmic reticulum-type calcium pump activity. Surprisingly, the phenotype of mutant plants was indistinguishable from wild type when grown on standard nutrient medium containing 1.5 mM Ca(2+) and 50 microM Mn(2+). However, mutants grew poorly on medium with low Ca(2+) (0.2 mM) or high Mn(2+) (0.5 mM). On high Mn(2+), the mutants failed to elongate their root hairs, suggesting impairment in tip growth processes. Expression of the wild-type gene (CAMV35S::ECA1) reversed these conditional phenotypes. The activity of ECA1 was examined by expression in a yeast (Saccharomyces cerevisiae) mutant, K616, which harbors a deletion of its endogenous calcium pumps. In vitro assays demonstrated that Ca(2+), Mn(2+), and Zn(2+) stimulated formation of a phosphoenzyme intermediate, consistent with the translocation of these ions by the pump. ECA1 provided increased tolerance of yeast mutant to toxic levels of Mn(2+) (1 mM) and Zn(2+)(3 mM), consistent with removal of these ions from the cytoplasm. These results show that despite the potential redundancy of multiple Ca(2+) pumps and Ca(2+)/H(+) antiporters in Arabidopsis, pumping of Ca(2+) and Mn(2+) by ECA1 into the endoplasmic reticulum is required to support plant growth under conditions of Ca(2+) deficiency or Mn(2+) toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号