首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies carried out in hypophysectomized adult rats have demonstrated that both thyroid hormone and GH can suppress hepatic expression of the steroid 6 beta-hydroxylase P450 2a (IIIA2). The present study further characterizes the influence of thyroid hormone on the expression of P450 2a and two other male-specific hepatic P450s, a steroid 2 alpha/16 alpha-hydroxylase, designated P450 2c (IIC11), and a steroid 15 alpha-hydroxylase, designated P450 RLM2 (IIA2). These studies were carried out in rats rendered hypothyroid by treatment with methimazole, which allows for the nonsurgical depletion of circulating T4, and in hypophysectomized rats. Hypothyroidism led to an increase in hepatic P450 2a (IIIA2) protein and mRNA in both male and female rats that was fully reversed by T4 replacement. In contrast, hypothyroidism decreased by 70-80% the expression of P450 2c (IIC11) activity and mRNA, but did not significantly alter the expression of P450 RLM2 (IIA2). The decrease in P450 2c (IIC11) was not reversed by T4 replacement, suggesting that it is a consequence of the loss of plasma GH pulses that occurs secondary to hypothyroidism. In agreement with these findings, T4 given to hypophysectomized rats partially suppressed the expression of P450 2a (IIIA2) mRNA, but not P450 2c (IIC11) or P450 RLM2 (IIA2) mRNA. A more complete suppression of P450 2a (IIIA2) mRNA as well as P450 2c (IIC11) mRNA was achieved when the hypophysectomized rats were treated with T3 at a supraphysiological, receptor-saturating dose. Although GH administered to intact male rats by continuous infusion fully suppressed all three male-specific P450 proteins and their mRNAs, the same treatment given to hypothyroid rats was only partially suppressive in the case of P450 2a (IIIA2) and P450 RLM2 (IIA2), unless combined with T4. In the case of P450 2c (IIC11), substantial suppression of the residual P450 present in hypothyroid rats was achieved by treatment with GH alone, despite persistent thyroid hormone deficiency. These studies demonstrate that while thyroid hormone is a negative regulator of P450 2a (IIIA2) expression and is required for the full suppression of that P450 and P450 RLM2 (IIA2) by the continuous plasma GH profiles associated with adult female rats, the suppression of P450 2c (IIC11) by continuous plasma GH is largely independent of the presence of thyroid hormone.  相似文献   

2.
3.
4.
Liver uptake of thyroxine (T4) is mediated by transporters and is rate limiting for hepatic 3,3',5-triiodothyronine (T3) production. We investigated whether hepatic mRNA for T4 transporters is regulated by thyroid state using Xenopus laevis oocytes as an expression system. Because X. laevis oocytes show high endogenous uptake of T4, T4 sulfamate (T4NS) was used as an alternative ligand for the hepatic T4 transporters. Oocytes were injected with 23 ng liver mRNA from euthyroid, hypothyroid, or hyperthyroid rats, and after 3-4 days uptake was determined by incubation of injected and uninjected oocytes for 1 h at 25 degrees C or for 4 h at 18 degrees C with 10 nM [125I]T4NS. Expression of type I deiodinase (D1), which is regulated by thyroid state, was studied in the oocytes as an internal control. Uptake of T4NS showed similar approximately fourfold increases after injection of liver mRNA from euthyroid, hypothyroid, or hyperthyroid rats. A similar lack of effect of thyroid state was observed using reverse T3 as ligand. In contrast, D1 activity induced by liver mRNA from hyperthyroid and hypothyroid rats in the oocytes was 2.4-fold higher and 2.7-fold lower, respectively, compared with euthyroid rats. Studies have shown that uptake of iodothyronines in rat liver is mediated in part by several organic anion transporters, such as the Na+/taurocholate-cotransporting polypeptide (rNTCP) and the Na-independent organic anion-transporting polypeptide (rOATP1). Therefore, the effects of thyroid state on rNTCP, rOATP1, and D1 mRNA levels in rat liver were also determined. Northern analysis showed no differences in rNTCP or rOATP1 mRNA levels between hyperthyroid and hypothyroid rats, whereas D1 mRNA levels varied widely as expected. These results suggest little effect of thyroid state on the levels of mRNA coding for T4 transporters in rat liver, including rNTCP and rOATP1. However, they do not exclude regulation of hepatic T4 transporters by thyroid hormone at the translational and posttranslational level.  相似文献   

5.
The purpose of this study was to determine the effect of thyroid status on the Na,K-ATPase alpha isoforms and beta in rat heart, skeletal muscle, kidney, and brain at the levels of mRNA, protein abundance, and enzymatic activity. Northern and dot-blot analysis of RNA (euthyroid, hypothyroid, and triiodothyronine-injected hypothyroids = hyperthyroids) and immunoblot analysis of protein (euthyroid and hypothyroid) revealed isoform-specific regulation of Na,K-ATPase by thyroid status in kidney, heart, and skeletal muscle and no regulation of sodium pump subunit levels in the brain. In general, in the transition from euthyroid to hypothyroid alpha 1 mRNA and protein levels are unchanged in kidney and skeletal muscle and slightly decreased in heart, while alpha 2 mRNA and protein are decreased significantly in heart and skeletal muscle. In hypothyroid heart and skeletal muscle, the decrease in alpha 2 protein levels was much greater than the decrease in alpha 2 mRNA levels relative to euthyroid indicating translational or post-translational regulation of alpha 2 protein abundance by triiodothyronine status in these tissues. The regulation of beta subunit by thyroid status is tissue-dependent. In hypothyroid kidney beta mRNA levels do not change, but immunodetectable beta protein levels decrease relative to euthyroid, and the decrease parallels the decrease in Na,K-ATPase activity. In hypothyroid heart and skeletal muscle beta mRNA levels decrease; beta protein decreases in heart and was not detected in the skeletal muscle. These findings demonstrate that the euthyroid levels of expression of alpha 1 in heart, alpha 2 in heart and skeletal muscle, and beta in kidney, heart, and skeletal muscle are dependent on the presence of thyroid hormone.  相似文献   

6.
7.
We have studied the influence of thyroid hormone status in vivo on expression of the genes encoding guanine nucleotide-binding regulatory protein (G protein) alpha-subunits Gs alpha, Gi alpha(2), Gi alpha(3), and both the 36-kDa form (beta 1) and the 35-kDa form (beta 2) of the beta-subunit in rat ventricle. The relative amounts of immunoactive Gi alpha(2) and Gi alpha(3) were greater in ventricular membranes from hypothyroid animals than from euthyroid animals (1.9- and 2.6-fold, respectively). A corresponding 2.3-fold increase in Gi alpha(2) mRNA was observed as well as a 1.5-fold increase in Gi alpha(3) mRNA. The relative amounts of immunoactive beta 1 and beta 2 polypeptides were also increased (2.8- and 1.8-fold, respectively) in the hypothyroid state and corresponded with comparable increases in the relative levels of beta 1 and beta 2 mRNAs. No difference was seen between the amounts of Gi alpha(2), Gi alpha(3), beta 1, and beta 2 in the euthyroid state and the hyperthyroid state. In contrast to these effects of thyroid hormone status on Gi alpha and beta, the steady-state amounts of Gs alpha protein and mRNA were not altered by thyroid hormone status. Thyroid hormone status did not alter sensitivity of adenylyl cyclase to stimulation by sodium fluoride or guanyl-5'-yl imidodiphosphate (GppNHp), nor did it influence GppNHp-induced inhibition of forskolin-stimulated enzyme activity. These results demonstrate that thyroid hormone status in vivo can regulate expression of specific G protein subunits in rat myocardium. However, the physiological consequences of these changes remain unclear.  相似文献   

8.
We recently postulated that hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase functions as a cholesterol buffer to protect against the serum and tissue cholesterol raising action of dietary cholesterol. This postulate predicts that diminished basal expression of hepatic HMG-CoA reductase results in increased sensitivity to dietary cholesterol. Because diabetic and hypothyroid animals are known to have markedly reduced hepatic HMG-CoA reductase, these animals were selected as models to test our postulate. When rats were rendered diabetic with streptozotocin, their hepatic HMG-CoA reductase activity decreased from 314 to 22 pmol. min(-1). mg(-1), and their serum cholesterol levels increased slightly. When the diabetic animals were challenged with a diet containing 1% cholesterol, their serum cholesterol levels doubled, and their hepatic reductase activity decreased further to 0.9 pmol. min(-1). mg(-1). Hepatic low-density lipoprotein (LDL) receptor immunoreactive protein levels were unaffected in the diabetic rats whether fed cholesterol-supplemented diets or not. In rats rendered hypothyroid by thyroparathyroidectomy, serum cholesterol levels rose from 100 to 386 mg/dl in response to the 1% cholesterol challenge, whereas HMG-CoA reductase activity dropped from 33.8 to 3.4 pmol. min(-1). mg(-1). Hepatic LDL receptor immunoreactive protein levels decreased only slightly in the hypothyroid rats fed cholesterol-supplemented diets. Taken together, these results show that rats deficient in either insulin or thyroid hormone are extremely sensitive to dietary cholesterol largely due to low basal expression of hepatic HMG-CoA reductase.  相似文献   

9.
This study investigates effects of chronic low frequency stimulation (CLFS) on myosin heavy (MHC) and light chain (MLC) expression in fast-twitch muscles in hypothyroid, euthyroid, and hyperthyroid rats. The changes at both the mRNA and protein level indicated antagonistic effects of thyroid hormone and CLFS: under euthyroid conditions, CLFS mainly elicited a MHCIIb----MCHIId----MHCIIa transition. Whereas CLFS did not induce the slow MHCI in the euthyroid state, this isoform was present in the hypothyroid state and was further enhanced with CLFS indicating the suppressive effect of thyroid hormone to be stronger than the inductive influence of CLFS. Hyperthyroidism alone suppressed the expression MHCIIa and enhanced a MHCIId to MHCIIb transition. This shift to the faster MHC isoforms was only partially counteracted by CLFS. Thus, it appeared that thyroid hormone had a graded suppressive effect on the expression of MHC isoforms in the order MHCIId less than MHCIIa less than MHCI. Elevated neuromuscular activity partially counteracted these hormone effects. Changes in MLC mRNAs were consistent with those in the MHC pattern, i.e. increases or decreases in MHCIIb led to corresponding changes in the expression of MLC3f. A similar relationship existed for the slow MHCI and the slow MLC isoforms.  相似文献   

10.
Thyroid hormones regulate G-protein beta-subunit mRNA expression in vivo   总被引:2,自引:0,他引:2  
Thyroid hormones exert "permissive effects" on the hormone-sensitive adenylate cyclase. Regulation of the expression of Gi (Gi alpha 2) and Gs by thyroid hormones in vivo was investigated at the level of mRNA. Steady-state levels of the mRNA for Gi alpha 2 and Gs alpha, as well as the G beta-subunits, were quantified using DNA excess solution hybridization analysis. Regulation of protein and mRNA expression in adipose tissue was investigated in hypothyroid, euthyroid, and hyperthyroid rats. In euthyroid animals, steady-state levels of mRNA (amol/microgram RNA) were 13.8, 5.9, and 5.7 for Gs alpha, Gi alpha 2, and G beta 1,2, respectively. Activation of adenylate cyclase by Gs is unaffected by thyroid status. Both Gs alpha and Gs alpha mRNA levels in hypothyroid rats were the same as those of controls (euthyroid). The inhibitory control of adenylate cyclase, in contrast, is markedly potentiated in hypothyroid rats. The expression of G1 alpha s and G beta-subunits was increased in hypothyroidism. Whereas Gi alpha 2 mRNA levels remained essentially unchanged, G beta 1,2 mRNA levels were observed to increase 45% in the hypothyroid state. In the hyperthyroid state G beta 1,2 mRNA levels were observed to decline by 35%. Regulation of G-protein subunit expression, at the level of mRNA, appears to be one component of permissive hormone action on transmembrane signalling.  相似文献   

11.
Hepatic phosphoenolpyruvate carboxykinase (PEPCK) is significantly increased in the hyperthyroid starved rat, and moderately decreased in the hypothyroid starved rat. As tri-iodothyronine by itself has only a small and sustained effect on the induction of this enzyme, as was previously shown in the isolated perfused organ, the effect of hypo- and hyper-thyroidism on the increase in cytosolic PEPCK provoked by dibutyryl cyclic AMP (Bt2cAMP) was investigated in vivo and in the isolated perfused liver. Compared with euthyroid fed controls, in hypothyroid fed rats Bt2cAMP provoked in 2 h only a small increase in translatable mRNA coding for PEPCK. In contrast, in hyperthyroid animals PEPCK mRNA as measured by translation in vitro was already increased in the fed state, and further enhanced by Bt2cAMP injection to values as in euthyroid controls. Under all thyroid states a close correlation between PEPCK mRNA activity and PEPCK synthesis was observed. In the isolated perfused liver from the hyperthyroid fed rat, the increase in PEPCK provoked by Bt2cAMP or Bt2cAMP + isobutylmethylxanthine was considerably enhanced compared with those obtained in livers of hypothyroid rats. Also, adrenaline provoked a stimulated induction of PEPCK in hyperthyroid rats compared with hypothyroid rats. To summarize, our data indicate that the primary action of thyroid hormones on the synthesis of hepatic cytosolic PEPCK is to accelerate the cyclic AMP- or adrenaline-induction of the enzyme, acting primarily at a pretranslational level.  相似文献   

12.
A novel zinc transporter has been purified and cloned from rat renal brush border membrane. This transporter was designated as Zip10 encoded by Slc39a10 gene and characterized as zinc importer. Present study documents the impact of thyroid hormones on the expression of Zip10 encoded by Slc39a10 gene in rat model of hypo and hyperthyroidism. Serum T(3) and T(4) levels were reduced significantly in hypothyroid rats whereas these levels were significantly elevated in hyperthyroid rats as compared to euthyroid rats thereby confirming the validity of the model. Kinetic studies revealed a significant increase in the initial and equilibrium uptake of Zn(++) in both intestinal and renal BBMV of hyperthyroid rats in comparison to hypothyroid and euthyroid rats. By RT-PCR, Slc39a10 mRNA expression was found to be significantly decreased in hypothyroid and increased in hyperthyroid as compared to euthyroid rats. These findings are in conformity with the immunofluorescence studies that revealed markedly higher fluorescence intensity at periphery of both intestinal and renal cells isolated from hyperthyroid rats as compared to hypothyroid and euthyroid rats. Higher expression of Zip10 protein in hyperthyroid group was also confirmed by western blot. These findings suggest that expression of zinc transporter protein Zip10 (Slc39a10) in intestine and kidney is positively regulated by thyroid hormones.  相似文献   

13.
Recent studies have described a DNase I hypersensitive site in the 5'-flanking region of the rat hepatic S14 gene that is closely associated with its expression. A 111-base pair subfragment (-389 to -279) of this region interacts specifically in a gel shift assay with a protein present in hepatic nuclear protein extracts. This protein, designated P1, was not present in extracts of other tissues, even those in which the gene is expressed and hormonally regulated. The binding activity of P1 is exceedingly low in extracts from hypothyroid rats and is markedly increased by administration of thyroid hormone. However, the slow accumulation of P1 after thyroid hormone administration indicates that increased levels of P1 are not necessary for the acute hormonal induction of S14 gene expression. The level of P1 binding activity increases in the evening, synchronous with circadian variation of hepatic mRNA S14. Since neither P1 binding activity nor circadian variation in mRNA-S14 levels are observed in the other tissues expressing the S14 gene, P1 may function to modulate the circadian rhythm observed in hepatic S14 gene expression. DNase I footprinting analysis revealed that P1 binds to a defined nucleotide sequence, 5'-AAAAGAGCTATTGATTGCCTGCA-3', located between -310 and -288 in the S14 gene.  相似文献   

14.
15.
16.
17.
The respiratory capacities of hepatocytes, derived from hypothyroid, euthyroid and hyperthyroid rats, have been compared by measuring rates of oxygen uptake and by titrating components of the respiratory chain with specific inhibitors. Thyroid hormone increased the maximal rate of substrate-stimulated respiration and also increased the degree of ionophore-stimulated oxygen uptake. In titration experiments, similar concentrations of oligomycin or antimycin were required for maximal inhibition of respiration regardless of thyroid state, suggesting that the changes in respiratory capacity were not the result of variation in the amounts of ATP synthase or cytochrome b. However, less rotenone was required for maximal inhibition of respiration in the hypothyroid state than in cells from euthyroid or hyperthyroid rats, implying that hepatocytes from hypothyroid animals contain less NADH dehydrogenase. The concentration of carboxyatractyloside necessary for maximal inhibition of respiration was 100 microM in hepatocytes from hypothyroid rats, but 200 microM and 300 microM in hepatocytes from euthyroid and hyperthyroid rats, respectively, indicating a possible correlation between levels of thyroid hormone and the amount or activity of adenine nucleotide translocase. The increased capacity for coupled respiration in response to thyroid hormone is not associated with an increase in the components of the electron transport chain or ATP synthase, but correlates with an increased activity of adenine nucleotide translocase.  相似文献   

18.
19.
20.
Metabolism of apolipoprotein (apo)A-I was studied in normal and chow-fed hyperthyroid rats, in 24-h fasted untreated male rats, and in rats after thyroparathyroidectomy (TXPTX). Rats were made hyperthyroid by administration of T3 (9.6 micrograms/day) or T4 (30 micrograms/day) with an Alzet osmotic minipump. Hyperthyroidism produced a similar two- to threefold elevation in plasma levels of apoA-I in male or female animals. During treatment with T3, plasma levels of T3 ranged from 200 to 400 ng/dl and did not correlate with plasma apoA-I levels. The net mass secretion and synthesis ([3H]leucine incorporation) of apoA-I by perfused livers from male hyperthyroid rats was elevated, while secretion of albumin was not different than that of euthyroid rats. Furthermore, the incorporation of [3H]leucine into total perfusate and hepatic protein was not altered by hyperthyroidism. The effect of thyroid hormone on apoA-I synthesis, therefore, does not appear to be a general effect on protein synthesis. After longer periods of treatment (28 days) with T3 (9.6 micrograms/day), hepatic apoA-I production decreased from that observed after 7 or 14 days of treatment, yet plasma apoA-I concentrations remained elevated. Plasma T3 decreased from 100 ng/dl to 40 ng/dl, in the hypothyroid rat resulting from TXPTX, but the plasma concentration of apoA-I did not change during the 2-week experimental period. The net secretion of apoA-I by livers from hypothyroid animals was depressed and albumin was uneffected compared to the euthyroid. Overnight fasting of euthyroid rats did not alter hepatic apoA-I secretion or plasma apoA-I levels, although under fasting conditions we had reported that hepatic output of apoB and E of VLDL is depressed. The addition of oleic acid to the perfusion medium, sufficient to stimulate VLDL production, did not affect net hepatic secretion of apoA-I by livers from euthyroid, hyperthyroid, or hypothyroid rats. In summary, hepatic synthesis of apoA-I appears to be controlled independently of other apo-lipoproteins and secretory proteins (albumin). Hepatic apoA-I synthesis is sensitive to thyroid status, increased in the hyperthyroid and decreased in the hypothyroid state. The specific stimulation of hepatic synthesis and secretion of apoA-I in the hyperthyroid state, however, tends to normalize over an extended period, perhaps from compensatory effects of a hormonal nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号