首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mismatch repair (MMR) is involved in the removal of mispaired bases from DNA and thus plays an important role in the maintenance of genomic stability and the prevention of mutations and cancer. Moreover, MMR triggers genotoxicity and apoptosis upon processing of DNA lesions such as O6-methylguanine. Whereas the enzymology of MMR has been elucidated in great detail, only limited data are available concerning its regulation. Here we show that the major mismatch-binding proteins MSH2 and MSH6, forming the MutSα complex, are phosphorylated in vitro by protein kinase C and casein kinase II, but not by protein kinase A. Phosphorylation of MSH2 and MSH6 was also found within the cell, with MSH6 being more extensively phosphorylated than MSH2. Lack of MSH2 and MSH6 phosphorylation in vivo due to phosphate depletion, kinase inhibition (by H7 and quercetin) and treatment with phosphatases (CIP, SAP and λ-PPase) significantly reduced mismatch-binding activity of MutSα. It also prevented methylation-induced nuclear translocation of the repair complex, indicating that nuclear translocation of MutSα upon mutagen treatment is dependent on protein phosphorylation. The finding that MSH2 and MSH6 are subject to phosphorylation resulting in increased mismatch binding by MutSα indicates a novel type of post-translational regulation of MMR which might be involved in the response of cells to genotoxic stress.  相似文献   

3.
We screened for the major essential single-nucleotide polymorphism (SNP) variant that might be associated with the MSH2 gene based on the data available from three types of human tissue samples [156 lymphoblastoid cell variations (LCL), 160 epidermis, 166 fat]. An association analysis confirmed that the KCNK12 SNP variant (rs748780) was highly associated (p value 9 × 10?4) with the MSH2 gene for all three samples. Using SNP identification, we further found that the recognized SNP was also relevant among Hapmap populations. Techniques that display specific SNPs associated with the gene of interest or nearby genes provide more reliable genetic associations than techniques that rely on data from individual SNPs. We investigated the MSH2 gene regional linkage association with the determined SNP (rs748780), KCNK12 variant (Allele T>C) in the intronic region, in HapMap3 full dataset populations, Yoruba in Ibadan, Nigeria (YRI), Utah residents with ancestry from northern Europe (CEU), Han Chinese in Beijing, China (CHB), and a population of Mexican ancestry in Los Angeles, California (MEX). A gene-based SNP association analysis analyzes the combined impact of every variant within the gene while creating referrals to linkage disequilibrium or connections between markers. Our results indicated that among the four populations studied, this association was highest in the MEX population based on the r 2 value; a similar pattern was also observed in the other three populations. The relevant SNP rs748780 in KCNK12 is related to a superfamily of potassium channel pore-forming P-domain proteins as well as to other non-pore-forming proteins and has been shown to be relevant to neurological disorder predisposition in MEX as well as in other populations.  相似文献   

4.
Mammalian mismatch repair has been implicated in mismatch correction, the prevention of mutagenesis and cancer, and the induction of genotoxicity and apoptosis. Here, we show that treatment of cells specifically with agents inducing O(6)-methylguanine in DNA, such as N-methyl-N'-nitro-N-nitrosoguanidine and N-methyl-N-nitrosourea, elevates the level of MSH2 and MSH6 and increases GT mismatch binding activity in the nucleus. This inducible response occurs immediately after alkylation, is long-lasting and dose-dependent, and results from translocation of the preformed MutSalpha complex (composed of MSH2 and MSH6) from the cytoplasm into the nucleus. It is not caused by an increase in MSH2 gene activity. Cells expressing the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT), thus having the ability to repair O(6)-methylguanine, showed no translocation of MutSalpha, whereas inhibition of MGMT by O(6)-benzylguanine provoked the translocation. The results demonstrate that O(6)-methylguanine lesions are involved in triggering nuclear accumulation of MSH2 and MSH6. The finding that treatment of cells with O(6)-methylguanine-generating mutagens results in an increase of MutSalpha and GT binding activity in the nucleus indicates a novel type of genotoxic stress response.  相似文献   

5.
Sets of degenerate oligomers corresponding to highly conserved domains of MutS-homolog (MSH) mismatch-repair proteins primed polymerase chain reaction amplification of two Arabidopsis thaliana DNA fragments that are homologous to eukaryotic MSH-like genes. Phylogenetic analysis places one complete gene, designated atMSH2, in the evolutionarily distinct MSH2 subfamily.  相似文献   

6.
7.
In eukaryotic mismatch repair (MMR) MSH2-MSH6 initiates the repair of base-base and small insertion/deletion mismatches while MSH2-MSH3 repairs larger insertion/deletion mismatches. Here, we show that the msh2Delta1 mutation, containing a complete deletion of the conserved mismatch recognition domain I of MSH2, conferred a separation of function phenotype with respect to MSH2-MSH3 and MSH2-MSH6 functions. Strains bearing the msh2Delta1 mutation were nearly wild-type in MSH2-MSH6-mediated MMR and in suppressing recombination between DNA sequences predicted to form mismatches recognized by MSH2-MSH6. However, these strains were completely defective in MSH2-MSH3-mediated MMR and recombination functions. This information encouraged us to analyze the contributions of domain I to the mismatch binding specificity of MSH2-MSH3 in genetic and biochemical assays. We found that domain I in MSH2 contributed a non-specific DNA binding activity while domain I of MSH3 appeared important for mismatch binding specificity and for suppressing non-specific DNA binding. These observations reveal distinct requirements for the MSH2 DNA binding domain I in the repair of DNA mismatches and suggest that the binding of MSH2-MSH3 to mismatch DNA involves protein-DNA contacts that appear very different from those required for MSH2-MSH6 mismatch binding.  相似文献   

8.
The mismatch repair protein, MSH3, together with MSH2, forms the MutSβ heterodimer which recognizes and repairs base pair mismatches and larger insertion/deletion loops in DNA. Lack of specific antibodies against mouse MSH3 has hampered studies of its expression and localization. Mouse MSH3 is not immunogenic in normal mice. This problem was overcome by immunizing msh3-knockout mice and generating a panel of ten monoclonal antibodies, two of which localize MSH3 specifically in cultured mouse cells and bind to an epitope containing amino-acids 33-37. The panel also includes two antibodies that recognise both mouse and human MSH3 and bind to a conserved epitope containing amino-acids 187-194. The mouse MSH3-specific antibodies show that MSH3 is a nuclear protein with a finely-granular nucleoplasmic distribution, largely absent from areas of condensed heterochromatin. Specificity of the localization was demonstrated by absence of immunostaining in a cell line from the msh3-knockout mouse. Furthermore, we show for the first time that stress treatment of mouse cells with ethanol or hydrogen peroxide caused the re-distribution of MSH3 into nuclear bodies containing the proliferating cell nuclear antigen (PCNA), a known binding partner of MutSβ.  相似文献   

9.
DNA damage checkpoints are signal transduction pathways that are activated after genotoxic insults to protect genomic integrity. At the site of DNA damage, ‘mediator’ proteins are in charge of recruiting ‘signal transducers’ to molecules ‘sensing’ the damage. Budding yeast Rad9, fission yeast Crb2 and metazoan 53BP1 are presented as mediators involved in the activation of checkpoint kinases. Here we show that, despite low sequence conservation, Rad9 exhibits a tandem tudor domain structurally close to those found in human/mouse 53BP1 and fission yeast Crb2. Moreover, this region is important for the resistance of Saccharomyces cerevisiae to different genotoxic stresses. It does not mediate direct binding to a histone H3 peptide dimethylated on K79, nor to a histone H4 peptide dimethylated on lysine 20, as was demonstrated for 53BP1. However, the tandem tudor region of Rad9 directly interacts with single-stranded DNA and double-stranded DNAs of various lengths and sequences through a positively charged region absent from 53BP1 and Crb2 but present in several yeast Rad9 homologs. Our results argue that the tandem tudor domains of Rad9, Crb2 and 53BP1 mediate chromatin binding next to double-strand breaks. However, their modes of chromatin recognition are different, suggesting that the corresponding interactions are differently regulated.  相似文献   

10.
DNA mismatch repair proteins play an essential role in maintaining genomic integrity during replication and genetic recombination. We successfully isolated a full length MSH2 and partial MSH7 cDNAs from tomato, based on sequence similarity between MutS and plant MSH homologues. Semi-quantitative RT-PCR reveals higher levels of mRNA expression of both genes in young leaves and floral buds. Genetic mapping placed MSH2 and MSH7 on chromosomes 6 and 7, respectively, and indicates that these genes exist as single copies in the tomato genome. Analysis of protein sequences and phylogeny of the plant MSH gene family show that these proteins are evolutionarily conserved, and follow the classical model of asymmetric protein evolution. Genetic manipulation of the expression of these MSH genes in tomato will provide a potentially useful tool for modifying genetic recombination and hybrid fertility between wide crosses.  相似文献   

11.
Wang H  Hays JB 《Nucleic acids research》2007,35(20):6727-6739
Eukaryotic mismatch-repair (MMR) proteins MutSα and MutLα couple recognition of base mismatches to strand-specific excision, initiated in vivo at growing 3′ ends and 5′ Okazaki-fragment ends or, in human nuclear extracts, at nicks in exogenous circular substrates. We addressed five biochemical questions relevant to coupling models. Excision remained fully efficient at DNA:MutSα ratios of nearly 1 to 1 at various mismatch-nick distances, suggesting a requirement for only one MutSα molecule per substrate. As the mismatch-nick DNA contour distance D in exogenous substrates increased from 0.26 to 0.98 kbp, initiation of excision in extracts decreased as D−0.43 rather than the D−1 to D−2 predicted by some translocation or diffusion models. Virtually all excision was along the shorter (3′–5′) nick-mismatch, even when the other (5′–3′) path was less than twice as long. These observations argue against stochastically directed translocating/diffusing recognition complexes. The failure of mismatched DNA in trans to provoke excision of separate nicked homoduplexes argues against one-stage (concerted) triggering of excision initiation by recognition complexes acting through space. However, proteins associated with gapped DNA did appear to compete in trans with those in cis to mismatch-associated proteins. Thus, as in Escherichia coli, eukaryotic MMR may involve distinct initial-activation and excision-path-commitment stages.  相似文献   

12.
The yeast MSH2-MSH6 complex is required to repair both base-pair and single base insertion/deletion mismatches. MSH2-MSH6 binds to mismatch substrates and displays an ATPase activity that is modulated by mispairs that are repaired in vivo. To understand early steps in mismatch repair, we analyzed mismatch repair (MMR) defective MSH2-msh6-F337A and MSH2-msh6-340 complexes that contained amino acid substitutions in the MSH6 mismatch recognition domain. While both heterodimers were defective in forming stable complexes with mismatch substrates, only MSH2-msh6-340 bound to homoduplex DNA with an affinity that was similar to that observed for MSH2-MSH6. Additional analyses suggested that stable binding to a mispair is not sufficient to initiate recruitment of downstream repair factors. Previously, we observed that MSH2-MSH6 forms a stable complex with a palindromic insertion mismatch that escapes correction by MMR in vivo. Here we show that this binding is not accompanied by either a modulation in MSH2-MSH6 ATPase activity or an ATP-dependent recruitment of the MLH1-PMS1 complex. Together, these observations suggest that early stages in MMR can be divided into distinct recognition, stable binding, and downstream factor recruitment steps.  相似文献   

13.
The MutS homologues MSH2 and MSH6 form a heterodimeric protein complex that is involved in the recognition of base/base mismatches and insertion/deletion loops, as well as some other types of DNA damage. We investigated the expression of these proteins in undifferentiated and retinoic acid-differentiated human neuroblastoma SH-SY5Y cells by immunocytochemistry, western blot analysis, and RT-PCR. Nuclei from undifferentiated SH-SY5Y cells were found to be immunoreactive to anti-MSH2 and anti-MSH6 antibodies. Following differentiation, the cells stop dividing and change morphology to acquire a neuron-like phenotype. Under these conditions, both anti-MSH2 and anti-MSH6 immunoreactivities were still detectable, although the signals were somewhat less intense. When these cells were exposed for 2 h to neurotoxic concentrations of doxorubicin (50 nM), they exhibited a marked and homogeneous increase of both anti-MSH2 and anti-MSH6 immunoreactivities. As revealed by western blot analysis, these effects were associated with increased protein content and were dose-dependent. Using RT-PCR technology, we also found that doxorubicin treatment did not change MSH2 or MSH6 mRNA levels. Our data indicate that human postmitotic, neuron-like cells constitutively express the molecular machinery devoted to recognition of DNA mismatches and that this system is activated by specific treatment leading to cell death. These findings might help clarify the molecular mechanisms underlying various human neurological diseases that are associated with deficiencies in DNA repair and/or a high rate of DNA damage acquisition.  相似文献   

14.
MSH6, a key component of the MSH2-MSH6 complex, plays a fundamental role in the repair of mismatched DNA bases. Herein, we report that MSH6 is a novel Ku70-interacting protein identified by yeast two-hybrid screening. Ku70 and Ku86 are two key regulatory subunits of the DNA-dependent protein kinase, which plays an essential role in repair of DNA double-strand breaks (DSBs) through the non-homologous end-joining (NEHJ) pathway. We found that association of Ku70 with MSH6 is enhanced in response to treatment with the radiomimetic drug neocarzinostatin (NCS) or ionizing radiation (IR), a potent inducer of DSBs. Furthermore, MSH6 exhibited diffuse nuclear staining in the majority of untreated cells and forms discrete nuclear foci after NCS or IR treatment. MSH6 colocalizes with γ-H2AX at sites of DNA damage after NCS or IR treatment. Cells depleted of MSH6 accumulate high levels of persistent DSBs, as detected by formation of γ-H2AX foci and by the comet assay. Moreover, MSH6-deficient cells were also shown to exhibit impaired NHEJ, which could be rescued by MSH6 overexpression. MSH6-deficient cells were hypersensitive to NCS- or IR-induced cell death, as revealed by a clonogenic cell-survival assay. These results suggest a potential role for MSH6 in DSB repair through upregulation of NHEJ by association with Ku70.  相似文献   

15.
Human exonuclease 1 (hEXO1) is implicated in DNA metabolism, including replication, recombination and repair, substantiated by its interactions with PCNA, DNA helicases BLM and WRN, and several DNA mismatch repair (MMR) proteins. We investigated the sub-nuclear localization of hEXO1 during S-phase progression and in response to laser-induced DNA double strand breaks (DSBs). We show that hEXO1 and PCNA co-localize in replication foci. This apparent interaction is sustained throughout S-phase. We also demonstrate that hEXO1 is rapidly recruited to DNA DSBs. We have identified a PCNA interacting protein (PIP-box) region on hEXO1 located in its COOH-terminal ((788)QIKLNELW(795)). This motif is essential for PCNA binding and co-localization during S-phase. Recruitment of hEXO1 to DNA DSB sites is dependent on the MMR protein hMLH1. We show that two distinct hMLH1 interaction regions of hEXO1 (residues 390-490 and 787-846) are required to direct the protein to the DNA damage site. Our results reveal that protein domains in hEXO1 in conjunction with specific protein interactions control bi-directional routing of hEXO1 between on-going DNA replication and repair processes in living cells.  相似文献   

16.
In higher eukaryotes mechanism of DNA replication origin recognition and binding by origin recognition complex (ORC) is still unknown. Origin transfer studies have shown that origin sites are genetically determined, containing functionally interchangeable modules. One of such modules from the human lamin B2 origin of replication has the ability to adopt unorthodox structure partly composed of intramolecular triplex. Sequences involved in triplex formation coincide with ORC binding sites both in vitro and in vivo. To explore potential significance of unorthodox DNA structures in origin recognition by ORC, we tested DNA binding properties of human ORC subunit 4 (HsOrc4) which has independent DNA binding activity in vitro and similar binding characteristics as ORC holocomplex. Our results demonstrated that DNA binding activity of HsOrc4 depends on length and structure of DNA with triplex being the protein’s preferred binding target. Such feature could play part in origin selection through directing ORC to DNA sequence prone to adopt unorthodox structure.  相似文献   

17.
Using state-of-the-art sequence analysis and structure-prediction methods a caspase-like domain in the N-terminal region of raptor proteins has been identified. This domain, which is characterized by the presence of invariant catalytic Cys-His dyad, is evolutionarily and structurally related to known caspases and might have protease activity. This finding suggests several unexpected aspects of raptor function in the target of rapamycin (TOR) signaling pathway.  相似文献   

18.
Sokolsky T  Alani E 《Genetics》2000,155(2):589-599
In Saccharomyces cerevisiae, Msh2p, a central component in mismatch repair, forms a heterodimer with Msh3p to repair small insertion/deletion mismatches and with Msh6p to repair base pair mismatches and single-nucleotide insertion/deletion mismatches. In haploids, a msh2Delta mutation is synthetically lethal with pol3-01, a mutation in the Poldelta proofreading exonuclease. Six conditional alleles of msh2 were identified as those that conferred viability in pol3-01 strains at 26 degrees but not at 35 degrees. DNA sequencing revealed that mutations in several of the msh2(ts) alleles are located in regions with previously unidentified functions. The conditional inviability of two mutants, msh2-L560S pol3-01 and msh2-L910P pol3-01, was suppressed by overexpression of EXO1 and MSH6, respectively. Partial suppression was also observed for the temperature-sensitive mutator phenotype exhibited by msh2-L560S and msh2-L910P strains in the lys2-Bgl reversion assay. High-copy plasmids bearing mutations in the conserved EXO1 nuclease domain were unable to suppress msh2-L560S pol3-01 conditional lethality. These results, in combination with a genetic analysis of msh6Delta pol3-01 and msh3Delta pol3-01 strains, suggest that the activity of the Msh2p-Msh6p heterodimer is important for viability in the presence of the pol3-01 mutation and that Exo1p plays a catalytic role in Msh2p-mediated mismatch repair.  相似文献   

19.
Hepatoma Derived Growth Factor (HDGF) is an endogenous nuclear-targeted mitogen that is linked with human disease. HDGF is a member of the weakly conserved PWWP domain family. This 70-amino acid motif, originally identified from the WHSC1 gene, has been found in more than 60 eukaryotic proteins. In addition to the PWWP domain, many proteins in this class contain known chromatin remodeling domains, suggesting a role for HDGF in chromatin remodeling. We have determined the NMR structure of the HDGF PWWP domain to high resolution using a combination of NOEs, J-couplings, and dipolar couplings. Comparison of this structure to a previously determined structure of the HDGF PWWP domain shows a significant difference in the C-terminal region. Comparison to structures of other PWWP domains shows a high degree of similarity to the PWWP domain structures from Dnmt3b and mHRP. The results of selected and amplified binding assay and NMR titrations with DNA suggest that the HDGF PWWP domain may function as a nonspecific DNA-binding domain. Based on the NMR titrations, we propose a model of the interaction of the PWWP domain with DNA.  相似文献   

20.
DNA mismatch repair enzymes (for example, MSH2) maintain genomic integrity, and their deficiency predisposes to several human cancers and to drug resistance. We found that leukemia cells from a substantial proportion of children (~11%) with newly diagnosed acute lymphoblastic leukemia have low or undetectable MSH2 protein levels, despite abundant wild-type MSH2 mRNA. Leukemia cells with low levels of MSH2 contained partial or complete somatic deletions of one to four genes that regulate MSH2 degradation (FRAP1 (also known as MTOR), HERC1, PRKCZ and PIK3C2B); we also found these deletions in individuals with adult acute lymphoblastic leukemia (16%) and sporadic colorectal cancer (13.5%). Knockdown of these genes in human leukemia cells recapitulated the MSH2 protein deficiency by enhancing MSH2 degradation, leading to substantial reduction in DNA mismatch repair and increased resistance to thiopurines. These findings reveal a previously unrecognized mechanism whereby somatic deletions of genes regulating MSH2 degradation result in undetectable levels of MSH2 protein in leukemia cells, DNA mismatch repair deficiency and drug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号