首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ornithine carbamoyltransferase (OTC; subunit, 36,000 Da) [EC 2.1.3.3] is initially synthesized as a precursor (pOTC) with a transient NH2-terminal presequence of 32 amino acid residues, then is imported posttranslationally nto the mitochondrial matrix. We expressed rat pOTC in Escherichia coli, purified it in a denatured form, and showed that could be transported into isolated mitochondria in the presence of rabbit reticulocyte lysate [Murakami et al. (1988) J. Biol. Chem. 263, 18437-18442]. In order to compare the properties of the precursor and mature form of OTC, the rat mature OTC was synthesized in E. coli and purified. The recombinant OTC represented about 5% of the total bacterial protein and was present in both the supernatant and precipitate of the disrupted bacteria. The OTC, extracted from the precipitate with 8 M urea or 6 M guanidine.HCl, was essentially homogeneous, as judged by SDS-PAGE. When guanidine.HCl-denatured mature OTC was diluted and incubated at 0 degrees C for 40-60 h, it was reactivated to a specific activity of 170 mumol/min/mg protein at 37 degrees C (18% of that of the purified mature enzyme). Guanidine.HCl-denatured pOTC was activated to a specific activity of 125 mumol/min/mg protein under similar conditions. The native and reactivated OTC sedimented with an s20.w value of 6.2S, whereas the activated pOTC sedimented with an s20.w of 5.2S. The activated pOTC was more unstable than the reactivated OTC at 50 degrees C. These observations indicate that the presequence does not prevent pOTC from folding into an enzymatically active trimeric form, although the pOTC trimer appears to be less compact than the mature trimer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A cytosolic protein factor(s) is involved in the import of precursor proteins into mitochondria. PBF (presequence binding factor) is a protein factor which binds to the precursor form (pOTC) of rat ornithine carbamoyltransferase (OTC) but not to the mature OTC, and is required for the mitochondrial import of pOTC. The precursors for aspartate aminotransferase and malate dehydrogenase as well as pOTC synthesized in a reticulocyte lysate were efficiently imported into the mitochondria. However, the precursors synthesized in the lysate depleted for PBF by treatment with pOTC-Sepharose were not imported. Readdition of the purified PBF to the depleted lysate fully restored the import. pOTC synthesized in the untreated lysate sedimented as a complex with a broad peak of around 9 S, whereas pOTC synthesized in the PBF-depleted lysate sedimented at an expected position of monomer (2.5 S). When the purified PBF was readded to the depleted lysate, pOTC sedimented as a complex of about 7 S. In contrast to most mitochondrial proteins, rat 3-oxoacyl-CoA thiolase is synthesized with no cleavable presequence and an NH2-terminal portion of the mature protein functions as a mitochondrial import signal. The thiolase synthesized in the PBF-depleted lysate could be efficiently imported into the mitochondria, and readdition of PBF had little effect on the import. The thiolase synthesized in the untreated, the PBF-depleted, or the PBF-readded lysate sedimented at an expected position of monomer (2.5 S). These observations provide support for the existence of PBF-dependent and -independent pathways of mitochondrial protein import.  相似文献   

3.
K Murakami  M Mori 《The EMBO journal》1990,9(10):3201-3208
In vitro mitochondrial import of the purified precursor form (pOTC) of rat ornithine carbamoyltransferase (OTC) is stimulated by a cytosolic factor(s) contained in rabbit reticulocyte lysate. A protein factor that binds to pOTC but not to mature OTC and was named presequence binding factor or PBF, was purified 91,000-fold from the lysate by affinity chromatography using pOTC-bound Sepharose, DEAE-5PW HPLC and sucrose gradient centrifugation. The purified PBF migrated as a single polypeptide of 50,000 daltons on SDS-PAGE. On sucrose gradients, urea-denatured pOTC sedimented to the bottom, whereas PBF sedimented with an S20,w value of 5.5S. When pOTC and PBF were centrifuged together, both polypeptides sedimented as a complex of 7.1S. Formation of the pOTC-PBF complex was inhibited by micromolar concentrations of the synthetic presequence of pOTC and those of other mitochondrial precursor proteins. The purified PBF markedly stimulated the import of purified or in vitro synthesized pOTC into the mitochondria. PBF-stimulated pOTC import was further enhanced by a 70 kd heat shock protein (hsp 70) purified from yeast; the hsp70 alone had little effect. Thus, PBF binds to the presequence portion of the precursors and may hold them in a transport-competent form in cooperation with hsp70.  相似文献   

4.
The roles of the 70-kDa cytosolic heat shock protein (hsp70) in import of precursor proteins into the mitochondria were postulated to be related to (i) unfolding of precursor proteins in the cytosol, (ii) maintenance of the import-competent state, and (iii) unfolding and transport of precursor proteins through contact sites, in cooperation with matrix hsp70. We examined roles of cytosolic hsp70 family members in import of ornithine transcarbamylase precursor (pOTC) into rat liver mitochondria, using an in vitro import system and antibodies against hsp70. Immunoblot analysis using an hsc70 (70-kDa heat shock cognate protein)-specific monoclonal antibody and a polyclonal antibody that reacts with both hsc70 and hsp70 showed that hsc70 is the only or major form of hsp70 family members in the rabbit reticulocyte lysate. The hsc70 antibody did not inhibit pOTC import when added prior to import assay. However, when pOTC was synthesized in the presence of the antibody and then subjected to import assay, pOTC import was markedly decreased. pOTC import was also decreased when the precursor was synthesized in the lysate depleted for hsc70 by treatment with hsc70 antibody-conjugated Sepharose. This reduction was almost completely restored by readdition of purified mouse hsc70 during pOTC synthesis. The readdition of hsc70 after pOTC synthesis and only during the import assay was not effective. Thus, once import competence of pOTC was lost, hsc70 was ineffective for restoration. Newly synthesized pOTC lost import competence in the absence of hsc70 somewhat more rapidly than in its presence. These results indicate that hsc70 is required during pOTC synthesis and not during import into the mitochondria. hsc70 presumably binds to pOTC polypeptide and maintains it in an import-competent form.  相似文献   

5.
The precursor to ornithine carbamyl transferase (Mr = 40,000) was synthesized in a rabbit reticulocyte lysate system and purified by immunoaffinity chromatography. Import of purified precursor by isolated mitochondria depended upon the presence of import factor(s) in fresh reticulocyte lysate. Velocity sedimentation analyses indicated that import factor binds to precursor to form a 5S complex (approximately 90 kDa); in this form, precursor was efficiently imported by isolated mitochondria. The ability of the 5S complex to deliver precursor into mitochondria was not affected by pretreatment with high concentrations of RNase. Import factor did not bind to mitochondria in the absence of precursor; upon binding of precursor to mitochondria in the presence of import factor, subsequent transmembrane uptake of precursor did not require the continued presence of additional lysate components.  相似文献   

6.
《The Journal of cell biology》1987,105(6):2631-2639
The mitochondrial matrix enzyme ornithine transcarbamylase (OTC) is synthesized on cytoplasmic polyribosomes as a precursor (pOTC) with an NH2-terminal extension of 32 amino acids. We report here that rat pOTC synthesized in vitro is internalized and cleaved by isolated rat liver mitochondria in two, temporally separate steps. In the first step, which is dependent upon an intact mitochondrial membrane potential, pOTC is translocated into mitochondria and cleaved by a matrix protease to a product designated iOTC, intermediate in size between pOTC and mature OTC. This product is in a trypsin-protected mitochondrial location. The same intermediate-sized OTC is produced in vivo in frog oocytes injected with in vitro-synthesized pOTC. The proteolytic processing of pOTC to iOTC involves the removal of 24 amino acids from the NH2 terminus of the precursor and utilizes a cleavage site two residues away from a critical arginine residue at position 23. In a second cleavage step, also catalyzed by a matrix protease, iOTC is converted to mature OTC by removal of the remaining eight residues of leader sequence. To define the critical regions in the OTC leader peptide required for these events, we have synthesized OTC precursors with alterations in the leader. Substitution of either an acidic (aspartate) or a "helix-breaking" (glycine) amino acid residue for arginine 23 of the leader inhibits formation of both iOTC and OTC, without affecting translocation. These mutant precursors are cleaved at an otherwise cryptic cleavage site between residues 16 and 17 of the leader. Interestingly, this cleavage occurs at a site two residues away from an arginine at position 15. The data indicate that conversion of pOTC to mature OTC proceeds via the formation of a third discrete species: an intermediate-sized OTC. The data suggest further that, in the rat pOTC leader, the essential elements required for translocation differ from those necessary for correct cleavage to either iOTC or mature OTC.  相似文献   

7.
The cytosolic heat shock cognate 70-kDa protein (hsc70) is required for efficient import of ornithine transcarbamylase precursor (pOTC) into rat liver mitochondria (K. Terada, K. Ohtsuka, N. Imamoto, Y. Yoneda, and M. Mori, Mol. Cell. Biol. 15:3708-3713, 1995). The requirement of hsc70 for mitochondrial import of various precursor proteins and truncated pOTCs was studied by using an in vitro translation import system in which hsc70 was completely depleted. hsc70-dependent import of pOTC was about 60% of the total import, while import of the aspartate aminotransferase precursor, the serine:pyruvate aminotransferase precursor, and 3-oxoacyl coenzyme A thiolase was about 50, 30, and 0%, respectively. The subunit sizes of these four precursor proteins were 40 to 47 kDa. When pOTC was serially truncated from the COOH terminal, the hsc70 requirement decreased gradually and was not evident for the shortest truncated pOTCs of 90 and 72 residues. These truncated pOTCs were imported and proteolytically processed rapidly in 0.5 to 2 min at 25 degrees C, and the processed mature portions and the presequence portion were rapidly degraded. Sucrose gradient centrifugation analysis followed by import assay showed that pOTC synthesized in rabbit reticulocyte lysate forms an import-competent complex of about 11S in an hsc70-dependent manner. S values of import-competent forms of aspartate aminotransferase precursor, serine:pyruvate aminotransferase precursor, and 3-oxoacyl coenzyme A thiolase were 9S, 9S, and 4S, respectively. Thus, the S value decreased as the hsc70 dependency decreased. Precursor proteins were coimmunoprecipitated from the reticulocyte lysate containing the newly synthesized precursor proteins with an hsc70 antibody. The amount of coimmunoprecipitated proteins was much larger in the absence of ATP than in its presence. Among the four precursor proteins, the amount of coimmunoprecipitated protein decreased as the hsc70 dependency decreased.  相似文献   

8.
The mitochondrial enzyme, ornithine transcarbamylase (OTC) from rat liver was expressed in Spodoptera frugiperda (Sf) insect cells using a baculovirus vector. When insect cells were infected with recombinant Autographica californica nuclear polyhedrosis virus (AcNPV) containing a cDNA encoding the precursor form of OTC (pOTC) inserted into the polyhedrin gene, they expressed catalytically active enzyme at levels of approximately 2.5 micrograms/10(6) cells. About 25% of the active enzyme was a novel, partially processed product of pOTC containing four extra amino acids at the amino terminus of OTC. The most abundant protein found in mitochondria from infected insect cells was the normal processing intermediate iOTC, which contains 8 extra amino acids at the amino terminus of OTC. Whereas this species, present at 20 micrograms/10(6) cells, was not active and did not bind the transition-state analog inhibitor of OTC, delta-PALO, the novel processing product did bind and was affinity-purified, along with mature OTC, on a PALO-affinity column. The OTC expressed in insect cells was located in the same compartment of the mitochondrion as in rat liver. The incomplete processing occurred in vitro in both noninfected and infected insect cells. The high level of expression of iOTC using the baculoviral expression system provides a means of overproducing an obligatory intermediate in the mitochondrial import process.  相似文献   

9.
10.
The cDNA coding for the precursor (p-ALDH) or mature (m-ALDH) rat liver mitochondrial aldehyde dehydrogenase was cloned in an expression vector pT7-7 and expressed in Escherichia coli strain BL21 (DE3)/plysS. The p-ALDH expressed in E. coli was a soluble tetrameric protein. It exhibited virtually the same specific activity and KmS for substrates as m-ALDH. N-terminal sequencing of isolated p-ALDH provided the evidence that the catalytic activity was not derived from a partially processed mature-like enzyme. The assembly states of both p-ALDH and m-ALDH synthesized in a rabbit reticulocyte lysate were also determined. Both of them were monomers and could not bind to a 5'-AMP-Sepharose column, showing that the monomeric form of the enzyme is inactive. The stabilities in vivo and in vitro were compared between p-ALDH and m-ALDH expressed in E. coli. p-ALDH was less stable than was m-ALDH both in vivo and in vitro. Thus, although the conformations of p-ALDH and m-ALDH are similar, the presence of signal peptide is a destabilizing factor to the p-ALDH. p-ALDH expressed in E. coli could bind to and be translocated into rat liver mitochondria, however, with lower efficiency when compared to the import of p-ALDH synthesized in reticulocyte lysate.  相似文献   

11.
Monoamine oxidase B that has been synthesized by a reticulocyte lysate charged with bovine liver RNA will insert in a proteinase K-resistant form into isolated outer membranes from rat liver mitochondria. It appears that ubiquitin, a 76-amino acid polypeptide which is enzymatically conjugated to proteins, may be involved in the insertion process. Depletion of endogenous ubiquitin from the reticulocyte lysate with purified antibodies against this polypeptide inhibits the insertion of monoamine oxidase B, and this inhibition is relieved if ubiquitin is restored. On the other hand, a mutant form of ubiquitin which is unable to conjugate with proteins will not support insertion. Conjugation with ubiquitin is an ATP-dependent process. Not only does enzymatic depletion of ATP from the lysate prevent the insertion of monoamine oxidase, but ubiquitin will not restore insertion unless ATP is also present. These data indicate that the formation of a ubiquitin conjugate is involved in the insertion of newly synthesized monoamine oxidase B into the outer membranes.  相似文献   

12.
13.
The mechanism of import of proteins into mitochondria was studied by using the peptide of the presequence of ornithine aminotransferase (the extrapeptide), which was chemically synthesized and is composed of 34 amino acids. When the extrapeptide was incubated with isolated mitochondria in the presence of a rabbit reticulocyte lysate at 25 degrees C, it was imported into the mitochondrial matrix, and the import depended on the inner membrane potential, but not added ATP. The import of several precursors of mitochondrial proteins was competitively inhibited by the presence of excess extrapeptide in the reaction system, indicating that the extrapeptide and mitochondrial proteins were imported by the same machinery. Import of the extrapeptide was significantly stimulated by addition of a rabbit reticulocyte lysate, and a component of the lysate (the cytosolic factor) stimulating import of the extrapeptide was purified about 20,000 times by successive column chromatography on DEAE-cellulose and aminopentyl-Sepharose 4B. The binding of the extrapeptide to liposomes composed of egg lecithin and partially purified receptor of the precursor of mitochondrial protein (Ono, H., and Tuboi, S., (1985) Biochem. Int. 10, 351-357) required the cytosolic factor when the concentration of the peptide was less than 1.5 X 10(-8) M, suggesting that the physiological binding of the precursors of mitochondrial proteins to the receptor is dependent on the cytosolic factor. The extrapeptide and the cytosolic factor were shown to form a complex. From these results, the mechanism of binding of the extrapeptide to the receptor of the mitochondrial outer membrane is suggested to be as follows: the peptide (the precursor of mitochondrial protein) and the cytosolic factor form a complex, and then the complex is recognized by and bound to the receptor.  相似文献   

14.
The signal peptides of pre-aldehyde dehydrogenase (22-mer) and pre-ornithine transcarbamylase (27-mer) were chemically synthesized and their imports into rat liver mitochondria were studied. Both signal peptides were imported rapidly (within 2 min) in the absence of a membrane potential, exogenous ATP, or rabbit reticulocyte lysate. Signal peptides also were imported into mitochondria treated with a low concentration of trypsin which removed the outer membrane proteins. It was concluded that the chemically synthesized signal peptide could be imported differently than the precursor proteins. The imported signal peptide were found to be associated with both outer and inner membranes. Pulse-chase experiments showed that the import was unidirectional and that the signal peptides associated with inner membranes increased during the chase time. The signal peptides inhibited import of precursor proteins to different extents. Association of signal peptides with inner membrane near or at translocator sites might result in inhibition of precursor import.  相似文献   

15.
The mitochondrion depends upon the import of cytosolically synthesized preproteins for most of the proteins that comprise its structural elements and metabolic pathways. Here we have examined the influence of redox conditions on mitochondrial preprotein import and processing by mammalian mitochondria. Paraquat pretreatment of isolated mitochondria inhibited the subsequent import preornithine transcarbamylase (pOTC) in vitro. In intact cells oxidizing conditions led to decreased levels of mature OTC and accumulation of its preprotein. Implicating a mitochondrial import lesion, the fluorescence of pOTC-GFP (a protein in which the presequence of pOTC was fused to green fluorescent protein) transfected cells was decreased by paraquat treatment while cytosolic wild-type GFP remained largely unaffected. The accumulation of preproteins was enhanced by proteasome inhibitors. We observed that precursor proteins that failed to be imported, due to oxidizing conditions or an intrinsically slower import rate, are susceptible to degradation. Inhibition of the proteasome was also found to lead to higher levels of the translocase outer membrane protein 20 (Tom20) and to the perinuclear accumulation of mitochondria. These studies indicate that cellular redox conditions influence mitochondrial import, which, in turn, affects mitochondrial protein levels. A role for the proteasome in this process and in general mitochondrial function was also indicated.  相似文献   

16.
Newly synthesized, [35S]methionine-labeled cholesterol side-chain cleavage cytochrome P-450, 11β-hydroxylase cytochrome P-450, adrenodoxin, and adrenodoxin reductase were immunoisolated from radiolabeled bovine adrenocortical cells and from rabbit reticulocyte lysate translation systems programmed with bovine adrenocortical RNA. Cholesterol side-chain cleavage cytochrome P-450 immunoisolated from a reticulocyte lysate translation system had an apparent molecular weight of 54,500 whereas this cytochrome P-450 immunoisolated from radiolabeled bovine adrenocortical cells had an apparent molecular weight of 49,000, an apparent molecular weight identical to that of the purified protein. Similarly, newly synthesized, [35S]methionine-labeled 11β-hydroxylase cytochrome P-450 immunoisolated from a reticulocyte lysate translation system had an apparent molecular weight 5500 daltons larger than that immunoisolated from radiolabeled adrenocortical cells (48,000) and the authentic cytochrome (48,000). The cell-free translation products of adrenodoxin and adrenodoxin reductase were also several thousand daltons larger than the corresponding mitochondrial proteins. The apparent molecular weight of adrenodoxin immunoisolated from a reticulocyte lysate translation system was 19,000, while that of the authentic protein was 12,000. Adrenodoxin reductase immunoisolated from a lysate translation system had an apparent molecular weight of 53,400; an apparent molecular weight 2300 daltons larger than that of adrenodoxin reductase immunoisolated from radiolabeled adrenocortical cells or purified by conventional techniques. These results demonstrate that all of the components of the mitochondrial steroid hydroxylase systems of the bovine adrenal cortex are synthesized as precursor molecules of higher molecular weight. Presumably, the precursor proteins are post-translationally converted to the mature enzymes upon insertion into the mitochondrion by a process which includes the proteolytic cleavage of the precursor segments.  相似文献   

17.
Two different putative precursor polypeptides of rat liver fumarase were synthesized when RNA prepared from rat liver were translated in vitro using the rabbit reticulocyte lysate system. One of these putative precursor polypeptides (P1) was synthesized as a larger molecular mass than the mature subunit of fumarase (45,000 daltons) by about 5,000 daltons and the other (P2) had the same molecular mass as the mature enzyme. When the 35S-labeled cell-free translation products were incubated with rat liver mitochondria at 30 degrees C, P1 and the 35S-labeled mature size fumarase were associated with the mitochondria. Of these, the 35S-labeled mature size fumarase was resistant to externally added protease, but P1 was not, indicating that the 35S-labeled mature size fumarase was located in the mitochondrial matrix. The following observations strongly suggested that the 35S-labeled mature size fumarase in mitochondria was derived from P1, which was energy-dependently imported and concomitantly processed to the mature size. 1) The amount of the 35S-labeled mature size fumarase recovered from the mitochondria increased proportionally to the duration of incubation, while the amount of P1 recovered from the post-mitochondrial and mitochondrial fractions decreased with the duration of the incubation. 2) Only P1 could bind with the mitochondrial outer membrane at 0 degrees C even in the presence of an uncoupler of the oxidative phosphorylation but P2 did not. 3) P1 bound to the mitochondrial outer membrane was imported into the matrix, when the mitochondria binding only P1 at 0 degrees C was reisolated and incubated at 30 degrees C in the presence of an energy-generating system. The specific receptor was involved in the binding of P1 to mitochondria, since a high concentration of NaCl did not interfere with the binding of P1 to the membrane and did not discharge P1 bound onto the membrane. It was shown that P1 formed an aggregate composed of 6 to 8 molecules and P2 was a dimer in the cell-free translation mixture and that P1 and P2 were enzymatically inactive. These results suggest that the precursor for the mitochondrial enzyme has a larger molecular weight than that of the mature enzyme, whereas the precursor for the cytosolic enzyme has the same molecular weight as the mature enzyme.  相似文献   

18.
In vitro translation of bovine adrenal cortex RNA in rabbit reticulocyte lysate cell-free system produced the precursor form of adrenodoxin having a molecular weight of approximately 22,000 daltons, which was about 10,000 daltons larger than mature adrenodoxin. The precursor of adrenodoxin was efficiently imported into adrenal cortex mitochondria in vitro. The precursor was also imported into rat liver mitochondria, suggesting the lack of tissue specificity and species specificity of the import process. The enzyme which processed the precursor of adrenodoxin to the mature form was in the matrix fraction from bovine adrenal cortex mitochondria, and the processing protease was partially purified from the matrix fraction. The apparent molecular weight of the processing protease was about 60,000 daltons as determined by Sephadex G-150 gel filtration, and its activity was optimal at pH 8.5. The processing protease was not inhibited by various bacterial protease inhibitors examined. Metal chelators (EGTA, GTP, 8-hydroxyquinoline, and Zincon) inhibited the processing, and EDTA and o-phenanthroline were more strongly inhibitory than other chelators. The processing protease was completely inactivated by incubation with 10 microM EDTA, and its activity was restored by addition of excess amounts of Mn2+, Fe2+, or Co2+. These results indicate that the maturation of the precursor of adrenodoxin is catalyzed by a soluble metalloprotease in the matrix.  相似文献   

19.
Two forms of recombinant trichosanthin (rTCS) were synthesized in high levels in Escherichia coli by putting the TCS cDNA under the control of a T7 RNA polymerase-directed promoter. Purification schemes were developed to isolate the recombinant protein from both soluble and insoluble fractions. Form I rTCS possessed the mature TCS sequence and had similar biological activities as the natural protein. Its IC50 was approximately 0.13 nM in an in vitro rabbit reticulocyte translational system and a dose of around 35 micrograms protein per 25 g body weight was sufficient to induce complete abortion in mice. Form II rTCS had a propeptide of 19 aa at the C-terminus and was five times less active than Form I in inhibiting protein synthesis by a rabbit reticulocyte lysate.  相似文献   

20.
S Furuya  K Mihara  S Aimoto    T Omura 《The EMBO journal》1991,10(7):1759-1766
We chemically synthesized a peptide, 11 beta-45, which was composed of 45 amino acid residues including the whole extension peptide and some of the mature portion of bovine cytochrome P-450(11 beta) precursor. 11 beta-45 was imported into mitochondria in vitro depending on the mitochondrial membrane potential, but its import did not require extramitochondrial ATP. Although cytosolic protein factors in the high speed supernatant of reticulocyte lysate are known to stimulate the import of various precursor proteins into mitochondria, the import of 11 beta-45 was not stimulated by cytosolic factors in reticulocyte lysate. The import of the peptide did not require mitochondrial surface protein components because its import was not affected by trypsin treatment of mitochondria. On the other hand, trypsin treatment of mitoplasts resulted in a great reduction in the import of the peptide, indicating that 11 beta-45 interacts during the import process with some protein components located inside mitochondria. These observations indicated that the peptide 11 beta-45 was imported via the potential-dependent pathway as in the case of precursor proteins, but skipped the interactions with cytosolic factors and mitochondrial surface components normally required for the import of precursor proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号