首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A quantitative hybridization assay termed "reversible target capture" is described. The technique is designed to extensively purify the target nucleic acid from crude cell lysates in about 1 h without phenol extraction. Simple, rapid methods are described that explain how each process in the assay is optimized. The procedure involves hybridizing the target nucleic acid in solution with a dA-tailed capture probe and a labeled probe. The capture probe-target-labeled probe "ternary complex" is then captured on magnetic beads containing oligo(dT). After the excess unhybridized labeled probe, cell debris, and other sample impurities are washed away, the intact ternary complex is further purified by chemical elution from the beads and recapture on fresh beads. The ternary complex is then eluted thermally and recaptured on a third set of beads or on poly(dT) filters. This triple capture method results in a detection limit of approximately 0.2 amol (100 fg) of target with 32P-labeled riboprobes. This is approximately 1000 times more sensitive than sandwich assays employing only a single capture step. The method is illustrated by detecting Listeria cells in the presence of heterologous bacteria. With three rounds of target capture, as few as six Listeria cells have been detected in the presence of 1.25 x 10(7) control cells.  相似文献   

2.
3.
Poly(A) messenger RNA is generally purified from total RNA using oligo(dT) cellulose affinity chromatography or centrifugation through spin columns. We present a new method for rapid purification of poly(A) mRNA using oligo(dT) probes attached to superparamagnetic beads. By magnetic separation, washing, and elution, pure mRNA is obtained from living cells within 10 minutes. This procedure works for crude RNA preparations or cell lysates that would otherwise clog standard oligo(dT) cellulose column systems. The present method reduces the risk of degradation, is highly efficient, and can easily be scaled up or down.  相似文献   

4.
In molecular testing using PCR, the target DNA is amplified via PCR and the sequence of interest is investigated via hybridization with short oligonucleotide capture probes that are either in a solution or immobilized on solid supports such as beads or glass slides. In this report, we report the discovery of assembly of DNA complex(es) between a capture probe and multiple strands of the PCR product. The DNA complex most likely has branched structure. The assembly of branched DNA was facilitated by the product of asymmetric PCR. The amount of branched DNA assembled was increased five fold when the asymmetric PCR product was denatured and hybridized with a capture probe all in the same PCR reaction mixture. The major branched DNA species appeared to contain three reverse strands (the strand complementary to the capture probe) and two forward strands. The DNA was sensitive to S1 nuclease suggesting that it had single-stranded gaps. Branched DNA also appeared to be assembled with the capture probes immobilized on the surface of solid support when the product of asymmetric PCR was hybridized. Assembly of the branched DNA was also increased when hybridization was performed in complete PCR reaction mixture suggesting the requirement of DNA synthesis. Integration of asymmetric PCR, heat denaturation and hybridization in the same PCR reaction mixture with the capture probes immobilized on the surface of solid support achieved dramatic increase in the signal and sensitivity of detection of DNA. Such a system should be advantageously applied for development of automated process for detection of DNA.  相似文献   

5.
Electric chips for rapid detection and quantification of nucleic acids   总被引:4,自引:0,他引:4  
A silicon chip-based electric detector coupled to bead-based sandwich hybridization (BBSH) is presented as an approach to perform rapid analysis of specific nucleic acids. A microfluidic platform incorporating paramagnetic beads with immobilized capture probes is used for the bio-recognition steps. The protocol involves simultaneous sandwich hybridization of a single-stranded nucleic acid target with the capture probe on the beads and with a detection probe in the reaction solution, followed by enzyme labeling of the detection probe, enzymatic reaction, and finally, potentiometric measurement of the enzyme product at the chip surface. Anti-DIG-alkaline phosphatase conjugate was used for the enzyme labeling of the DIG-labeled detection probe. p-Aminophenol phosphate (pAPP) was used as a substrate. The enzyme reaction product, p-aminophenol (pAP), is oxidized at the anode of the chip to quinoneimine that is reduced back to pAP at the cathode. The cycling oxidation and reduction of these compounds result in a current producing a characteristic signal that can be related to the concentration of the analyte. The performance of the different steps in the assay was characterized using in vitro synthesized RNA oligonucleotides and then the instrument was used for analysis of 16S rRNA in Escherichia coli extract. The assay time depends on the sensitivity required. Artificial RNA target and 16S rRNA, in amounts ranging from 10(11) to 10(10) molecules, were assayed within 25 min and 4 h, respectively.  相似文献   

6.
A fourth capture is added to the reversible target capture procedure of the preceding paper. This results in an improved radioisotopic detection limit of 7.3 x 10(-21) mol of target. In addition, the standard triple capture method is converted into a nonradioactive format with a detection limit of under 1 amol of target. The principal advantage of nonradioactive detection is that the entire assay can be performed in about 1 h. Nucleic acids are released from cells in the presence of the ('capture probe') which contains a 3'-poly(dA) sequence and the ('labeled probe') which contains a detectable nonradioactive moiety such as biotin. After a brief hybridization in solution, the target is captured on oligo(dT) magnetic particles. The target is further purified from sample impurities and excess labeled probe by recapture either once or twice more on fresh magnetic particles. The highly purified target is then concentrated to 200 nl by recapture onto a poly(dT) nitrocellulose filter and rapidly detected with streptavidin-alkaline phosphatase using bromochloroindolyl phosphate and nitroblue tetrazolium. Using this procedure, as little as 0.25 amol of a target plasmid has been detected nonradioactively in crude samples in just 1 h without prior purification of the DNA and RNA. Finally, a new procedure called background capture is introduced to complement the background-reducing power of RTC.  相似文献   

7.
Poly(dA).poly(dT), but not B-form DNA, is specifically recognized by experimentally induced anti-kinetoplast or anti-poly(dA).poly(dT) immunoglobulins. Antibody binding is completely competed by poly(dA).poly(dT) and poly(dA).poly(dU) but not by other single- or double-stranded DNA sequences in a right-handed B-form. Antibody interaction with poly(dA).poly(dT) depends on immunoglobulin concentration, incubation time and temperature, and is sensitive to elevated ionic strengths. Similar conformations, for example, (dA)4-6 X (dT)4-6, in the kinetoplast DNA of the parasite Leishmania tarentolae are also immunogenic and induce specific anti-poly(dA).poly(dT) antibodies. These antibody probes specifically recognize nuclear and kinetoplast DNA in fixed flagellated kinetoplastid cells as evidenced by immunofluorescence microscopy. Anti-poly(dA).poly(dT) immunofluorescence is DNase-sensitive and competed by poly(dA).poly(dT), but not other classical double-stranded B-DNAs. Thus, these unique cellular B'-DNA helices are immunogenic and structurally similar to synthetic poly(dA).poly(dT) helices in solution.  相似文献   

8.
An oligonucleotide probe tailed with deoxyadenosine-5'-triphosphate or deoxythymine-5'-triphosphate is detectable with high sensitivity, but has a major drawback--the tail co-hybridizes specifically to complementary sequences. This can be a problem when screening cDNA clones that contain poly(dA) sequences. While it is possible to mask the cDNA tail with unlabeled poly(dA) or poly(A) oligonucleotides, false-positive clones are still produced because complete masking of extremely long (dA) tails is difficult. As a result, only cDNA clones that have extremely long poly(dA) sequences are often obtained by hybridization screening using tailed probes. In this report, we describe an oligonucleotide probe tailed with DIG-labeled nucleotide in combination with deoxyinosine-5'-triphosphate that was highly specific and sensitive to cDNAs. Terminal deoxynucleotidyl transferase efficiently adds dI nucleotides to the 3'-end. The dI of the tails did not pair with any nucleotides under stringent hybridization so that the specificity of hybridization assays remained high without affecting the sensitivity of the test. Colony hybridization experiments demonstrated that there were very few (1 of 80 tested) false positives using this technique. Its use may increase the accuracy of cDNA screening.  相似文献   

9.
10.
A procedure was developed to effectively extract viral RNA from poliovirus tissue-culture lysates while eliminating the hybridization background associated with tissue cultures uninfected with poliovirus. Poliovirus cDNA cloned into a pUC vector was used as probe. Both the recombinant plasmids and the cDNA showed great specificity towards poliovirus. However, both probes hybridized with the single-stranded DNA coliphage phi X174. Tissue culture was found to be an effective method to increase the number of viruses found in environmental samples to a level detectable by hybridization procedures, whereas direct hybridization of RNA from unamplified and highly concentrated raw wastewater showed poor hybridization signals. The specificity and sensitivity of the hybridization procedure developed during these studies indicate that this method may be best suited for the identification rather than the detection of viruses isolated from environmental samples.  相似文献   

11.
S Tracy  D E Kohne 《Biochemistry》1980,19(16):3792-3799
A method is described for using very high specific activity [3H]poly(deoxythymidylate) [[3H]poly(dT)] to detect, size, and quantiate subnanogram amounts of nonradioactive polyadenylated RNA. Short (approximately 100 nucleotides long) [3H]poly(dT) is hybridized to the poly(adenylate) [poly(A)] tracts in polyadenylated RNAs. The RNA may then be sized and quantitated by sucrose gradient analysis. The addition of the small [3H]poly(dT) molecules does not significantly alter the s values of RNAs. The amount of [3H]poly(dT) hybridized to polyadenylated RNA increases linearly with the amount of RNA. A room temperature hydroxylapatite (HA) method has also been developed to detect and quantitate poly(A)-containing RNA after hybridization to radioactive poly(dT). S-1 nuclease (S-1) analysis can also be used to measure the poly(A) content of polyadenylated RNA to less than nanogram RNA amounts. For both the S-1 and HA approaches, the amount of [3H]poly(dT) hybridized increases with the amount of RNA and the methods can detect to as little as 10(-12) g of polyadenylated RNA with [3H]poly(dT). Greater sensitivity is possible with higher specific activity poly(dT). The approaches presented here significantly extend the uses of radioactive homopolymers to detect, quantitate, and characterize RNAs containing complementary homopolymer tracts.  相似文献   

12.
Intracisternal A particles from the FLOPC-1 line of BALB/c myeloma have been shown to contain high-molecular-weight RNA (60 to 70S) that is sensitive to RNase, alkali degradation, and heat but resistant to Pronase treatment. The intracisternal A-particle RNA contains tract of poly (A) approximately 180 nucleotides long. As shown in a reconstitution experiment, by antigenic analysis of A-particle preparation and the SC cytopathogenicity assay, the 70S RNA was not due to contamination by type C virus particles. The FLOPC-1 intracisternal A particles also possess an endogenous RNA-dependent DNA polymerase. The enzyme required Mn2+ or Mg2+, dithiothreitol, detergent, and four deoxyribonucleoside triphosphates for maximum activity. Enzymatic activity was maximally stimuated by poly (rC)-oligo (dG)12-18 and less with poly (rG)-oligo (dC)10 or poly (rA)-oligo (dT)12-18 as compare with synthetic DNA/DNA duplex templates such as poly (dA)-oligo (dT)12-18. The enzyme can utilize the A-particle endogenous RNA as template as shown by analysis of the early and late DNA products of the endogenous reaction by CsSO4 isopycnic gradient centrifuation and hybridization of purified 70S or 35S A-particle RNA with the purified complementary DNA product. Approximately 50% of the A-particle complementary DNA also hybridized with oncornavirus RNA.  相似文献   

13.
We have been unable to "force" double-stranded RNA to fold into nucleosome-like structures using several different histone-RNA "reconstitution" procedures. Even if the histones are first stabilized in octameric form by dimethylsuberimidate cross-linking they are still unable to form specific complexes with the RNA. Moreover double-stranded RNA is unable to induce histones to assemble into octamers although we confirm that the non-nucleic acid homopolymer, polyglutamic acid, has this ability. We have also determined, using pyrimidine tract analysis, that nucleosomes will not form over a sufficiently long segment of poly(dA).poly(dT) in a recombinant DNA molecule. Thus nucleosomes cannot fold DNA containing an 80 base pair poly(dA).poly(dT) segment but a 20 base pair segment can be accommodated in nucleosomes fairly well. Segments of intermediate length can be accommodated but are clearly selected against. Poly(dA).poly(dT) differs only slightly from natural DNA in helix structure. Therefore either this homopolymer resists folding, or nucleosomes are very exacting in the nucleic acid steroid parameters they will tolerate. Such constraints may be relevant to nucleosome positioning in chromatin.  相似文献   

14.
A model RNA template-primer system is described for the study of RNA-directed double-stranded DNA synthesis by purified avian myeloblastosis virus DNA polymerase and its associated RNase H. In the presence of complementary RNA primer, oligo(rI), and the deoxyribonucleoside triphosphates dGTP, dTTP, and dATP, 3'-(rC)30-40-poly(rA) directs the sequential synthesis of poly(dT) and poly(dA) from a specific site at the 3' end of the RNA template. With this model RNA template-primer, optimal conditions for double-stranded DNA synthesis are described. Analysis of the kinetics of DNA synthesis shows that initially there is rapid synthesis of poly(dT). After a brief time lag, poly(dA) synthesis and the DNA polymerase-associated RNase H activity are initiated. While poly(rA) is directing the synthesis of poly(dT), the requirements for DNA synthesis indicate that the newly synthesized poly(dT) is acting as template for poly(dA) synthesis. Furthermore, selective inhibitor studies using NaF show that activation of RNase H is not just a time-related event, but is required for synthesis of the anti-complementary strand of DNA. To determine the specific role of RNase H in this synthetic sequence, the primer for poly(dA) synthesis was investigated. By use of formamide--poly-acrylamide slab gel electrophoresis, it is shown that poly(dT) is not acting as both template and primer for poly(dA) synthesis since no poly(dT)-poly(dA) covalent linkages are observed in radioactive poly(dA) product. Identification of 2',3'-[32P]AMP on paper chromatograms of alkali-treated poly(dA) product synthesized with [alpha-32P]dATP as substrate demonstrates the presence of rAMP-dAMP phosphodiester linkages in the poly(dA) product. Therefore, a new functional role of RNase H is demonstrated in the RNA-directed synthesis of double-stranded DNA. Not only is RNase H responsible for the degradation of poly(rA) following formation of a poly(rA)-poly(dT) hybrid but also the poly(rA)fragments generated are serving as primers for initiation of synthesis of the second strand of the double-stranded DNA.  相似文献   

15.
The melting temperature of the poly(dA) . poly(dT) double helix is exquisitely sensitive to salt concentration, and the helix-to-coil transition is sharp. Modern calorimetric instrumentation allows this transition to be detected and characterized with high precision at extremely low duplex concentrations. We have taken advantage of these properties to show that this duplex can be used as a sensitive probe to detect and to characterize the influence of other solutes on solution properties. We demonstrate how the temperature associated with poly(dA) . poly(dT) melting can be used to define the change in bulk solution cation concentration imparted by the presence of other duplex and triplex solutes, in both their native and denatured states. We use this information to critically evaluate features of counterion condensation theory, as well as to illustrate "crosstalk" between different, non-contacting solute molecules. Specifically, we probe the melting of a synthetic homopolymer, poly(dA) . poly(dT), in the presence of excess genomic salmon sperm DNA, or in the presence of one of two synthetic RNA polymers (the poly(rA) . poly(rU) duplex or the poly(rU) . poly(rA) . poly(rU) triplex). We find that these additions cause a shift in the melting temperature of poly(dA) . poly(dT), which is proportional to the concentration of the added polymer and dependent on its conformational state (B versus A, native versus denatured, and triplex versus duplex). To a first approximation, the magnitude of the observed tm shift does not depend significantly on whether the added polymer is RNA or DNA, but it does depend on the number of strands making up the helix of the added polymer. We ascribe the observed changes in melting temperature of poly(dA) . poly(dT) to the increase in ionic strength of the bulk solution brought about by the presence of the added nucleic acid and its associated counterions. We refer to this communication between non-contacting biopolymers in solution as solvent-mediated crosstalk. By comparison with a known standard curve of tm versus log[Na+] for poly(dA) . poly(dT), we estimate the magnitude of the apparent change in ionic strength resulting from the presence of the bulk nucleic acid, and we compare these results with predictions from theory. We find that current theoretical considerations correctly predict the direction of the t(m) shift (the melting temperature increases), while overestimating its magnitude. Specifically, we observe an apparent increase in ionic strength equal to 5% of the concentration of the added duplex DNA or RNA (in mol phosphate), and an additional apparent increase of about 9.5 % of the nucleic acid concentration (mol phosphate) upon denaturation of the added DNA or RNA, yielding a total apparent increase of 14.5 %. For the poly(rU) . poly(rA) . poly(rU) triplex, the total apparent increase in ionic strength corresponds to about 13.6% of the amount of added triplex (moles phosphate). The effect we observe is due to coupled equilibria between the solute molecules mediated by modulations in cation concentration induced by the presence and/or the transition of one of the solute molecules. We note that our results are general, so one can use a different solute probe sensitive to proton binding to characterize subtle changes in solution pH induced by the presence of another solute in solution. We discuss some of the broader implications of these measurements/results in terms of nucleic acid melting in multicomponent systems, in terms of probing counterion environments, and in terms of potential regulatory mechanisms.  相似文献   

16.
Four cDNA clones for ligninase were isolated from the cDNA library (constructed into the PstI site of E. coli vector pUC9) representing 6 day-old lignin degrading culture of Phanerochaete chrysosporium by the use of three synthetic oligonucleotide probes corresponding to partial amino acid sequences of tryptic peptides of the ligninase. Each of the three probes, 14.1, 14.2 and 25, represents a mixture of 32 12- or 14-base long oligonucleotides. Three cDNA clones hybridized with probe 14.1 but not with probe 25 or 14.2, but one cDNA clone hybridized with all of the three probes. Differential hybridization studies showed that these clones are unique to 6-day poly(A) RNA, but not to 2-day poly(A) RNA.  相似文献   

17.
Factor D, a protein purified from rabbit liver that selectively enhances traversal of template oligodeoxythymidine tracts by diverse DNA polymerases, was examined for the sequence specificity of its binding to DNA. Terminally [32P]-labeled oligomers with the sequence 5'-d[AATTC(N)16G]-3', N being dT, dA, dG, or dC, were interacted with purified factor D and examined for the formation of protein-DNA complexes that exhibit retarded electrophoretic mobility under nondenaturing conditions. Whereas significant binding of factor D to 5'-d[AATTC(T)16G]-3' is detected, there is no discernable association between this protein and oligomers that contain 16 contiguous moieties of dG, dA, or dC. Furthermore, factor D does not form detectable complexes with the duplexes oligo(dA).oligo(dT) or poly(dA).poly(dT). The preferential interaction of factor D with single-stranded poly(dT) is confirmed by experiments in which the polymerase-enhancing activity of this protein is protected by poly(dT) against heat inactivation two- and four-fold more efficiently than by poly(dA) or poly(dA).poly(dT), respectively.  相似文献   

18.
Molecular hybridization with RNA probes was performed on unfractionated cells solubilized in guanidine thiocyanate solutions. Unhybridized probe was digested with ribonuclease, and protected probe fragments were resolved by polyacrylamide gel electrophoresis (PAGE). Since the same medium was used both for solubilization of the cells and as the hybridization buffer, RNA purification was not required and the analysis of large numbers of samples was facilitated. Using this method, specificity is superior to dot blot analysis because the size of hybridized fragments is determined and the signal of the probe hybridized to target RNA is separated from the background by PAGE.  相似文献   

19.
We have studied the interaction of poly(rA) and poly(rU) with natural DNAs containing (dA.dT)n sequences. The results indicate that hybridization of poly(rA) to denatured DNA can be used to estimate the size and frequency of large (dA.dT)n tracts, whereas hybridization with poly(rU) does not give reliable information on these points. In 6.6 M CsCl, poly(rU) can form stable complexes with denatured DNA containing short (dA)n tracts (n less than or equal to 6), whereas binding of poly(rA) to denatured DNA under these conditions requires much larger (dT)n tracts (estimated n greater than 13). Moreover, binding of poly(rA) requires pre-hybridization in low salt, because free poly(rA) precipitates in 6.6 M CsCl.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号