首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yan H  Deng XM  Wu CX 《遗传》2010,32(10):1051-1056
果蝇的平衡染色体在遗传研究中被广泛应用.文章通过分析黑腹果蝇裂翅新突变体与野生型、982紫眼及黑檀体杂交后代裂翅性状情况,首次将裂翅基因定位于3号染色体上,并阐明了裂翅平衡致死、杂合子纯繁的遗传机制,获得了以裂翅为显性标记的3号平衡染色体品系.探索了双平衡染色体显性标记基因聚合的杂交模式,成功建立了以裂翅和卷翅为标记的2号、3号双平衡染色体.裂翅的发现为3号染色体平衡子提供了更加方便识另0的显性翅型标记,同时裂卷翅双平衡体的建立丰富了果蝇常用工具平衡子,可以广泛用于基因定位及突变筛选过程.  相似文献   

2.
董玮  武文君  张徐波 《昆虫学报》2022,65(8):1068-1074
平衡棒(haltere)是双翅目昆虫后翅特化而成的结构,可在飞行中起重要作用。平衡棒基部的感受器可以检测到飞行中的惯性力,向运动神经元提供反馈,迅速地平衡身体并纠正航向。昆虫的平衡棒由成虫盘发育形成,其特化受HOX基因(Ultrabithorax,Ubx)调控。发育成熟的平衡棒由两层上皮细胞组成,末端球状结构内部充满高度空泡化的细胞,基部具有大量感器。平衡棒的运动由独立的肌肉控制,相对于同侧的翅反向移动,翅与平衡棒的协同运动对于昆虫起飞和维持平衡十分重要。近年来,平衡棒的导航原理越来越多地应用于仿生学研究中,基于果蝇平衡棒的结构和功能,研制出多种飞行器的导航设备。本文结合近年来相关领域的研究成果,就平衡棒的发育、形态结构、功能和仿生应用等方面的研究进展进行综述,为深入理解昆虫平衡棒的发育机制和生物学功能提供参考。  相似文献   

3.
Hox基因与昆虫翅的特化   总被引:1,自引:1,他引:1  
翟宗昭  杨星科 《昆虫学报》2006,49(6):1027-1033
自从1978年E.B. Lewis描述了著名的果蝇双胸突变体(bithorax)以来,大量的比较发育遗传学研究为我们揭示了形态进化的遗传基础,从而使形态进化研究进入了一个新的时代。同时,Hox基因的研究也成为这一领域的焦点。本文综述了昆虫翅的起源及其特化类群翅的发育遗传学研究的最新进展。一般认为,原始的有翅昆虫胸腹部多附肢(包括翅); 之后不同的体节受到了不同Hox的抑制,形成两对翅以及前后翅的分化; Ubx的不同表达导致了前后翅的分化,并且Ubx负责识别后翅。我们选择翅特化最为显著的3个类群——鞘翅目(T2鞘翅)、双翅目(T3平衡棒)和捻翅目(T2平衡棒),结合Hox的表达情况讨论了翅的特化机理。目前已知双翅目和鞘翅目的翅的控制模式存在巨大差异,两种模式的比较研究对于理解翅的形态进化具有重要的意义。但是对捻翅目昆虫的研究则很少。  相似文献   

4.
欧俊  郑思春  冯启理  刘琳 《昆虫学报》2013,56(8):917-924
翅原基发育分化与昆虫的个体发育紧密联系, 对昆虫翅发育的研究有助于阐述昆虫的发育过程。另外, 翅的形成是一些农林害虫泛滥的主要原因之一, 研究翅发育分化有助于我们从翅发育的角度控制农林害虫。目前, 翅发育分化在果蝇Drosophila中研究已较为深入详细。果蝇翅发育分化主要包括4个阶段: 翅原基(wing disc)的确定, 前-后(antero-posterior, A-P)和背-腹(dorso-ventral, D-V)组织中心(organizing center)的建立, 翅区(wing region)的确定, 以及翅区的进一步分化。具有homeobox序列的基因(homeobox 基因)如Engrailed (En)、 Apterous (Ap)和Ultrabithorax (Ubx), 分泌蛋白如Wnt家族成员Wingless (Wg)及TGF-β超家族成员Decapentaplegic (Dpp)和Hedgehog (Hh), 以及翅原基特有的核蛋白编码基因Vestigial (Vg), 共同调控了翅原基的正常发育分化。本文综述了果蝇翅原基发育分化的过程及分子机理方面的研究发现, 为翅原基的研究提供了参考。  相似文献   

5.
卷翅是果蝇遗传学上最常用的标记之一,但卷翅形成的具体机制还不清楚.过去的研究发现,理化刺激影响果蝇卷翅的形成.我们最近研究发现,H_2O_2处理不仅会影响果蝇的羽化率,还会使其出现卷翅现象.本研究通过改变H_2O_2浓度、果蝇培养温度和H_2O_2处理时间,探讨影响黑腹果蝇卷翅形成的具体因素,并对其超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-PX)活力进行检测,探讨H_2O_2对果蝇抗氧化能力的影响.结果表明:果蝇的羽化率与H_2O_2浓度成反比.温度、H_2O_2浓度和H_2O_2处理时间的改变均会影响果蝇翅的卷曲程度和卷翅果蝇所占的比例.其中white基因突变果蝇对这3种条件反应最明显,mini-white(white基因回复突变)果蝇却可以拯救该表型,它的反应与野生型OR相似.H_2O_2对含Cy基因的果蝇卷翅的形成也有一定的影响,可以加大果蝇翅的卷曲程度.对SOD、CAT和GSH-PX活力检测发现,H_2O_2处理会使果蝇的抗氧化能力降低.实时荧光定量PCR检测发现,H_2O_2处理会导致果蝇基因表达量发生改变.黑腹果蝇卷翅形成是一个十分复杂的过程,H_2O_2可能作为某种信号分子或是间接影响某种因子参与黑腹果蝇的卷翅形成过程.该卷翅形成过程可能与Cy基因导致的果蝇卷翅过程是同一个信号途径,两者也可能是通过不同的模式进行调控的.  相似文献   

6.
实验6 连锁 (一)实验器材 1 营养管的真实遗传野生型雄果蝇;1培养管的卷翅、黑檀体处女雌(图6(a));孵化箱(2 5℃);2培养管的培养基(每管贴一空白标签);其余器材见实验3。注释: 实验5中讨论过的决定翅型(长或残翅)和体色(灰或黑檀体)的基因,表现独立分配,因为它们位于不同的染色体。但是,如果一个杂交涉及同一染色体上两个不同基因的两种等位基因,减数分裂时这两个基因就有一起进入一个细胞的倾向。在这种情况下,我们说这两个基因是连锁的。 (二)实验步骤 1.应用该实验准备的两个果蝇品系,仿实验5的实验步骤进行操作。  相似文献   

7.
【目的】灵活操控靶基因的表达水平对于研究基因的功能十分重要。Gal4/UAS系统已被广泛应用于调控基因表达,可研究果蝇Drosophila等模式生物复杂的生物学问题。受采用载体的特性及插入位点的影响,Gal4或UAS转基因品系在构建好之后,其调控靶基因的能力基本是确定的。本研究旨在在现有Gal4/UAS系统的基础上,开发一种新的策略,实现在果蝇翅芽中灵活操控wingless(wg)基因的表达水平。【方法】用遗传学手段将黑腹果蝇Drosophila melanogaster品系的UAS-wg和UAS-wg-RNAi转基因重组到同一黑腹果蝇品系中。将该重组黑腹果蝇品系与dpp-Gal4黑腹果蝇品系杂交,同时驱动UAS-wg和UAS-wg-RNAi在果蝇幼虫翅芽中共表达。杂交子代幼虫分别放置在不同的温度(18, 25和30℃)下培养。将幼虫翅芽解剖并进行免疫组化染色,测量染色的荧光强度,分析翅芽中wg的表达水平。【结果】在低温(18℃)下,UAS-wg在基因表达调控中起主要作用,wg表现为超表达,但其超表达的效率可被UAS-wg-RNAi有效地削弱。相反,在高温(30℃)下,UAS-wg-RNAi起主导作用,wg的表达受到抑制。并且通过转换温度,可实现wg在翅芽发育的不同阶段在超表达和抑制之间相互转化,从而灵活地操控wg基因在翅芽中的表达水平。【结论】该方法可以灵活操控果蝇翅芽中wg基因的表达水平,对于调控转基因的表达有重要的意义。  相似文献   

8.
近年来,果蝇心脏转化的遗传机制已初步研究清楚,但控制人类心脏早期发育的基因尚待鉴定。因为调控果蝇和脊椎动物早期心脏细胞命运定型的途径具有保守性,果蝇是一种探讨人类心脏早期发育的分子机理的理想动物模型。为此目的,我们采用P转座子和EMS诱变技术建立了约3000个隐性致死基因平衡系。通过心脏前体细胞特异性抗体免疫组化筛选,我们选出200余个表现心脏突变表型的平衡致死系。我们进一步利用RNAi技术对一些基因的功能进行了初步的研究,证明这些基因表现RNAi的突变表型,该类突变表型与基因突变时表现的表型相似,即心管呈缺陷型或无心脏前体细胞形成。利用果蝇和人类基因组计划获得的成果,我们从果蝇心脏侯选基因中初步克隆和鉴定了50个人类同源基因,其中20个是新基因。Northen印迹分析表明,一部分人类基因在心脏组织中有表达,从而为研究这些基因在人类心脏早期发育中的作用提供了信息。目前,我们正在建立转基因果蝇,以此为模型研究这些基因是否对心肌细胞发生或心肌功能起调控作用。产生心肌细胞突变类型的基因如果类似于人类心脏病综合症,则可以作为人类心脏疾病侯选基因作进一步的分析。  相似文献   

9.
卷翅是果蝇遗传学上最常用的标记之一,但卷翅形成的具体机制还不清楚.过去的研究发现,理化刺激影响果蝇卷翅的形成.我们最近研究发现,H2O2处理不仅会影响果蝇的羽化率,还会使其出现卷翅现象.本研究通过改变H2O2浓度、果蝇培养温度和H2O2处理时间,探讨影响黑腹果蝇卷翅形成的具体因素,并对其超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-PX)活力进行检测,探讨H2O2对果蝇抗氧化能力的影响.结果表明: 果蝇的羽化率与H2O2浓度成反比.温度、H2O2浓度和H2O2处理时间的改变均会影响果蝇翅的卷曲程度和卷翅果蝇所占的比例.其中white基因突变果蝇对这3种条件反应最明显,mini-white(white基因回复突变)果蝇却可以拯救该表型,它的反应与野生型OR相似.H2O2对含Cy基因的果蝇卷翅的形成也有一定的影响,可以加大果蝇翅的卷曲程度.对SOD、CAT和GSH-PX活力检测发现,H2O2处理会使果蝇的抗氧化能力降低.实时荧光定量PCR检测发现,H2O2处理会导致果蝇基因表达量发生改变.黑腹果蝇卷翅形成是一个十分复杂的过程,H2O2可能作为某种信号分子或是间接影响某种因子参与黑腹果蝇的卷翅形成过程.该卷翅形成过程可能与Cy基因导致的果蝇卷翅过程是同一个信号途径,两者也可能是通过不同的模式进行调控的.  相似文献   

10.
利用果蝇模型研究人类心脏早期发育的分子机理(英文)   总被引:2,自引:0,他引:2  
近年来 ,果蝇心脏特化的遗传机制已初步研究清楚 ,但控制人类心脏早期发育的基因尚待鉴定。因为调控果蝇和脊椎动物早期心脏细胞命运定型的途径具有保守性 ,果蝇是一种探讨人类心脏早期发育的分子机理的理想动物模式。为此目的 ,我们采用P转座子和EMS诱变技术建立了约 3 0 0 0个隐性致死基因平衡系。通过心脏前体细胞特异性抗体免疫组化筛选 ,我们检出 2 0 0余个表现心脏突变表型的平衡致死系。我们进一步利用RNAi技术对一些基因的功能进行了初步的研究 ,证明这些基因表现RNAi的突变表型 ,该类突变表型与基因突变时表现的表型相似 ,即心管呈缺陷型或无心脏前体细胞形成。利用果蝇和人类基因组计划获得的成果 ,我们从果蝇心脏侯选基因中初步克隆和鉴定了 5 0个人类同源基因 ,其中 2 0个是新基因。Northen印迹分析表明 ,一部分人类基因在心脏组织中有表达 ,从而为研究这些基因在人类心脏早期发育中的作用提供了信息。目前 ,我们正在建立转基因果蝇 ,以此为模型研究这些基因是否对心肌细胞发生或心肌功能起调控作用。产生心肌细胞突变类型的基因如果类似于人类心脏病综合症 ,则可以作为人类心脏疾病侯选基因作进一步的分析。  相似文献   

11.
本文利用PCR技术对两个果蝇突变株zip~(ID16)、zip~(IIF107)的突变zip基因的主要结构域部分进行了扩增,并在克隆后作序列分析。排除了突变发生在这些区域的可能性,表明可能的突变位点:一是位于信号肽部分,二是处于调控区。提示在这两个区域可能有关键性的单个氨基酸或单个碱基位置的存在。  相似文献   

12.
果蝇杂交实验方案的设计与安排   总被引:2,自引:0,他引:2  
在遗传学实验中 ,有许多遗传规律的验证需用果蝇作为实验材料。如 :分离规律、自由组合规律、伴性遗传规律及连锁互换规律的验证。然而在进行实验设计时 ,常常是一个杂交组合 ,只能验证一个规律。在多年的教学实验中 ,我们摸索分析出采用一次杂交设计来完成验证多个遗传规律的方法 ,取得了良好的教学效果 ,现将该实验方法分述如下。1 实验材料与杂交组合1.1 实验材料 果蝇 ( Drosophila melanogaster) ,X染色体的隐性突变体 ,即 :小翅、焦刚毛、白眼 ,已知控制这3个性状的基因 ( m、sn3、w)都位于 X染色体上 ;一隐性突变果蝇 ( e)檀黑…  相似文献   

13.
Wingless信号传导是果蝇胚胎和幼虫发育过程中的一个关键性的信号传导通路。已鉴定出来许多参与Wg Wnt信号传导的Wg或其脊椎动物同源基因Wnt下游传导通路的基因。Wg下游的Wg信号传导是由核TCF LEF 1通过Armadillo (Arm) β catenin介导的。pygopus (pygo)是一个最近发现的Wg Wnt信号传导通路新成员。通过细胞定位实验发现pygo专一性的表达在细胞核中。运用反义mRNA作探针的原位杂交技术 ,观察到了pygo基因在果蝇胚胎中的表达特性。虽然pygo普遍表达于果蝇胚胎发生全过程 ,但pygo在前囊胚层 (pre blastoderm)中的表达水平相对较高 ,这说明胚胎发生过程中来自母方的贡献较高。在幼虫组织 (包括翅成虫盘 ,眼成虫盘和腿成虫盘 )的发育过程中 ,pygo的表达水平总的来说比较低。然而 ,比较翅成虫盘 ,眼成虫盘和腿成虫盘的pygo表达水平 ,则在翅成虫盘和腿成虫盘pygo的表达水平相对较高。  相似文献   

14.
李红伟  连林生  赵春江  白丽华  邓学梅  吴常信 《遗传》2006,28(10):1254-1259
卷翅(Curly简称Cy)是易以识别的果蝇翅膀的显性突变, 是黑腹果蝇2号染色体上最常用的显性翅膀标记, 但对Cy的分子特征却不清楚。综合细胞遗传学与基因组学的信息,应用分子生物学技术,首次在Cy染色体上发现一个102 bp的缺失。该缺失存在于不同的卷翅品系中, 说明不同Cy染色体上存在某些共同的分子特征。同时以该缺失作为Cy染色体的DNA标记, 通过基因型多态分析, 初步证实Cy纯合型可导致果蝇胚胎期死亡。这些结果为进一步研究卷翅的分子遗传机理奠定了基础。  相似文献   

15.
lats基因(large tumor suppressor gene)最早在果蝇中发现,在小鼠和人中均有同源基因.该基因的功能从果蝇到人是高度保守的.lats基因的功能包括:作为肿瘤抑制基因,其突变会导致肿瘤的发生;磷酸化的Lats与Cdc2结合,参与细胞周期的调控;通过细胞-细胞间的通讯,可能参与生物体个体大小的调控机制.从果蝇到人lats基因功能的研究,提供了以果蝇作为模式生物研究哺乳动物基因功能的方法.  相似文献   

16.
刘素宁  王丹  沈杰 《昆虫知识》2013,(6):1489-1498
果蝇翅芽是研究细胞形貌发生的模式系统。在果蝇翅芽的发育过程中,器官成形素由浓度高的区域(成形素表达细胞)向浓度低的区域(接收细胞)移动,形成动态的浓度梯度。器官成形素信号通路的激活调控翅芽细胞的形貌发生、存活、生长和分化。目前已鉴定的在翅芽细胞表达的器官成形素包括Hedgehog(Hh),Decapentaplegic(Dpp)和Wingless(Wg)。结合国际最新研究进展,本文综述了3种器官成形素在翅芽细胞形貌发生过程中的重要作用,讨论了细胞形貌发生的分子机制。  相似文献   

17.
艾炎军  曾庆韬 《昆虫学报》2010,53(12):1345-1351
黑腹果蝇Drosophila melanogaster黑条体果蝇(ebsr)与黑檀体果蝇(e)为同一个基因(ebony)的不同突变体, 两者具有相似的形态表型, 但行为特征表现出明显的差异。本研究以黑条体、 黑檀体和野生型果蝇为研究对象, 首先检测果蝇的视力和活跃度, 再采用不同交配组合进行求偶成功率、交配时间和求偶模式的分析。结果表明: 黑条体果蝇视力与活跃度与野生型果蝇比较无显著差异; 黑条体果蝇的交配成功率和交配潜伏期与野生型果蝇不存在显著的差异; 黑檀体果蝇的交配成功率和交配潜伏期与野生型果蝇存在极显著的差异(P<0.000)。黑条体果蝇表现出异于黑檀体果蝇的活跃度和交配活力, 可能是由于黑条体果蝇ebony基因的新突变导致了果蝇体内多巴胺水平异常, 从而形成了黑条体果蝇独特的求偶模式。  相似文献   

18.
影响果蝇心脏发育的基因突变   总被引:1,自引:0,他引:1  
最近的研究表明,果蝇与脊椎动物及人的心脏早期发育具有极为相似的基因控制机理,果蝇已成为研究人体心脏早期发育基因控制的理想模式动物。利用化学诱变剂甲磺酸乙酯大规模地诱变影响果蝇心脏发育的基因,利用心脏特异性抗体染色进行筛选,获得了112个有心脏突变表型的致死系,其中32个致死系的心脏畸变表型有别于目前已知心脏发育基因的突变表型。细胞遗传学定位研究表明在多线染色体的13个带纹区的某些隐性致死突变基因是目前未知的,其功能可能与发育有关的基因。  相似文献   

19.
名刊封面     
《生命世界》2005,(12):5-5
《自然》2005.11.10雄性果蝇的同性恋行为人们第一次发现果蝇的"无果实"基因时,就对它产生了浓厚的兴趣,因为没有一个基因像它这样,突变后能把雄果蝇变成同性恋。但是,"无果实"基因是如何影响大脑发育,使雄果蝇产生性取向的改变呢?这一期的封面故事给了我们有关的答案。研究人员发现了一组神经元,它  相似文献   

20.
【目的】在活体水平验证飞蝗Locusta migratoria羧酸酯酶基因LmCesA1和LmCesA2是否参与有机磷杀虫剂的代谢解毒。【方法】采用Gal4/UAS系统,借助转基因技术,构建两个转基因黑腹果蝇Drosophila melanogaster品系,选取3品系Gal4(act-Gal4, tub-Gal4和c601-Gal4)果蝇作为母本分别与两种转基因果蝇(UAS-LmCesA1和UAS-LmCesA2)以及一种亲本对照果蝇(RB0006{y v; attP40, y+})进行杂交。对子一代转基因果蝇从DNA和RNA水平进行验证,筛选出成功构建的品系。采用生物测定方法检测转基因果蝇与Gal4果蝇杂交后代对马拉硫磷的抗性。【结果】转基因果蝇DNA水平鉴定结果显示,转基因果蝇tub>LmCesA1和tub>LmCesA2中分别扩增到目的基因LmCesA1和LmCesA2,而对照组果蝇tub>attP40中未扩增到目的基因。转基因果蝇RNA水平的检测结果显示,这两个基因在相应的杂交后代中均有表达,表明转基因果蝇构建成功。目的基因在转基因果蝇成虫不同组织中的表达结果表明,两个目的基因LmCesA1和LmCesA2分别在转基因果蝇c601>LmCesA1和c601>LmCesA2的肠道中高表达; LmCesA1在c601>LmCesA1果蝇肠道中的表达量分别是脑和表皮中的7.6和16.7倍, LmCesA2在c601>LmCesA2果蝇肠道中的表达量分别是脑和表皮中的5.4和10.9倍。杀虫剂生物测定结果显示,与对照组果蝇(c601>attP40)相比,超表达LmCesA2的果蝇(c601>LmCesA2)对马拉硫磷的抗性显著提高,抗性倍数为1.67。【结论】本研究的结论与我们前期采用RNAi结合杀虫剂生测的研究结论一致,即羧酸酯酶基因LmCesA2可能参与飞蝗对马拉硫磷的代谢解毒过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号