首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicon solar cells among different types of solar energy harvesters have entered the commercial market owing to their high power conversion efficiency and stability. By replacing the electrode and the p‐type layer by a single layer of carbon nanotubes, the device can be further simplified. This greatly augments the attractiveness of silicon solar cells in the light of raw material shortages and the solar payback period, as well as lowering the fabrication costs. However, carbon nanotube‐based silicon solar cells still lack device efficiency and stability. These can be improved by chemical doping, antireflection coating, and encapsulation. In this work, the multifunctional effects of p‐doping, antireflection, and encapsulation are observed simultaneously, by applying a polymeric acid. This method increases the power conversion efficiency of single‐walled carbon nanotube‐based silicon solar cells from 9.5% to 14.4% and leads to unprecedented device stability of more than 120 d under severe conditions. In addition, the polymeric acid‐applied carbon nanotube‐based silicon solar cells show excellent chemical and mechanical robustness. The obtained stable efficiency stands the highest among the reported carbon nanotube‐based silicon solar cells.  相似文献   

2.
Cancer cells have distinctive electrochemical properties. This work sheds light on the system design aspects and key challenges that should be considered when experimentally analyzing and extracting the electrical characteristics of a tumor cell line. In this study, we developed a cellularbased functional microfabricated device using lithography technology. This device was used to investigate the electrochemical parameters of cultured cancer cells at the single-cell level. Using impedance spectroscopy analyses, we determined the average specific capacitance and resistance of the membrane of the cancer cell line B16-F10 to be 1.154 ± 0.29 μF/cm2, and 3.9 ± 1.15 KΩ.cm2 (mean ± SEM, n =14 cells), respectively. The consistency of our findings via different trails manifests the legitimacy of our experimental procedure. Furthermore, the data were compared with a proposed constructed analytical-circuit model. The results of this work may greatly assist researchers in defining an optimal procedure while extracting electrical properties of cancer cells. Detecting electrical signals at the single cell level could lead to the development of novel approaches for analysis of malignant cells in human tissues and biopsies.  相似文献   

3.
Our previous studies revealed that the dielectrophoresis method is effective for separating cells having different dielectric properties. The purpose of this study was to evaluate the separation characteristics of two kinds of cells by direct current (DC) voltage offset/alternating current (AC) voltage using an insulating porous membrane dielectrophoretic separator. The separation device gives dielectrophoretic (DEP) force and electrophoretic (EP) force to dispersed particles by applying the DC‐offset AC voltage. This device separates cells of different DEP properties by adopting a structure in which only the parallel plate electrodes and the insulating porous membrane are disposed in the flow path through which the cell‐suspension flows. The difference in the retention ratios of electrically homogeneous 4.5 μm or 20.0 μm diameter standard particles was a maximum of 82 points. Furthermore, the influences of the AC voltage or offset voltage on the retention ratios of mouse hybridoma 3‐2H3 cells and horse red blood cells (HRBC) were investigated. The difference in the retention ratio of the two kinds of cells was a maximum of 56 points. The separation efficiency of this device is expected to be improved by changing the device shape, number of pores, and pore placement. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1292–1300, 2016  相似文献   

4.
Judicious choice of transport layer in organic–inorganic halide perovskite solar cells can be one of the essential parameters in photovoltaic design and fabrication techniques. This article reports the effect of optically generated dipoles in transport layer on the photovoltaic actions in active layer in perovskite solar cells with the architecture of indium tin oxide (ITO)/TiO x /CH3NH3PbI3–x Cl x /hole transport layer (HTL)/Au. Here, PTB7‐thieno[3,4‐b]thiophene‐alt‐benzodithiophene and P3HT‐poly(3‐hexylthiophene) are separately used as the HTL with significant and negligible photoinduced dipoles, respectively. Electric field‐induced photoluminescence quenching provides the first‐hand evidence to indicate that the photoinduced dipoles are partially aligned in the amorphous PTB7 layer under the influence of device built‐in field. By monitoring the recombination process through magneto‐photocurrent measurements under device operation condition, it is shown that the photoinduced dipoles in PTB7 layer can decrease the recombination of photogenerated carriers in the active layer in perovskite solar cells. Furthermore, the capacitance measurements suggest that the photoinduced dipoles in PTB7 can decrease charge accumulation at the electrode interface. Therefore, the studies indicate the important role of photoinduced dipoles in the HTL on charge recombination dynamics and provide a fundamental insight on how the polarization in transport layer can influence the device performance in perovskite solar cells.  相似文献   

5.
Inverted organic solar cells generally exhibit a strong s‐shaped kink in the current–voltage characteristics (JV curve) that may be removed by exposure to UV light (light‐soaking) leading to a drastically improved performance. Using in‐device characterization methods the origin of the light‐soaking issue in inverted solar cells employing titanium dioxide (TiO2) as an electron selective layer is clarified. An injected hole reservoir accumulated at the TiO2/organic interface of the pristine device is observed from extraction current transients; the hole reservoir increases the recombination and results in an s‐shape in the JV curve of pristine devices. The hole reservoir and the s‐shape is a result of the energetics at the selective contact in the pristine device; the effect of UV exposure is to decrease the work function of the indium tin oxide/TiO2‐contact, increasing the built‐in potential. This hinders the build‐up of the hole reservoir and the s‐shape is removed. The proposed model is in excellent agreement with drift‐diffusion simulations.  相似文献   

6.
Almost all types of cellsin vivoare constantly subjected to mechanical deformation derived from muscular movement, respiration, or blood pulsation. In order to elucidate how cells and their cytoskeletal components respond to these stimuli, we developed a new device which can apply a wide range of uniaxial cyclic strain to cultured cells. When the cells were subjected to this stimulation, their stress fibers were rapidly arranged at a specific oblique angle relative to the direction of stretching. This stress fiber angulation showed a close relationship to the amplitude of stretching.  相似文献   

7.
Summary Stable transformation of suspension-cultured cells of tobacco with plasmid DNA (pCaMV-NEO) harbouring the neomycin phosphotransferase II (npt-II) gene was achieved using a previously described gas-pressure-driven particle acceleration device. The cells were bombarded with DNA-coated gold particles accelerated by the device, and callus containing the introduced gene was selected in the presence of geneticin disulphate. The geneticin-resistant callus exhibited npt-II enzyme activity, and Southern analysis confirmed the stable integration of the foreign gene into the tobacco genome. Transformants were obtained at a rate of more than 1.9 × 10–4. Offprint requests to: H. Morikawa  相似文献   

8.
Summary The increment of Og in the guard cells in response to light as reported by previous investigators was found to be true qualitatively but not quantitatively.A special device was constructed, which permitted the elimination of the heat factor when the leaves were irradiated.In experiments 1 and 2 the relative values of the bell and the device were determined.In experiments 3 and 4 the relative effects of light were studied on younger and older leaves.In experiments 5 and 6 the effects were studied on old and young leaves ofHedera helix. This plant serves as a standard for comparisons of results obtained by subjecting plants to various factors of the environment.In experiments 7 and 8 the effect of light on young, middle-aged and old leaves ofHedera helix, when water was supplied, in one case but not in the other were studied. In experiment 8 the same leaf was treated in the device and then in the dark chamber, and once more in the light. The results are particularly enlightening.In the supplementary experiments, it was verified that the phenomenon of an increment of the guard cells and a decrement of the spongy parenchyma in Og, when irradiated, is probably general.  相似文献   

9.
Detection of very low light levels arising from individual cells of the naturally bioluminescent bacterium Vibrio fischeri as well as from a luminescence-marked Pseudomonas putida strain was achieved by the aid of two different camera systems. Using a liquid nitrogen-cooled slow-scan CCD (charge-coupled device) camera we were able to detect single-cell bioluminescence within 1 min, and the pictures obtained were of good resolution. In contrast, employing a photon-counting video camera we were able to detect bioluminescent cells within 10 seconds, but at the expense of spatial resolution. This study demonstrates the feasibility of microscopic single cell analysis employing bioluminescence as reporter system. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
Programming genetic circuits in mammalian cells requires flexible, tunable, and user‐tailored gene‐control systems. However, most existing control systems are either mechanistically specific for microbial organisms or must be laboriously re‐engineered to function in mammalian cells. Here, we demonstrate a ribozyme‐based device platform that can be directly transported from yeast to mammalian cells in a “plug‐and‐play” manner. Ribozyme switches previously prototyped in yeast are shown to regulate gene expression in a predictable, ligand‐responsive manner in human HEK 293, HeLa, and U2OS cell lines without any change to device sequence nor further optimization. The ribozyme‐based devices, which exhibit activation ratios comparable to the best RNA‐based regulatory devices demonstrated in mammalian cells to‐date, retain their prescribed functions (ON or OFF switch), tunability of regulatory stringency, and responsiveness to different small‐molecule inputs in mammalian hosts. Furthermore, we observe strong correlations of device performance between yeast and all mammalian cell lines tested (R2 = 0.63–0.97). Our unique device architecture can therefore act as a rapid prototyping platform (RPP) based on a yeast chassis, providing a well‐developed and genetically tractable system that supports rapid and high‐throughput screens for generating gene‐controllers with a broad range of functions in mammalian cells. This platform will accelerate development of mammalian gene‐controllers for diverse applications, including cell‐based therapeutics and cell‐fate reprogramming. Biotechnol. Bioeng. 2013; 110: 1201–1210. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
With the rapid progress in developing hybrid perovskite solar cells, the allure of current density–voltage ( JV) hysteresis has attracted quite a lot of interest in the research community. It requires feasible approaches that further deepen the fundamental understanding of device physics in specific device architecture in order to solve this problem eventually. Here, perovskite solar cells configured with different counter electrodes are systematically investigated with the focus on charge accumulation within the devices responsible for JV hysteresis. The results indicate that JV hysteresis is affected by charge accumulation which can be modulated by carrier extraction efficiency of the electrodes. Through a rationally induced interfacial dipole, the devices have shown improvement in carrier extraction, which thus reduces JV hysteresis significantly. It provides solid evidence for the proposition that interface charge plays an important role in JV hysteresis, and demonstrates an applicable strategy that effectively alleviates JV hysteresis in perovskite solar cells.  相似文献   

12.
In adherence studies, the removal of nonadherent microorganisms is essential for the valid enumeration of microorganisms that adhere to host cells. Although filtration devices are available commercially for the removal of nonadherent microorganisms, these are expensive and not reusable. In this article, we describe a simple, inexpensive, and reusable filtration device composed of two chambers of nylon, a nylon membrane of desired pore size, a rubber washer, and supporting stainless steel mesh. The device was effective in in vitro adherence assays for removing nonadherent endospores of Rhinosporidium seeberi from human buccal epithelial cells, providing valid counts of adherent microorganisms.  相似文献   

13.
Perovskite‐organic tandem solar cells are attracting more attention due to their potential for highly efficient and flexible photovoltaic device. In this work, efficient perovskite‐organic monolithic tandem solar cells integrating the wide bandgap perovskite (1.74 eV) and low bandgap organic active PBDB‐T:SN6IC‐4F (1.30 eV) layer, which serve as the top and bottom subcell, respectively, are developed. The resulting perovskite‐organic tandem solar cells with passivated wide‐bandgap perovskite show a remarkable power conversion efficiency (PCE) of 15.13%, with an open‐circuit voltage (Voc) of 1.85 V, a short‐circuit photocurrent (Jsc) of 11.52 mA cm?2, and a fill factor (FF) of 70.98%. Thanks to the advantages of low temperature fabrication processes and the flexibility properties of the device, a flexible tandem solar cell which obtain a PCE of 13.61%, with Voc of 1.80 V, Jsc of 11.07 mA cm?2, and FF of 68.31% is fabricated. Moreover, to demonstrate the achieved high Voc in the tandem solar cells for potential applications, a photovoltaic (PV)‐driven electrolysis system combing the tandem solar cell and water splitting electrocatalysis is assembled. The integrated device demonstrates a solar‐to‐hydrogen efficiency of 12.30% and 11.21% for rigid, and flexible perovskite‐organic tandem solar cell based PV‐driven electrolysis systems, respectively.  相似文献   

14.
Summary A prototype of an immobilized-cell photobioreactor based on a composite agar layer/microporous membrane structure is described. This photobioreactor has been tested for hydrogen-gas production using viable cells ofRhodospirillum rubrum and a phosphate buffer supplemented with malate and glutamate as nutrient medium. The major problem was the high diffusional resistance of the immobilized-cell layer at high cell population. The device has been patented and might be readily applied to other light-dependent bioreactions having more short-term economic interest than hydrogen photoproduction.  相似文献   

15.
A strategy for developing a novel donor–π–acceptor conducting polymeric hole transport material ( TTB–TTQ ) based on thiophene and benzothiadiazole as an alternative to spiro‐MeOTAD is reported. The resulting polymer is highly soluble in many organic solvents and exhibits excellent film formability. The addition of lithium bis(trifluoromethanesulfonyl) imide salt and tert‐butylpyridine to TTB–TTQ results in a rough film surface with a fibril structure and improved charge transport. A perovskite solar cell with the highest power conversion efficiency (η) yet achieved in such cells, 14.1%, which is 22.6% greater than that of a device employing a spiro‐MeOTAD is demonstrated. This strategy provides a novel approach to developing solar cell materials for efficient perovskite solar cells.  相似文献   

16.
Summary An iontophoretic device with a configuration similar to that of a single hollow fiber reactor was found to enhance the release and transport of intracellular alkaloids fromCatharanthus roseus cells. As the applied current increased from 1 to 2 milliamperes, the rate of release and transport of alkaloids almost doubled. Pretreatment of the cells with DMSO further enhanced the production.  相似文献   

17.
By application of thermal annealing and UV ozone simultaneously, a solution‐processed NiOx film can achieve a work function of approximately –5.1 eV at a temperature below 150 °C, which allows the processing of NiOx that is compatible with fabrication of polymer solar cells (PSCs) on plastic substrates. The low processing temperature, which is greatly reduced from 250–400 °C to 150 °C, is attributed to the high concentration of NiOOH species on the film surface. This concentration will result in a large surface dipole and lead to increased work function. The pretreated NiOx is demonstrated to be an efficient buffer layer in PSCs based on polymers with different highest occupied molecular orbital energy levels. Compared with conventional poly(3,4‐ethylenedioxy‐thiophene):poly(styrenesulfonate)‐buffered PSCs, the NiOx‐buffered PSCs achieve similar or improved device performance as well as enhanced device stability.  相似文献   

18.
When investigating the effect of aeration capacityK L a of a cultivation device on the cell cycle of daughter cells ofCandida utilis it was found that the length of a phase (S + G2) of the cell cycle is influenced by the rate of oxygen transfer. An increase ofK L a, of a cultivation device achieved by increasing the specific output of mechanical energy for air dispersion and mixing may lead to cell damage and to changes in the cell cycle. The effect of high intensity of aeration and mixing is thus invalidated.  相似文献   

19.
Carotenoids are the most universal and most widespread pigments in nature. They have played pivotal roles in the evolution of photosensing mechanisms in microbes and of vision in animals. Several groups of phytoflagellates developed a photoreceptive organelle called the eyespot apparatus (EA) consisting of two separable components: the eyespot, a cluster of carotenoid‐rich globules that acts as a reflector device, and actual photoreceptors for photobehaviors. Unlike other algal eyespots, the eyespot of Euglenophyta lacks reflective properties and is generally considered to act as a shading device for the photoreceptor (paraflagellar body, PFB) for major photomovements. However, the function of the eyespot of Euglenophyta has not yet been fully proven. Here, we report that the blocking carotenoid biosynthesis in Euglena gracilis by suppressing the phytoene synthase gene (crtB) caused a defect in eyespot function resulting in a loss of phototaxis. Raman spectroscopy and transmission electron microscopy suggested that EgcrtB‐suppressed cells formed eyespot globules but had a defect in the accumulation of carotenoids in those packets. Motion analysis revealed the loss of phototaxis in EgcrtB‐suppressed cells: a defect in the initiation of turning movements immediately after a change in light direction, rather than a defect in the termination of cell turning at the appropriate position due to a loss of the shading effect on the PFB. This study revealed that carotenoids are essential for light perception by the EA for the initiation of phototactic movement by E. gracilis, suggesting one possible photosensory role of carotenoids in the EA for the phototaxis.  相似文献   

20.
A terthieno[3,2‐b]thiophene ( 6T ) based fused‐ring low bandgap electron acceptor, 6TIC , is designed and synthesized for highly efficient nonfullerene solar cells. The chemical, optical, and physical properties, device characteristics, and film morphology of 6TIC are intensively studied. 6TIC shows a narrow bandgap with band edge reaching 905 nm due to the electron‐rich π‐conjugated 6T core and reduced resonance stabilization energy. The rigid, π‐conjugated 6T also offers lower reorganization energy to facilitate very low VOC loss in the 6TIC system. The analysis of film morphology shows that PTB7‐Th and 6TIC can form crystalline domains and a bicontinuous network. These domains are enlarged when thermal annealing is applied. Consequently, the device based on PTB7‐Th : 6TIC exhibits a high power conversion efficiency (PCE) of 11.07% with a high JSC > 20 mA cm?2 and a high VOC of 0.83 V with a relatively low VOC loss (≈0.55 V). Moreover, a semitransparent solar cell based on PTB7‐Th : 6TIC exhibits a relatively high PCE (7.62%). The device can have combined high PCE and high JSC is quite rare for organic solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号