首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The phenotypic characteristics of 26 ptg mutations in T4 gene 23 are described. All were located in three tight clusters in that gene and, by definition of ptg mutations, all produced giant phage. Intermediate petite phage, which invariably made up a substantial fraction of the progeny of these mutants, appeared to be a unique product of gene 23 mutations. Isometric petite phage were produced in significant numbers by strains with mutations at only 4 of the 10 sites identified with the PTG phenotype. The data presented indicate that there was little if any variation in the lengths of the normal, the intermediate petite, and the isometric petite classes. The frequencies of those capsid types were fairly specific for the individual mutations. The giant capsids that resulted from ptg mutations also had characteristic length distributions, of which three types were distinguished. These highly specific effects of gene 23 ptg mutations on capsid length regulation of T4 imply that the product of gene 23, gp23, plays a significant role in controlling the length of its capsid. The restrictions these observations place on a model for T4 capsid length regulation are discussed briefly.  相似文献   

2.
A H Doermann  A Pao    P Jackson 《Journal of virology》1987,61(9):2823-2827
Fifty-two new bacteriophage T4 ptg mutations have been isolated by selecting for the giant-capsid phenotype they display. Genetic mapping placed all of them at eight sites, all located in gene 23. These sites were clustered in three locations, one near amber B17 (gene 23 nucleotide [NT] 268), another centrally placed between amE506 (NT 706) and amE1270 (NT 925), and the third between amC208 (NT 1297) and amE1236 (NT 1489). The lack of a selective system for identifying recombinant genotypes when dealing with the very close linkages found within these clusters opens the possibility that more than eight sites are represented in this set of mutations. Since one site was represented by only one mutation, it seems likely that further searching might uncover additional sites. It is suggested that the clustering of mutations observed here identifies regions of the gene 23 product that play a role in regulating the capsid length of T4.  相似文献   

3.
The T4 gene 23 product (gp23) encodes the major structural protein of the mature capsid. Mutations in this gene have been described which disrupt the normal length-determining mechanism (A.H. Doermann, F.A. Eiserling, and L. Boehner, J. Virol. 12:374-385, 1973). Mutants which produce high levels of petite and giant phage (ptg) are restricted to three tight clusters in gene 23 (A.H. Doermann, A. Pao, and P. Jackson, J. Virol. 61:2823-2827, 1987). Twenty-six of these ptg mutations were cloned, and their DNA sequence alterations were determined. Each member of this set of ptg mutants arose from a single mutation, and the set defined 10 different sites at which ptg mutations can occur in gene 23. Two petite (pt) mutations in gene 23 (pt21-34 and ptE920g), which produce high frequencies of petite particles but no giants, were also sequenced. Both pt21-34 and ptE920g were shown to include multiple mutations. The phenotypes attributed to both pt and ptg mutations are discussed relative to the mechanism of capsid morphogenesis. A site-directed mutation (SD-1E) was created at the ptgNg191 site, and its phenotypic consequences were examined. Plaque morphology revertants arising from a gene 23 mutant derivative of pt21-34 and from SD-1E were isolated. A preliminary mapping of the mutation(s) responsible for their revertant phenotypes suggested that both intra- and extragenic suppressors of the petite phenotype can be isolated by this method.  相似文献   

4.
5.
Summary Formation of very fast sedimenting DNA (VFS-DNA) in cells of Escherichia coli infected with phage T4 carrying a defect in gene 49 was differentially affected by a secondary mutation in gene 30 or 46; a mutation of gene 46 markedly reduced formation of VFS-DNA, whereas that of gene 30 did not.  相似文献   

6.
7.
The T4 mutation ptg19-80 affects the mechanism of capsid-length determination. It is located in gene 23, which encodes the major structural protein of the capsid. The mutation results in the production of abnormal-length capsids in high frequencies. This paper describes the isolation and partial characterization of second-site revertants of ptg19-80. In the course of their analysis, it was discovered that ptg19-80 is itself a double mutation consisting of a gene 23 mutation (ptg19-80c), which causes the morphogenetic defect, and a suppressor mutation located near the lysozyme gene. Phenotypic characterization of nine pseudo-wild-type revertants of this double-mutation revealed that these revertants all produced lower frequencies of abnormal capsids than did ptg19-80. Seven of these revertants were shown to contain two suppressor mutations, one mapping in or near gene 22 and done mapping in or near gene 24. Both mutations were required for suppression. These suppressors displayed no discernible phenotype in the absence of ptg19-80c.  相似文献   

8.
An antigenic component of T4 whiskers (short fibrils located in the region of the head—tail junction) has been reported to be under the control of gene 49 (Yanagida & Ahmad-Zadeh, 1970; Yanagida, 1972). This was based on immunological evidence using antiserum to particles of T4D adsorbed with gene 49-defective extract made with the mutant amE727. The latter phage, however, is shown here to be a double mutant bearing amber mutations in gene 49 and another gene, herein referred to as wac (whisker antigen control gene). Gene wac maps in the general region of gene 16. Evidence is presented indicating that the whisker antigen is under the control of wac and not gene 49. In wac-defective infections phage are produced that lack a protein. This protein appears by electrophoretic analysis in sodium dodecyl sulfate-polyacrylamide gels to be the major component of the antigen.The tail fibers of wac-defective bacteriophage are in an open configuration under conditions in which those of wild-type phage are folded alongside the tail. Thus, the wac gene may have a role in the regulation of tail-fiber configuration.  相似文献   

9.
10.
Genetic analysis of bacteriophage T4 transducing bacteriophages.   总被引:2,自引:0,他引:2       下载免费PDF全文
Mutations in the genes for nuclear disruption (ndd), endonuclease IV (denB), and the D1 region of the T4 genome are essential for converting bacteriophage T4 into a generalized transducing phage. These mutations gave rise to a very low frequency of transduction, about 10(-8) per infected bacterium. The addition of an rII mutation raised the transduction frequency about 20-fold. An additional 100-fold increase in the transduction frequency was observed with mutations in genes 42, 56, and alc. High-frequency generalized transduction by T4 results from the cumulative effect of these mutations.  相似文献   

11.
Upon infection of Escherichia coli B with T4 phage with DO amber mutation in gene 44, a minimal amount of phage DNA is synthesized. This progeny DNA is, for the most part, covalently attached to the parental DNA. Analysis of the genetic representation of this DNA was performed by hybridization to cloned genetic segments. It was shown that areas preferentially replicated differ from origins observed in "normal" replication: under normal conditions, there is a strong origin in the genetic area of genes 50-5 and lack of initiation within the group of genes 40-43 and 35-52. In contrast, in the absence of the gene 44 protein, the genetic area of 50-5 is underrepresented, genes 35-36, tRNA, and genes 40-41 are the most prominent among progeny DNA, and the area of gene 39 is least represented. Since the area of gene 35 is known from the genetic data or other to be a high-frequency recombination area, and since the area of gene 39 is known to display a low frequency of recombination, we postulate that the observed uptake of label occurs at the site-specific recombinational intersections.  相似文献   

12.
Infectious DNA of bacteriophage T4   总被引:4,自引:0,他引:4  
  相似文献   

13.
Methods developed for isolating bacterial nucleoids were applied to bacteria infected with phage T4. The replicating pool of T4 DNA was isolated as a particle composed of condensed T4 DNA and certain RNA and protein components of the cell. The particles have a narrow sedimentation profile (weight-average s=2,500S) and have, on average, a T4 DNA content similar to that of the infected cell. Their dimensions observed via electron and fluorescence microscopy are similar to the dimensions of the intracellular DNA pool. The DNA packaging density is less than that of the isolated bacterial nucleoid but appears to be roughly similar to its state in vivo. Host-cell proteins and T4-specific proteins bound to the DNA were characterized by electrophoresis on polyacrylamide gels. The major host proteins are the RNA polymerase subunits and two envelope proteins (molecular weights, 36,000 and 31,000). Other major proteins of the host cell were absent or barely detectable. Single-strand breaks can be introduced into the DNA with gamma radiation or DNase without affecting its sedimentation rate. This and other studies of the effects of intercalated ethidium molecules have suggested that the average superhelical density of the condensed DNA is small. However, these studies also indicated that there may be a few domains in the DNA that become positively supercoiled in the presence of high concentrations of ethidium bromide. In contrast to the Escherichia coli nucleoid, the T4 DNA structure remains condensed after the RNA and protein components have been removed (although there may be slight relaxation in the state of condensation under these conditions).  相似文献   

14.
Excision repair and patch size in UV-irradiated bacteriophage T4.   总被引:1,自引:2,他引:1       下载免费PDF全文
We determined the average size of excision repair patches in repair of UV lesions in bacteriophage T4 by measuring the photolysis of bromodeoxyuridine incorporated during repair. The average patch was small, approximately four nucleotides long. In control experiments with the denV1 excision-deficient mutant, we encountered an artifact, a protein(s) which remained bound to phenol-extracted DNA and prevented nicking by the UV-specific endonucleases of Micrococcus luteus and bacteriophage T4.  相似文献   

15.
Complex viruses are assembled from simple protein subunits by sequential and irreversible assembly. During genome packaging in bacteriophages, a powerful molecular motor assembles at the special portal vertex of an empty prohead to initiate packaging. The capsid expands after about 10%-25% of the genome is packaged. When the head is full, the motor cuts the concatemeric DNA and dissociates from the head. Conformational changes, particularly in the portal, are thought to drive these sequential transitions. We found that the phage T4 packaging machine is highly promiscuous, translocating DNA into finished phage heads as well as into proheads. Optical tweezers experiments show that single motors can force exogenous DNA into phage heads at the same rate as into proheads. Single molecule fluorescence measurements demonstrate that phage heads undergo repeated initiations, packaging multiple DNA molecules into the same head. These results suggest that the phage DNA packaging machine has unusual conformational plasticity, powering DNA into an apparently passive capsid receptacle, including the highly stable virus shell, until it is full. These features probably led to the evolution of viral genomes that fit capsid volume, a strikingly common phenomenon in double-stranded DNA viruses, and will potentially allow design of a novel class of nanocapsid delivery vehicles.  相似文献   

16.
Phage DNA was accumulated in cells of E. coli B, infected with the phage T4DtsLB3 (gene 42), without the synthesis of late proteins (in the presence of chloramphenicol). Then (stage II), chloramphenicol was removed and further replication of the phage DNA suppressed with hydroxyurea and by simultaneously raising the temperature to 40 degrees. The media M9 or M9 with 1% amino acid were used; the times of addition of chloramphenicol and the hydroxyurea concentration were also varied. It was also shown that in medium M9, at stage II, chiefly early proteins were synthesized. In the medium containing amino acids, at stage II the following was observed: 1) DNA synthesis was entirely suppressed and a degradation of DNA occurred; 2) both early and late proteins were synthesized, with a predominance of the latter; 3) an assembly of the elements of the phage tails and capsids occurred without the neck and flagellum, and a small number of phage particles were also found; 4) the capsids, isolated in a sucrose density gradient after lysis with chloroform, contained the proteins Palt, P20, P23, P24, several unidentified proteins, and did not contain Pwac, P23, and P22, 5) the yield of viable phage varied from 0.05 to 15% per cell. Thus, the entire morphogenesis of T4 phage can occur without accompanying replication of phage DNA.  相似文献   

17.
Samarendra Basu 《Biopolymers》1977,16(10):2299-2314
The degree of preferred orientation and the coiling of the deoxyribonucleic acid within phage T4 was studied by two independent techniques, namely, polarization of fluorescence and uv linear dichroism. A correlation between the two kinds of data was obtained, which indicated that a significant proportion (about 30%) of total phage DNA is aligned preferentially along the long axis of phage heads. Analyses of the data suggest that all of the phage DNA cannot be in a highly supercoiled helical configuration. A few models of the DNA arrangement in T4 have been discussed in which linear sidewise packings of DNA would be predominant and may explain the observed longitudinal orientation of intraphage DNA.  相似文献   

18.
19.
Analysis of inhibitors of bacteriophage T4 DNA polymerase.   总被引:1,自引:0,他引:1       下载免费PDF全文
Bacteriophage T4 DNA polymerase was inhibited by butylphenyl nucleotides, aphidicolin and pyrophosphate analogs, but with lower sensitivities than other members of the B family DNA polymerases. The nucleotides N2-(p-n-butylphenyl)dGTP (BuPdGTP) and 2-(p-n-butylanilino)dATP (BuAdATP) inhibited T4 DNA polymerase with competitive Ki values of 0.82 and 0.54 microM with respect to dGTP and dATP, respectively. The same compounds were more potent inhibitors in truncated assays lacking the competitor dNTP, displaying apparent Ki values of 0.001 and 0.0016 microM, respectively. BuPdGTP was a substrate for T4 DNA polymerase, and the resulting 3'-BuPdG-primer:template was bound strongly by the enzyme. Each of the non-substrate derivatives, BuPdGDP and BuPdGMPCH2PP, inhibited T4 DNA polymerase with similar potencies in both the truncated and variable competitor assays. These results indicate that BuPdGTP inhibits T4 DNA polymerase by distinct mechanisms depending upon the assay conditions. Reversible competitive inhibition predominates in the presence of dGTP, and incorporation in the absence of dGTP leads to potent inhibition by the modified primer:template. The implications of these findings for the use of these inhibitors in the study of B family DNA polymerases is discussed.  相似文献   

20.
Genetic complementation by cloned bacteriophage T4 late genes.   总被引:2,自引:5,他引:2       下载免费PDF全文
Bacteriophage T4 containing nonsense mutations in late genes was found to be genetically complemented by four conjugate T4 genes (7, 11, 23, or 24) located on plasmid or phage vectors. Complementation was at a very low level unless the infecting phage carried a denB mutation (which abolishes T4 DNA endonuclease IV activity). In most experiments, the infecting phage also had a denA mutation, which abolishes T4 DNA endonuclease II activity. Mutations in the alc/unf gene (which allow dCMP-containing T4 late genes to be expressed) further increased complementation efficiency. Most of the alc/unf mutant phage strains used for these experiments were constructed to incorporate a gene 56 mutation, which blocks dCTP breakdown and allows replication to generate dCMP-containing T4 DNA. Effects of the alc/unf:56 mutant combination on complementation efficiency varied among the different T4 late genes. Despite regions of homology, ranging from 2 to 14 kilobase pairs, between cloned T4 genes and infecting genomes, the rate of formation of recombinants after T4 den:alc phage infection was generally low (higher for two mutants in gene 23, lower for mutants in gene 7 and 11). More significantly, when gene 23 complementation had to be preceded by recombination, the complementation efficiency was drastically reduced. We conclude that high complementation efficiency of cloned T4 late genes need not depend on prior complete breakage-reunion events which transpose those genes from the resident plasmid to a late promoter on the infecting T4 genome. The presence of the intact gene 23 on plasmids reduced the yield of T4 phage. The magnitude of this negative complementation effect varied in different plasmids; in the extreme case (plasmid pLA3), an almost 10-fold reduction of yield was observed. The cells can thus be said to have been made partly nonpermissive for this lytic virus by incorporating a part of the viral genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号