首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The daily rhythm in body temperature is thought to be the result of the direct effects of activity and the effects of an endogenous circadian clock. Forced desynchrony (FD) is a tool used in human circadian rhythm research to disentangle endogenous and activity-related effects on daily rhythms. In the present study, we applied an FD protocol to rats. We subjected 8 rats for 5 days to a 20h forced activity cycle consisting of lOh of forced wakefulness and lOh for rest and sleep. The procedure aimed to introduce a lOh sleep/ lOh wake cycle, which period was different from the endogenous circadian (about 24h) rhythm. Of the variation in the raw body temperature data, 68–77% could be explained by a summation of estimated endogenous circadian cycle and forced activity cycle components of body temperature. Free-running circadian periods of body temperature during FD were similar to free-running periods measured in constant conditions. The applied forced activity cycle reduced clock-related circadian modulation of activity. This reduction of circadian modulation of activity did not affect body temperature. Also, the effects of the forced activity on body temperature were remarkably small.  相似文献   

2.
Nine healthy female subjects were studied when exposed to the natural light-dark cycle, but living for 17 “days” on a 27h day (9h sleep, 18h wake). Since the circadian endogenous oscillator cannot entrain to this imposed period, forced desynchronization between the sleep/activity cycle and the endogenous circadian temperature rhythm took place. This enabled the effects of activity on core temperature to be assessed at different endogenous circadian phases and at different stages of the sleep/activity cycle. Rectal temperature was measured at 6-minute intervals, and the activity of the nondominant wrist was summed at 1-minute intervals. Each waking span was divided into overlapping 3h sections, and each section was submitted to linear regression analysis between the rectal temperatures and the total activity in the previous 30 minutes. From this analysis were obtained the gradient (of the change in rectal temperature produced by a unit change in activity) and the intercept (the rectal temperature predicted when activity was zero). The gradients were subjected to a two-factor analysis of variance (ANOVA) (circadian phase/ time awake). There was no significant effect of time awake, but circadian phase was highly significant statistically. Post hoc tests (Newman-Keuls) indicated that gradients around the temperature peak were significantly less than those around its trough. The intercepts formed a sinusoid that, for the group, showed a mesor (±SE) of 36.97 (±0.12) and amplitude (95% confidence interval) of 0.22°C (0.12°C, 0.32°C). We conclude that this is a further method for removing masking effects from circadian temperature rhythm data in order to assess its endogenous component, a method that can be used when subjects are able to live normally. We suggest also that the decreased effect of activity on temperature when the endogenous circadian rhythm and activity are at their peak will reduce the possibility of hyperthermia.  相似文献   

3.
Most circadian rhythms are controlled by a major pacemaker located in the hypothalamic suprachiasmatic nucleus. Some of these rhythms, called marker rhythms, serve to characterize the timing of the internal temporal order. However, these variables are susceptible to masking effects as the result of activity, body position, light exposure, environmental temperature and sleep. Recently, wrist skin temperature (WT) has been proposed as a new index for evaluating circadian system status. In light of previous evidence suggesting the important relationship between WT and core body temperature regulation, the aim of this work was to purify the WT pattern in order to obtain its endogenous rhythm with the application of multiple demasking procedures. To this end, 103 subjects (18–24 years old) were recruited and their WT, activity, body position, light exposure, environmental temperature and sleep were recorded under free-living conditions for 1 week. WT demasking by categories or intercepts was applied to simulate a “constant routine” protocol (awakening, dim light, recumbent position, low activity and warm environmental temperature). Although the overall circadian pattern of WT was similar regardless of the masking effects, its amplitude was the rhythmic parameter most affected by environmental conditions. The acrophase and mesor were determined to be the most robust parameters for characterizing this rhythm. In addition, a circadian modulation of the masking effect was found for each masking variable. WT rhythm exhibits a strong endogenous component, despite the existence of multiple external influences. This was evidenced by simultaneously eliminating the influence of activity, body position, light exposure, environmental temperature and sleep. We therefore propose that it could be considered a valuable and minimally-invasive means of recording circadian physiology in ambulatory conditions.  相似文献   

4.
The effect of lithium carbonate on the circadian system of man was studied. Four out of eight volunteers living without time cues in isolated huts in the arctic showed a lengthening of the periods of the body temperature rhythm, activity rhythm, and sleep/wakefulness rhythm by c. 1 h. Four of the participants did not show a change in the periods between the placebo and lithium ingestion phases. Two subjects who did not receive lithium salt showed internal desynchronization between the temperature rhythm and the sleep/wakefulness rhythm. Extreme isolation in bunkers is not necessary to allow free running of the circadian system in man. The sleep/wakefulness rhythm, which is very easy to record, was a reliable indicator of the circadian system in the internally-synchronized state.  相似文献   

5.
Shiftworkers are often required to sleep at inappropriate phases of their circadian timekeeping system, with implications for the dynamics of ultradian sleep stages. The independent effects of these changes on cognitive throughput performance are not well understood. This is because the effects of sleep on performance are usually confounded with circadian factors that cannot be controlled under normal day/night conditions. The aim of this study was to assess the contribution of prior wake, core body temperature, and sleep stages to cognitive throughput performance under conditions of forced desynchrony (FD). A total of 11 healthy young adult males resided in a sleep laboratory in which day/night zeitgebers were eliminated and ambient room temperature, lighting levels, and behavior were controlled. The protocol included 2 training days, a baseline day, and 7?×?28-h FD periods. Each FD period consisted of an 18.7-h wake period followed by a 9.3-h rest period. Sleep was assessed using standard polysomnography. Core body temperature and physical activity were assessed continuously in 1-min epochs. Cognitive throughput was measured by a 5-min serial addition and subtraction (SAS) task and a 90-s digit symbol substitution (DSS) task. These were administered in test sessions scheduled every 2.5?h across the wake periods of each FD period. On average, sleep periods had a mean (± standard deviation) duration of 8.5 (±1.2) h in which participants obtained 7.6 (±1.4) h of total sleep time. This included 4.2 (±1.2) h of stage 1 and stage 2 sleep (S1–S2 sleep), 1.6 (±0.6) h of slow-wave sleep (SWS), and 1.8 (±0.6) h of rapid eye movement (REM) sleep. A mixed-model analysis with five covariates indicated significant fixed effects on cognitive throughput for circadian phase, prior wake time, and amount of REM sleep. Significant effects for S1–S2 sleep and SWS were not found. The results demonstrate that variations in core body temperature, time awake, and amount of REM sleep are associated with changes in cognitive throughput performance. The absence of significant effect for SWS may be attributable to the truncated range of sleep period durations sampled in this study. However, because the mean and variance for SWS were similar to REM sleep, these results suggest that cognitive throughput may be more sensitive to variations in REM sleep than SWS. (Author correspondence: )  相似文献   

6.
The circadian pacemaker and sleep homeostasis play pivotal roles in vigilance state control. It has been hypothesized that age-related changes in the human circadian pacemaker, as well as sleep homeostatic mechanisms, contribute to the hallmarks of age-related changes in sleep, that is, earlier wake time and reduced sleep consolidation. Assessments of circadian parameters in healthy young (∼20-30 years old) and older people (∼65-75 years old)—in the absence of the confounding effects of sleep, changes in posture, and light exposure—have demonstrated that an earlier wake time in older people is accompanied by about a 1h advance of the rhythms of core body temperature and melatonin. In addition, older people wake up at an earlier circadian phase of the body temperature and plasma melatonin rhythm. The amplitude of the endogenous circadian component of the core body temperature rhythm assessed during constant routine and forced desynchrony protocols is reduced by 20-30% in older people. Recent assessments of the intrinsic period of the human circadian pacemaker in the absence of the confounding effects of light revealed no age-related reduction of this parameter in both sighted and blind individuals. Wake maintenance and sleep initiation are not markedly affected by age except that sleep latencies are longer in older people when sleep initiation is attempted in the early morning. In contrast, major age-related reductions in the consolidation and duration of sleep occur at all circadian phases. Sleep of older people is particularly disrupted when scheduled on the rising limb of the temperature rhythm, indicating that the sleep of older people is more susceptible to arousal signals genernpated by the circadian pacemaker. Sleep-homeostatic mechanisms, as assayed by the sleep-deprivation-induced increase of EEG slow-wave activity (SWA), are operative in older people, although during both baseline sleep and recovery sleep SWA in older people remains at lower levels. The internal circadian phase advance of awakening, as well as the age-related reduction in sleep consolidation, appears related to an age-related reduction in the promotion of sleep by the circadian pacemaker during the biological night in combination with a reduced homeostatic pressure for sleep. Early morning light exposure associated with this advance of awakening in older people could reinforce the advanced circadian phase. Quantification of the interaction between sleep homeostasis and circadian rhythmicity contributes to understanding age-related changes in sleep timing and quality. (Chronobiology International, 17(3), 285-311, 2000)  相似文献   

7.
The free-running period is regarded to be an exclusive feature of the endogenous circadian clock. Changes during aging in the free-running period may therefore reflect age-related changes in the internal organization of this clock. However, the literature on alterations in the free-running period in aging is not unequivocal. In the present study, with various confounding factors kept to a minimum, it was found that the free-running periods for active wakefulness, body temperature, and drinking behavior were significantly shorter (by 12-17 min) in old than in young rats. In addition, it was found that the day-to-day stability of the different sleep states was reduced in old rats, whereas that of the drinking rhythm was enhanced. Transient cycles were not observed, nor were there any age-related differences in daily totals of the various sleep-wake states. The amplitudes of the circadian rhythms of active wakefulness, quiet sleep, and temperature were reduced, whereas those of paradoxical sleep and quiet wakefulness remained unchanged.  相似文献   

8.
Sleep inertia is the impaired cognitive performance immediately upon awakening, which decays over tens of minutes. This phenomenon has relevance to people who need to make important decisions soon after awakening, such as on-call emergency workers. Such awakenings can occur at varied times of day or night, so the objective of the study was to determine whether or not the magnitude of sleep inertia varies according to the phase of the endogenous circadian cycle. Twelve adults (mean, 24 years; 7 men) with no medical disorders other than mild asthma were studied. Following 2 baseline days and nights, subjects underwent a forced desynchrony protocol composed of seven 28-h sleep/wake cycles, while maintaining a sleep/wakefulness ratio of 1:2 throughout. Subjects were awakened by a standardized auditory stimulus 3 times each sleep period for sleep inertia assessments. The magnitude of sleep inertia was quantified as the change in cognitive performance (number of correct additions in a 2-min serial addition test) across the first 20 min of wakefulness. Circadian phase was estimated from core body temperature (fitted temperature minimum assigned 0 degrees ). Data were segregated according to: (1) circadian phase (60 degrees bins); (2) sleep stage; and (3) 3rd of the night after which awakenings occurred (i.e., tertiary 1, 2, or 3). To control for any effect of sleep stage, the circadian rhythm of sleep inertia was initially assessed following awakenings from Stage 2 (62% of awakening occurred from this stage; n = 110). This revealed a significant circadian rhythm in the sleep inertia of cognitive performance (p = 0.007), which was 3.6 times larger during the biological night (circadian bin 300 degrees , approximately 2300-0300 h in these subjects) than during the biological day (bin 180 degrees , approximately 1500-1900 h). The circadian rhythm in sleep inertia was still present when awakenings from all sleep stages were included (p = 0.004), and this rhythm could not be explained by changes in underlying sleep drive prior to awakening (changes in sleep efficiency across circadian phase or across the tertiaries), or by the proportion of the varied sleep stages prior to awakenings. This robust endogenous circadian rhythm in sleep inertia may have important implications for people who need to be alert soon after awakening.  相似文献   

9.
Both recumbency and sleep affect core body temperature (CBT). To characterize their circadian effects and interactions, the authors examined the bedtime temperature drops (TDs) of nine men and eight women (aged 20 to 30) who repeated 90-min sleep-wake cycles over 2.5 days. While awake, subjects were exposed to 50 to 250 lux; while asleep, lights were off. Electroencephalogram-monitored time inbed lasted 30 min during each cycle. Cosinor nonlinear mixed-effects regressions modeled the circadian rhythm of TDs. The circadian maximum of TDs occurred approximately 4 h before the time of circadian CBT minimum, in a model that included the effects of baseline expected CBT, deviations from baseline CBT, time in study, and gender-dependent 24- and 12-h adjustments. Rates of temperature drops were faster during initial periods of lying awake than during periods of initially sleeping. Both rates followed separate circadian rhythms. The circadian maximum of TDs was located near customary nocturnal bedtimes, suggesting its role in fostering sleep during a normal bedtime routine. The apparent deceleration of temperature dropping at sleep onset supports the notion that the sleep onset period has complicated circadian neuroregulatory dynamics. These findings confirm the need for nonlinear models of temperature responses to postural changes and sleep that incorporate circadian variability in these masking effects.  相似文献   

10.
The circadian pacemaker and sleep homeostasis play pivotal roles in vigilance state control. It has been hypothesized that age-related changes in the human circadian pacemaker, as well as sleep homeostatic mechanisms, contribute to the hallmarks of age-related changes in sleep, that is, earlier wake time and reduced sleep consolidation. Assessments of circadian parameters in healthy young (~20–30 years old) and older people (~65–75 years old)—in the absence of the confounding effects of sleep, changes in posture, and light exposure—have demonstrated that an earlier wake time in older people is accompanied by about a 1h advance of the rhythms of core body temperature and melatonin. In addition, older people wake up at an earlier circadian phase of the body temperature and plasma melatonin rhythm. The amplitude of the endogenous circadian component of the core body temperature rhythm assessed during constant routine and forced desynchrony protocols is reduced by 20–30% in older people. Recent assessments of the intrinsic period of the human circadian pacemaker in the absence of the confounding effects of light revealed no age-related reduction of this parameter in both sighted and blind individuals. Wake maintenance and sleep initiation are not markedly affected by age except that sleep latencies are longer in older people when sleep initiation is attempted in the early morning. In contrast, major age-related reductions in the consolidation and duration of sleep occur at all circadian phases. Sleep of older people is particularly disrupted when scheduled on the rising limb of the temperature rhythm, indicating that the sleep of older people is more susceptible to arousal signals genernpated by the circadian pacemaker. Sleep-homeostatic mechanisms, as assayed by the sleep-deprivation–induced increase of EEG slow-wave activity (SWA), are operative in older people, although during both baseline sleep and recovery sleep SWA in older people remains at lower levels. The internal circadian phase advance of awakening, as well as the age-related reduction in sleep consolidation, appears related to an age-related reduction in the promotion of sleep by the circadian pacemaker during the biological night in combination with a reduced homeostatic pressure for sleep. Early morning light exposure associated with this advance of awakening in older people could reinforce the advanced circadian phase. Quantification of the interaction between sleep homeostasis and circadian rhythmicity contributes to understanding age-related changes in sleep timing and quality. (Chronobiology International, 17(3), 285–311, 2000)  相似文献   

11.
Prolonged food deprivation is known to cause a fall in the core body temperature of homeotherms. In various species of small birds and mammals (body mass up to 2–3 kg), it has been shown that starvation-induced hypothermia is modulated by the circadian system, in the sense that hypothermia is observed primarily during the inactive phase of the daily activity cycle (i.e., during the night for diurnal animals and during the day for nocturnal animals), whereas relatively normal temperatures are recorded during the active phase. To investigate whether this modulation occurs also in larger animals, we investigated the effects of 4d food deprivation on the body temperature rhythm of goats and sheep (body mass 30–40 kg). In goats, the body temperature rhythm was found to have a mean level of 39.0°C with a mean daily range of excursion of 0.42°C. The daily oscillation in body temperature persisted during the first day of fasting, but the rhythm was drastically damped, if not eliminated, over the next 3 d as body temperature descended from the baseline level of 39.0 to 38.2°C. In sheep, the rhythm was found to have a mean level of 39.3°C with a mean daily range of excursion of 0.34°C. The daily oscillation in body temperature persisted through the 4 d of food deprivation, even though the mean level of body temperature gradually fell. Temperature fell more during the third and fourth nights than during the third and fourth days. Thus, circadian modulation of starvation-induced hypothermia was observed in sheep but not in goats.  相似文献   

12.
Fourteen healthy subjects have been studied in an isolation unit while living on a 30h “day” (20h awake, 10h asleep) for 14 (solar) days but while aware of real time. Waking activities were sedentary and included reading, watching television, and so forth. Throughout, regular recordings of rectal temperature were made, and in a subgroup of 6 subjects, activity was measured by a wrist accelerometer. Temperature data have been subjected to cosinor analysis after “purification,” a method that enables the endogenous (clock-driven) and exogenous (activity-driven) components of the circadian rhythm to be assessed. Moreover, the protocol enables effects due to the circadian rhythm and time-since-waking to be separated. Results showed that activity was slightly affected by the endogenous temperature rhythm. Also, the masking effects on body temperature exerted by the exogenous factors appeared to be less than average in the hours before and just after the peak of the endogenous temperature rhythm. This has the effect of producing a temperature plateau rather than a peak during the daytime. The implications of this for mental performance and sleep initiation are discussed. (Chronobiology International, 13(4), 261-271, 1996)  相似文献   

13.
14.
《Chronobiology international》2013,30(8):1125-1134
Exercise can induce circadian phase shifts depending on the duration, intensity and frequency. These modifications are of special meaning in athletes during training and competition. Melatonin, which is produced by the pineal gland in a circadian manner, behaves as an endogenous rhythms synchronizer, and it is used as a supplement to promote resynchronization of altered circadian rhythms. In this study, we tested the effect of melatonin administration on the circadian system in athletes. Two groups of athletes were treated with 100?mg?day?1 of melatonin or placebo 30?min before bed for four weeks. Daily rhythm of salivary melatonin was measured before and after melatonin administration. Moreover, circadian variables, including wrist temperature (WT), motor activity and body position rhythmicity, were recorded during seven days before and seven days after melatonin or placebo treatment with the aid of specific sensors placed in the wrist and arm of each athlete. Before treatment, the athletes showed a phase-shift delay of the melatonin circadian rhythm, with an acrophase at 05:00?h. Exercise induced a phase advance of the melatonin rhythm, restoring its acrophase accordingly to the chronotype of the athletes. Melatonin, but not placebo treatment, changed daily waveforms of WT, activity and position. These changes included a one-hour phase advance in the WT rhythm before bedtime, with a longer nocturnal steady state and a smaller reduction when arising at morning than the placebo group. Melatonin, but not placebo, also reduced the nocturnal activity and the activity and position during lunch/nap time. Together, these data reflect the beneficial effect of melatonin to modulate the circadian components of the sleep–wake cycle, improving sleep efficiency.  相似文献   

15.
The circadian system of the lizard Iguana iguana is composed of several independent pacemakers that work in concert: the pineal gland, retinae of the lateral eyes, and a fourth oscillator presumed to be located in the hypothalamus. These pacemakers govern the circadian expression of multiple behaviors and physiological processes, including rhythms in locomotor activity, endogenous body temperature, electroretinogram, and melatonin synthesis. The numerous, easily measurable rhythmic outputs make the iguana an ideal organism for examining the contributions of individual oscillators and their interactions in governing the expression of overt circadian rhythms. The authors have examined the effects of pinealectomy and enucleation on the endogenous body temperature rhythm (BTR) and locomotor activity rhythm (LAR) of juvenile iguanas at constant temperature both in LD cycles and in constant darkness (DD). They measured the periods (tau) of the circadian rhythms of LAR and BTR, the phase relationships between them in DD (psiAT), and the phase relationship between each rhythm and the light cycle (psiRL). Pinealectomy lengthened tau of locomotor activity in all animals tested and abolished the BTR in two-thirds of the animals. In those animals in which the BTR did persist following pinealectomy, tau lengthened to the same extent as that of locomotor activity. Pinealectomy also delayed the onset of activity with respect to its normal phase relationship with body temperature in DD. Enucleation alone had no significant effect on tau of LAR or BTR; however, after enucleation, BTR became 180 degrees out of phase from LAR in DD. After both pinealectomy and enucleation, 4 of 16 animals became arrhythmic in both activity and body temperature. Their data suggest that rhythmicity, period, and phase of overt circadian behaviors are regulated through the combined output of multiple endogenous circadian oscillators.  相似文献   

16.
Spontaneous activity and the body temperature of laboratory mice were recorded telemetrically using implantable transmitters. Following ten control days (L : D = 12 : 12; light from 07:00 to 19:00), the LD cycle was phase-advanced by shortening the light time by 8 h. Recordings were continued for a further 3 weeks. The raw temperature data were unmasked or ‘purified’ — that is, the temperature changes due to locomotor activity were removed, so revealing the endogenous component of the rhythm — using a regression method previously developed by us. The circadian rhythms of activity and measured body temperature resynchronized on average after 8 days. During resynchronization, both rhythms tended to show two components, one adjusting by a phase advance and the other by a phase delay. However, after purification of the body temperature rhythm, only the advancing component remained. These results indicate that the delaying component of the measured temperature rhythm was caused by masking due to activity, and that the endogenous component of this rhythm did not divide into two components during the resynchronization process. Also, the endogenous component of the circadian rhythm of body temperature and one component of the activity rhythm seemed to be controlled by the same oscillator. It remains uncertain how the other component of the activity rhythm is regulated.  相似文献   

17.
《Chronobiology international》2013,30(10):1209-1217
Extended wakefulness, sleep loss, and circadian misalignment are factors associated with an increased accident risk in shiftwork. Splitting shifts into multiple shorter periods per day may mitigate these risks by alleviating prior wake. However, the effect of splitting the sleep–wake schedule on the homeostatic and circadian contributions to neurobehavioural performance and subjective assessments of one’s ability to perform are not known. Twenty-nine male participants lived in a time isolation laboratory for 13?d, assigned to one of two 28-h forced desynchrony (FD) schedules. Depending on the assigned schedule, participants were provided the same total time in bed (TIB) each FD cycle, either consolidated into a single period (9.33?h TIB) or split into two equal halves (2?×?4.67?h TIB). Neurobehavioural performance was regularly assessed with a psychomotor vigilance task (PVT) and subjectively-assessed ability was measured with a prediction of performance on a visual analogue scale. Polysomnography was used to assess sleep, and core body temperature was recorded to assess circadian phase. On average, participants obtained the same amount of sleep in both schedules, but those in the split schedule obtained more slow wave sleep (SWS) on FD days. Mixed-effects ANOVAs indicated no overall difference between the standard and split schedules in neurobehavioural performance or predictions of performance. Main effects of circadian phase and prior wake were present for both schedules, such that performance and subjective ratings of ability were best around the circadian acrophase, worst around the nadir, and declined with increasing prior wake. There was a schedule by circadian phase interaction for all neurobehavioural performance metrics such that performance was better in the split schedule than the standard schedule around the nadir. There was no such interaction for predictions of performance. Performance during the standard schedule was significantly better than the split schedule at 2?h of prior wake, but declined at a steeper rate such that the schedules converged by 4.5–7?h of prior wake. Overall, the results indicate that when the total opportunity for sleep per day is satisfactory, a split sleep–wake schedule is not detrimental to sleep or performance. Indeed, though not reflected in subjective assessments of performance capacity, splitting the schedule may be of some benefit, given its reduction of neurobehavioural impairment at night and its association with increased SWS. Therefore, for some industries that require operations to be sustained around the clock, implementing a split work–rest schedule may be of assistance.  相似文献   

18.
Spontaneous activity and the body temperature of laboratory mice were recorded telemetrically using implantable transmitters. Following ten control days (L : D = 12 : 12; light from 07:00 to 19:00), the LD cycle was phase-advanced by shortening the light time by 8 h. Recordings were continued for a further 3 weeks. The raw temperature data were unmasked or 'purified' — that is, the temperature changes due to locomotor activity were removed, so revealing the endogenous component of the rhythm — using a regression method previously developed by us. The circadian rhythms of activity and measured body temperature resynchronized on average after 8 days. During resynchronization, both rhythms tended to show two components, one adjusting by a phase advance and the other by a phase delay. However, after purification of the body temperature rhythm, only the advancing component remained. These results indicate that the delaying component of the measured temperature rhythm was caused by masking due to activity, and that the endogenous component of this rhythm did not divide into two components during the resynchronization process. Also, the endogenous component of the circadian rhythm of body temperature and one component of the activity rhythm seemed to be controlled by the same oscillator. It remains uncertain how the other component of the activity rhythm is regulated.  相似文献   

19.
Prolonged food deprivation is known to cause a fall in the core body temperature of homeotherms. In various species of small birds and mammals (body mass up to 2-3 kg), it has been shown that starvation-induced hypothermia is modulated by the circadian system, in the sense that hypothermia is observed primarily during the inactive phase of the daily activity cycle (i.e., during the night for diurnal animals and during the day for nocturnal animals), whereas relatively normal temperatures are recorded during the active phase. To investigate whether this modulation occurs also in larger animals, we investigated the effects of 4d food deprivation on the body temperature rhythm of goats and sheep (body mass 30-40 kg). In goats, the body temperature rhythm was found to have a mean level of 39.0°C with a mean daily range of excursion of 0.42°C. The daily oscillation in body temperature persisted during the first day of fasting, but the rhythm was drastically damped, if not eliminated, over the next 3 d as body temperature descended from the baseline level of 39.0 to 38.2°C. In sheep, the rhythm was found to have a mean level of 39.3°C with a mean daily range of excursion of 0.34°C. The daily oscillation in body temperature persisted through the 4 d of food deprivation, even though the mean level of body temperature gradually fell. Temperature fell more during the third and fourth nights than during the third and fourth days. Thus, circadian modulation of starvation-induced hypothermia was observed in sheep but not in goats.  相似文献   

20.
The suprachiasmatic nucleus (SCN) regulates the circadian rhythms of body temperature (T(b)) and vigilance states in mammals. We studied rats in which circadian rhythmicity was abolished after SCN lesions (SCNx rats) to investigate the association between the ultradian rhythms of sleep-wake states and brain temperature (T(br)), which are exposed after lesions. Ultradian rhythms of T(br) (mean period: 3.6 h) and sleep were closely associated in SCNx rats. Within each ultradian cycle, nonrapid eye movement (NREM) sleep was initiated 5 +/- 1 min after T(br) peaks, after which temperature continued a slow decline (0.02 +/- 0.006 degrees C/min) until it reached a minimum. Sleep and slow wave activity (SWA), an index of sleep intensity, were associated with declining temperature. Cross-correlation analysis revealed that the rhythm of T(br) preceded that of SWA by 2-10 min. We also investigated the thermoregulatory and sleep-wake responses of SCNx rats and controls to mild ambient cooling (18 degrees C) and warming (30 degrees C) over 24-h periods. SCNx rats and controls responded similarly to changes in ambient temperature. Cooling decreased REM sleep and increased wake. Warming increased T(br), blunted the amplitude of ultradian T(br) rhythms, and increased the number of transitions into NREM sleep. SCNx rats and controls had similar percentages of NREM sleep, REM sleep, and wake, as well as the same average T(b) within each 24-h period. Our results suggest that, in rats, the SCN modulates the timing but not the amount of sleep or the homeostatic control of sleep-wake states or T(b) during deviations in ambient temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号