共查询到20条相似文献,搜索用时 0 毫秒
1.
A complete kinetic analysis of the forward mitochondrial creatine kinase reaction was conducted to define the mechanism for its rate enhancement when coupled to oxidative phosphorylation. Two experimental systems were employed. In the first, ATP was produced by oxidative phosphorylation. In the second, heart mitochondria were pretreated with rotenone and oligomycin, and ATP was regenerated by a phosphoenolpyruvate-pyruvate kinase system. Product inhibition studies showed that oxidative phosphorylation did not effect the binding of creatine phosphate to the enzyme. Creatine phosphate interacted competitively with both ATP and creatine, and the E · MgATP · CrP dead-end complex was not readily detected. In a similar manner, the dissociation constants for creatine were not influenced by the source of ATP: Kib = 29 mm; Kb = 5.3 mM, and the maximum velocity of the reaction was unchanged: V1 = 1 μmol/ min/mg. Slight differences were noted for the dissociation constant (Kia) of MgATP from the binary enzyme complex, E · MgATP. The values were 0.75 and 0.29 mm in the absence and presence of respiration. However, a 10-fold decrease in the steady-state dissociation constant (Ka) of MgATP from the ternary complex, E · MgATP · creatine, was documented: 0.15 mm with exogenous ATP and 0.014 mm with oxidative phosphorylation. Since Kia × Kb does not equal Ka × Kib under respiring conditions, the enzyme appears to be altered from its normal rapid-equilibrium random binding kinetics to some other mechanism by its coupling to oxidative phosphorylation. 相似文献
2.
3.
Treatment of yeast mitochondria with digitonin was used in order to prepare an inner membrane-matrix fraction preserving its permeability properties. The incubation time of mitochondria with digitonin was an essential parameter for the selective solubilization of the outer membrane. The incubation of mitochondria for l min at different concentrations of digitonin led to a three-step release of mitochondrial enzymes: (a) at low concentrations of digitonin, adenylate kinase was released; (b) higher concentrations were required to solubilize kynurenine hydroxylase, an outer membrane marker; (c) inner membrane markers (succinate dehydrogenase and oligomycin-sensitive adenosine triphosphatase) and matrix markers (fumarase and isocitrate dehydrogenase) were significantly released at concentrations of digitonin higher than 0.4 mg/mg of protein. The electron microscopic aspects of yeast mitoplasts (inner membrane-matrix fraction obtained by treatment with 0.4 mg of digitonin) showed an orthodox and a twisted configuration. These new organelles retained respiratory control when assayed with ethanol as the substrate. Their selective permeability properties were preserved as shown by isoosmotic swelling in potassium or ammonium salt solutions. 相似文献
4.
Defining how extramitochondrial high-energy phosphate acceptors influence the rates of heart oxidative phosphorylation is essential for understanding the control of myocardial respiration. When the production of phosphocreatine is coupled to electron transport via mitochondrial creatine kinase, the net reaction can be expressed by the balanced equation: creatine + Pi----phosphocreatine + H2O. This suggests that rates of oxygen consumption could be regulated by changes in [creatine], [Pi], or [phosphocreatine], alone or in combination. The effects of altering these metabolites upon mitochondrial rates of respiration were examined in vitro. Rat heart mitochondria were incubated in succinate-containing oxygraph medium (pH 7.2, 37 degrees C) supplemented with five combinations of creatine (1.0-20 mM), phosphocreatine (0-25 mM), and Pi (0.25-5.0 mM). In all cases, the mitochondrial creatine kinase reaction was initiated by additions of 0.5 mM ATP. To emphasize the duality of control, the results are presented as three-dimensional stereoscopic projections. Under physiological conditions, with 5.0 mM creatine, increases in Pi or decreases in phosphocreatine had little influence upon mitochondrial respiration. When phosphocreatine was held constant (15 mM), changes in [creatine] modestly stimulated respiratory rates, whereas Pi again showed little effect. With 1.0 mM Pi, respiration clearly became dependent upon changes in [creatine] and [phosphocreatine]. Initially, respiratory rates increased as a function of [creatine]. However, at [phosphocreatine] values below 10 mM, product "deinhibition" was observed, and respiratory rates rapidly increased to 80% State 3. With 2.0 mM Pi or higher, respiration could be regulated from State 4 to 100% State 3. Overall, the data show how increasing [creatine] and decreasing [phosphocreatine] influence the rates of oxidative phosphorylation when mediated by mitochondrial creatine kinase. Thus, these changes may become secondary cytoplasmic signals regulating heart oxygen consumption. 相似文献
5.
6.
Control of oxidative phosphorylation in rat heart mitochondria. The role of the adenine nucleotide carrier 总被引:3,自引:0,他引:3
Inhibitor titration experiments carried out with carboxyatractyloside, oligomycin and rotenone show that in the case of heart mitochondria the membrane-bound ATPase and the respiratory chain are the major factors controlling the rate of oxidative phosphorylation whereas the adenine nucleotide carrier exhibits no control strength. As shown by carboxyatractyloside titration curves under different conditions, the relative importance of the adenine nucleotide carrier depends on the mode of regeneration (F1-ATPase or glucose plus hexokinase) of ADP from ATP exported outside mitochondria, on the total concentration of adenine nucleotides present in the medium and on the mode of limitation of the rate of respiration (cyanide, rotenone, oligomycin or mersalyl). Concomitantly with the inhibition of O2 consumption, carboxyatractyloside brings about a rise in membrane potential. The inverse relationship between the two processes is observed for carboxyatractyloside concentrations ranging between 0.7 and 1.5 nmol per mg protein. Carboxyatractyloside concentrations below and above this range increase the membrane potential without affecting significantly the rate of respiration. Titration experiments aimed at comparing the effects of ADP, carboxyatractyloside and the uncoupler, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, corroborate the conclusion that in heart mitochondria a major limiting factor in oxidative phosphorylation is the capacity of the respiratory chain. 相似文献
7.
8.
Evtodienko YV Azarashvili TS Teplova VV Odinokova IV Saris N 《Biochemistry. Biokhimii?a》2000,65(9):1023-1026
The effect of accumulation of Ca2+ at physiological concentrations (10(-8)-10(-6) M) on the rates of ATP synthesis and hydrolysis in rat liver mitochondria was studied. An addition of 5 x 10(-7) M Ca2+ resulted in the maximal rates of synthesis and hydrolysis of ATP. Decrease in the concentration of Ca2+ to 10-8 M or its increase to 5 x 10(-6) M inhibited oxidative phosphorylation and ATP hydrolysis. It was found that the rate of oxidative phosphorylation correlated with the phosphorylation level of a 3.5-kD peptide in the mitochondrial inner membrane on varying the Ca2+ concentration. The possible regulation of oxidative phosphorylation in mitochondria by Ca2+ is discussed. 相似文献
9.
10.
Crystal violet exhibited characteristics of an uncoupler of oxidative phosphorylation, i.e. it released respiratory control, hindered ATP synthesis, enhanced ATPase activity, and produced swelling of isolated rat liver mitochondria. Maximal stimulation of respiration, ATPase activity, and swelling was observed at a concentration of 40 microM. The inhibition of State 3 respiration by oligomycin was released by crystal violet. High concentrations of crystal violet inhibited mitochondrial respiration. The uncoupling effect of crystal violet required inorganic phosphate and was abolished by N-ethylmaleimide. The adenine nucleotides ADP and ATP protected mitochondria from uncoupling by the dye. The dye taken up by mitochondria was released into the incubation medium on induction of uncoupling. In the absence of phosphate, the dye did not cause uncoupling, but its retention was much greater than in the presence of phosphate. Crystal violet is suggested to induce uncoupling by acting on the membrane, rather than by its electrophoretic transfer into the mitochondria. 相似文献
11.
1. Inhibitor titration experiments carried out with carboxyatractyloside, oligomycin and rotenone show that in the case of heart mitochondria the membrane-bound ATPase and the respiratory chain are the major factors controlling the rate of oxidative phosphorylation whereas the adenine nucleotide carrier exhibits no control strength. 2. As shown by carboxyatractyloside titration curves under different conditions, the relative importance of the adenine nucleotide carrier depends on the mode of regeneration (F1-ATPase or glucose plus hexokinase) of ADP from ATP exported outside mitochondria, on the total concentration of adenine nucleotides present in the medium and on the mode of limitation of the rate of respiration (cyanide, rotenone, oligomycin or mersalyl). 3. Concomitantly with the inhibition of O2 consumption, carboxyatractyloside brings about a rise in membrane potential. The inverse relationship between the two processes is observed for carboxyatractyloside concentrations ranging between 0.7 and 1.5 nmol per mg protein. Carboxyatractyloside concentrations below and above this range increase the membrane potential without affecting significantly the rate of respiration. 4. Titration experiments aimed at comparing the effects of ADP, carboxyatractyloside and the uncoupler, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, corroborate the conclusion that in heart mitochondria a major limiting factor in oxidative phosphorylation is the capacity of the respiratory chain. 相似文献
12.
Creatine kinase in epithelium of the inner ear. 总被引:1,自引:0,他引:1
Epithelium of the inner ear in the gerbil and mouse was examined immunocytochemically for presence of creatine kinase (CK). Marginal cells of the cochlear stria vascularis and dark cells and transitional cells of the vestibular system were found to contain an abundance of the MM isozyme (MM-CK). CK in these cells concurs with that which is coupled to Na,K-ATPase in other cells and is considered to supply ATP for the Na,K-ATPase that mediates the high KCl of endolymph. Inner hair cells revealed content of the BB isozyme and in this respect resembled the energy-transducing photoreceptor cells in retina. In addition, outer phalangeal (Deiters') cells stained for both MM- and BB-CK whereas inner phalangeal cells evidenced content of only the BB isozyme. Immunolocalization of CK appeared similar in mouse and gerbil inner ear. Specificity of the staining was affirmed by observations in agreement with those reported for CK in various cell types and by staining with antisera from more than one source. 相似文献
13.
14.
Simultaneous measurement of oxidative phosphorylation and adenylate kinase in plant mitochondria 总被引:3,自引:0,他引:3
An assay system capable of simultaneously measuring ATP, ADP, and AMP concentrations was used for the measurement of oxidative phosphorylation and adenylate kinase (5′-ATP:5′-AMP phosphotransferase) activities in mitochondria which were isolated from etiolated corn, soybean, or cucumber seedlings. Data obtained by this system was correlated with colorimetric Pi uptake and spectrophotometric NADH oxidation measurements. Adenylate kinase was active in both phosphorylating and nonphosphorylating mitochondria. Studies using NaCN, 2,4-dinitrophenol, atractyloside, and 2′-AMP as inhibitors indicated that exogenously supplied [14C]AMP was converted to [14C]ADP either by NADH-linked phosphorylation or by translocation and transphosphorylation from intramitochondrial nucleotides. 相似文献
15.
16.
Activation of oxidative phosphorylation by physiological levels of calcium in mitochondria from rat skeletal muscle was analysed using top-down elasticity and regulation analysis. Oxidative phosphorylation was conceptually divided into three subsystems (substrate oxidation, proton leak and phosphorylation) connected by the membrane potential or the protonmotive force. Calcium directly activated the phosphorylation subsystem and (with sub-saturating 2-oxoglutarate) the substrate oxidation subsystem but had no effect on the proton leak kinetics. The response of mitochondria respiring on 2-oxoglutarate at two physiological concentrations of free calcium was quantified using control and regulation analysis. The partial integrated response coefficients showed that direct stimulation of substrate oxidation contributed 86% of the effect of calcium on state 3 oxygen consumption, and direct activation of the phosphorylation reactions caused 37% of the increase in phosphorylation flux. Calcium directly activated phosphorylation more strongly than substrate oxidation (78% compared to 45%) to achieve homeostasis of mitochondrial membrane potential during large increases in flux. 相似文献
17.
Free fatty acids (FFA) are known to uncouple oxidative phosphorylation in mitochondria. However, their mechanism of action has not been elucidated as yet. In this study we have investigated in detail the patterns of uncoupling by the FFA oleate and palmitate in rat liver mitochondria and submitochondrial particles. The patterns of uncoupling by FFA were compared to uncoupling induced by the ionophores valinomycin (in the presence of K+) and gramicidin (in the presence of Na+) and the proton translocator carbonyl cyanide m-chlorophenylhydrazone (CCCP). The most striking difference in the pattern of uncoupling relates to the effect on the proton electrochemical potential gradient, delta mu H. Uncoupling by ionophores, particularly valinomycin, is associated with and most likely caused by a major reduction of delta mu H. In contrast, uncoupling by FFA is not associated with a significant reduction of delta mu H, indicating another mechanism of uncoupling. We suggest the use of the term decouplers for uncoupling agents such as FFA and general anesthetics that do not collapse the delta mu H [Rottenberg, H. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 3313-3317]. The protonophore CCCP and to some extent the ionophore gramicidin indicate a mixed mode of uncoupling since their effect on delta mu H is moderate when compared to that of valinomycin. Another distinguishing feature of uncouplers that collapse the delta mu H is their ability to stimulate ADP-stimulated respiration (state 3) further. Decouplers such as FFA and general anesthetics do not stimulate state 3 respiration.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
18.
19.
The steady-state velocity dependence of the overall mitochondrial oxidative phosphorylation reaction on the concentrations of extramitochondrial ADP and P1 and of several of the catalytic components was investigated, using the O2 uptake step as the indicator reaction and conditions of saturation with O2, malate, and pyruvate. The studies were carried out with tightly coupled bovine heart mitochondria incubated in the presence of hexokinase, glucose, and Mg2+. The data were corrected to conditions of hexokinase saturation with factors determined in hexokinase dependence studies. The concentrations of catalytic components were varied, in effect, by application of highly specific, tight-binding inactivators of the components. The principal objectives were (a) to distinguish individual reactions coupled by freely diffusible intermediate reactants, (b) to determine the relationships (coupling relationships) between these reactions in regard to how a change in the degrees to which one limits the rate of the overall reaction affects the degree to which the others limit the rate, and (c) to use the findings to determine how the individual reactions are coupled. The feasibility of achieving these objectives was suggested by the observations (a) that the initial steady-state velocity of the overall reaction varies in fairly close accord with a rectangular hyperbola (i.e., with Michaelis-Menten kinetics) whether it is a catalytic component or a substrate that is varied, (b) that apparent Michaelis constants of the substrates and catalytic components may be used as indicators of the coupling relationships between the individual reactions, and (c) that two types of coupling relationships exist between the individual reactions: sequential (characteristic of reactions linked in simple sequence) and nonsequential (mechanism uncertain), in which a change in the degree to which one individual reaction of a pair is rate limiting results in an inverse change and in no change, respectively, in the degree to which the other is rate limiting. Six individual reactions were distinguished: the energy-yielding rotenone-, antimycin-, and cyanide-sensitive steps of the respiratory chain and the energy-consuming Pi transport, phosphorylation, and AdN (adenine nucleotide) transport reactions. The results indicate (a) that the coupling relationship is sequential between the Pi transport and rotenone-sensitive reactions, the Pi transport and cyanide-sensitive reactions, the AdN transport and rotenone-sensitive reactions, the AdN transport and cyanide-sensitive reactions, and the AdN transport and phosphorylation reactions, and (b) that the coupling relationship is nonsequential between the AdN and Pi transport reactions, the Pi transport and phosphorylation reactions, the Pi transport and antimycin-sensitive reactions, and the AdN transport and antimycin-sensitive reactions. In the sequential group of individual reaction pairs, the individual reactions of all but the AdN transport-phosphorylation reaction pair appear to be linked in a partially nonsequential manner. It is proposed that the nonsequential and partially nonsequential coupling relationships come about as a result of one individual reaction of a pair removing freely diffusible intermediate reactants at two or more points which are situated symmetrically and unsymmetrically, respectively, about the other. 相似文献
20.
The role of long-chain acyl-CoA in the damage of oxidative phosphorylation in heart mitochondria 总被引:1,自引:0,他引:1
V Borutaite V Mildaziene L Ivanoviene B Kholodenko A Toleikis A Praskevicius 《FEBS letters》1989,243(2):264-266
The aim of this investigation was to study the effect of intramitochondrial acyl-CoA on the respiration of rabbit heart mitochondria over the whole range of stationary respiratory rates between States 4 and 3. The creatine phosphokinase system was used for stabilization of extramitochondrial adenine nucleotide concentration. It was shown that acyl-CoA depressed respiration more effectively in the intermediate range of respiration between States 4 and 3. The effect of acyl-CoA was negligible near State 4 and in State 3. These data are in line with our previous results concerning the dependence of the adenine nucleotide translocator control coefficient on the rate of mitochondrial respiration. Thus, our data suggest that long-chain acyl-CoA may regulate oxidative phosphorylation in heart mitochondria in vivo. 相似文献