首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Spatial and temporal regulation of protein kinase D (PKD)   总被引:2,自引:0,他引:2       下载免费PDF全文
Protein kinase D (PKD; also known as PKCmicro) is a serine/threonine kinase activated by diacylglycerol signalling pathways in a variety of cells. PKD has been described previously as Golgi-localized, but herein we show that it is present within the cytosol of quiescent B cells and mast cells and moves rapidly to the plasma membrane after antigen receptor triggering. The membrane redistribution of PKD requires the diacylglycerol-binding domain of the enzyme, but is independent of its catalytic activity and does not require the integrity of the pleckstrin homology domain. Antigen receptor signalling initiates in glycosphingolipid-enriched microdomains, but membrane-associated PKD does not co-localize with these specialized structures. Membrane targeting of PKD is transient, the enzyme returns to the cytosol within 10 min of antigen receptor engagement. Strikingly, the membrane-recycled PKD remains active in the cytosol for several hours. The present work thus characterizes a sustained antigen receptor-induced signal transduction pathway and establishes PKD as a serine kinase that temporally and spatially disseminates antigen receptor signals away from the plasma membrane into the cytosol.  相似文献   

2.
The atypical C-type protein kinases (aPKCs) comprise the third subclass of the PKC family functionally defined by insensitivity to phorbol esters, diacylgylcerol and calcium. aPKCs have been implicated in numerous biological processes including cell proliferation and survival, cell polarity, migration and inflammation. However, only insufficient data exist with regard to aPKC isoform specificity, since both mammalian aPKCs, PKC iota/lambda and PKC zeta, exhibit a high structural homology and very similar biochemical properties. In this study, we therefore used isoform-specific riboprobes and antibodies to define the characteristic expression profile of each aPKC isoform during mouse embryogenesis. Both, PKC iota/lambda and zeta show highly specific temporal and spatial patterns of expression which may help in distinguishing physiological functions of these isoforms.  相似文献   

3.

Background  

The PKD family of serine/threonine kinases comprises a single member in Drosophila (dPKD), two isoforms in C. elegans (DKF-1 and 2) and three members, PKD1, PKD2 and PKD3 in mammals. PKD1 and PKD2 have been the focus of most studies up to date, which implicate these enzymes in very diverse cellular functions, including Golgi organization and plasma membrane directed transport, immune responses, apoptosis and cell proliferation. Concerning PKD3, a role in the formation of vesicular transport carriers at the trans-Golgi network (TGN) and in basal glucose transport has been inferred from in vitro studies. So far, however, the physiological functions of the kinase during development remain unknown.  相似文献   

4.
We have analysed the expression during mouse development of the four member Lingo/LERN gene family which encodes type 1 transmembrane proteins containing 12 extracellular leucine rich repeats, an immunoglobulin C2 domain and a short intracellular tail. Each family member has a distinct pattern of expression in the mouse embryo as is the case for the related NLRR, FLRT and LRRTM gene families. Lingo1/LERN1 is expressed in the developing trigeminal, facio-acoustic and dorsal root ganglia. An interesting expression pattern is also observed in the somites with expression localising to the inner surface of the dermomyotome in the ventro-caudal lip. Further expression is seen in lateral cells of the hindbrain and midbrain, lateral cells in the motor horn of the neural tube, the otic vesicle epithelium and epithelium associated with the developing gut. Lingo3/LERN2 is expressed in a broad but specific pattern in many tissues across the embryo. Lingo2/LERN3 is seen in a population of cells lying adjacent to the epithelial lining of the olfactory pit while Lingo4/LERN4 is expressed in the neural tube in a subset of progenitors adjacent to the motor neurons. Expression of all Lingo/LERN genes increases as the embryo develops but is low in the adult with only Lingo1/LERN1 and Lingo2/LERN3 being detectable in adult brain.  相似文献   

5.
Mitogen-activated protein (MAP) kinase phosphatases (MKPs) constitute a growing family of dual specificity phosphatases, which dephosphorylate both serine/threonine and tyrosine residues of MAP kinases. MAP kinase signaling cascades are involved in the control of cell proliferation, differentiation and apoptosis. In mammals, ten members of the dual-specificity MKP family have so far been identified. In this report, we describe the cloning and expression analysis of the mouse Mkp3 gene. During early development, expression of Mkp3 is most prominent in the primitive streak, presomitic mesoderm and somites, frontonasal prominence, midbrain/hindbrain boundary, branchial arches and limb buds. At later stages, expression is also detected in the tooth primordia, vibrissae, hair follicles, pinna, submandibular gland, mammary gland primordia, lung and kidney. Strong expression was detected in the adult brain.  相似文献   

6.
Creatine kinase activity was discovered in the growing mouse oocyte and in the preimplantation embryo. Changes in the enzyme activity during the growth and maturation of the egg and during the development of the embryo up to the blastocyst stage were determined. Close similarity of the protein to the brain-type isoenzyme of creatine kinase was established immunochemically. The kinetic parameters of the brain-type isoenzyme (M. R. Iyengar, C. E. Fluellen, and C. W. L. Iyengar, 1982, J. Muscle Cell Motil. 3, 231–246) and the pattern of development-associated changes in activity suggest a possible role for creatine kinase in maintaining the reported high ATP/ADP ratio (L. Ginsberg and N. Hillman, 1975, J. Reprod. Fertil. 43, 83–90), which is essential for the biosynthetic activities of the embryo.  相似文献   

7.
8.
9.
Protein kinase D (PKD)/protein kinase Cmicro (PKCmicro, a serine/threonine protein kinase with distinct structural and enzymological properties, is rapidly activated in intact cells via PKC. The amino-terminal region of PKD contains a cysteine-rich domain (CRD) that directly binds phorbol esters with a high affinity. Here, we show that treatment of transfected RBL 2H3 cells with phorbol 12,13-dibutyrate (PDB) induces a striking CRD-dependent translocation of PKD from the cytosol to the plasma membrane, as shown by real time visualization of a functional green fluorescent protein (GFP)-PKD fusion protein. A single amino acid substitution in the second cysteine-rich motif of PKD (P287G) prevented PDB-induced membrane translocation but did not affect PKD activation. Our results indicate that PKD translocation and activation are distinct processes that operate in parallel to regulate the activity and localization of this enzyme in intact cells.  相似文献   

10.
Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV) is a monomeric, multifunctional serine/threonine protein kinase that is expressed in subanatomic regions of the central and peripheral nervous system, T lymphocytes, and male germ cells. It is frequently localized to the nucleus, where it serves as a mediator of Ca(2+)-dependent gene expression. Although CaMKIV expression in the adult rat central nervous system and thymus has been described, little is known about the embryonic expression of murine CaMKIV. Here we report a thorough embryonic expression study of CaMKIV mRNA from embryonic day 9.5 through postnatal day 1. Expression patterns during embryonic development are significantly different from those of adults, suggesting specific roles for CaMKIV during development. Regions of high CaMKIV mRNA expression include thymic and bone cartilage primordia as well as specific cranial nerve ganglia (trigeminal, vestibulocochlear, and glossopharyngeal), thalamus, and dorsal root ganglia. This pattern of expression is chronologically consistent with periods of extensive cellular differentiation, proliferation, or neuronal survival selection and shows a predilection for neural crest-derived cells. These trends, along with recent studies in the CaMKIV null mouse, suggest that CaMKIV may play an important physiological role in cellular differentiation during embryogenesis.  相似文献   

11.
Chiu T  Rozengurt E 《FEBS letters》2001,489(1):101-106
Addition of gastrin or cholecystokinin octapeptide (CCK-8) to cultures of Rat-1 cells stably transfected with the CCK2 (CCK(B)/gastrin) receptor induced protein kinase D (PKD) activation that was detectable within 1 min and reached a maximum ( approximately 10-fold) after 2.5 min of hormonal stimulation. Half-maximal PKD activation for both CCK-8 and gastrin was achieved at 10 nM. Treatment with various concentrations of the selective PKC inhibitors Ro 31-8220 or GF-I potently blocked PKD activation induced by subsequent addition of CCK-8 in a concentration-dependent fashion. Our results indicate that PKC-dependent PKD activation is a novel early event in the action of gastrin and CCK-8 via CCK2 receptors.  相似文献   

12.
Protein kinase D (PKD) is a serine/threonine protein kinase that is directly stimulated in vitro by phorbol esters and diacylglycerol in the presence of phospholipids. Here, we examine the regulation of PKD in living cells. Our results demonstrate that tumour-promoting phorbol esters, membrane-permeant diacylglycerol and serum growth factors rapidly induced PKD activation in immortalized cell lines (e.g. Swiss 3T3 and Rat-1 cells), in secondary cultures of mouse embryo fibroblasts and in COS-7 cells transiently transfected with a PKD expression construct. PKD activation was maintained during cell disruption and immunopurification and was associated with an electrophoretic mobility shift and enhanced 32P incorporation into the enzyme, but was reversed by treatment with alkaline phosphatase. PKD was activated, deactivated and reactivated in response to consecutive cycles of addition and removal of PDB. PKD activation was completely abrogated by exposure of the cells to the protein kinase C inhibitors GF I and Ro 31-8220. In contrast, these compounds did not inhibit PKD activity when added directly in vitro. Co-transfection of PKD with constitutively activated mutants of PKCs showed that PKCepsilon and eta but not PKCzeta strongly induced PKD activation in COS-7 cells. Thus, our results indicate that PKD is activated in living cells through a PKC-dependent signal transduction pathway.  相似文献   

13.
Recently, we cloned a novel serine/threonine kinase termed protein kinase D2 (PKD2). PKD2 can be activated by phorbol esters both in vivo and in vitro but also by gastrin via the cholecystokinin/CCK(B) receptor in human gastric cancer cells stably transfected with the CCK(B)/gastrin receptor (AGS-B cells). Here we identify the mechanisms of gastrin-induced PKD2 activation in AGS-B cells. PKD2 phosphorylation in response to gastrin was rapid, reaching a maximum after 10 min of incubation. Our data demonstrate that gastrin-stimulated PKD2 activation involves a heterotrimeric G alpha(q) protein as well as the activation of phospholipase C. Furthermore, we show that PKD2 can be activated by classical and novel members of the protein kinase C (PKC) family such as PKC alpha, PKC epsilon, and PKC eta. These PKCs are activated by gastrin in AGS-B cells. Thus, PKD2 is likely to be a novel downstream target of specific PKCs upon the stimulation of AGS-B cells with gastrin. Our data suggest a two-step mechanism of activation of PKD2 via endogenously produced diacylglycerol and the activation of PKCs.  相似文献   

14.
Shah K  Schmidt ED  Vlak JM  de Vries SC 《Biochimie》2001,83(5):415-421
The Daucus carota somatic embryogenesis receptor kinase (DcSERK) gene serves as marker to monitor the transition from somatic into embryogenic plant cells. To determine the intrinsic biochemical properties of the DcSERK protein, a predicted transmembrane receptor, the kinase domain was expressed as a 40-kDa his-tag fusion protein in the baculovirus insect cell system. The kinase domain fusion protein was able to autophosphorylate in vitro. Phosphoamino acid analysis of the autophosphorylated DcSERK protein revealed that it was autophosphorylated on serine and threonine residues. This is the first evidence of the biochemical characterization of a transmembrane receptor kinase from embryogenic plant cell cultures.  相似文献   

15.
16.
17.
Expression of p53 during mouse embryogenesis.   总被引:13,自引:0,他引:13  
By in situ hybridisation we have examined the expression of p53 during mouse embryogenesis from day 8.5 to day 18.5 post coitum (p.c.). High levels of p53 mRNA were detected in all cells of the day 8.5 p.c. and 10.5 p.c. mouse embryo. However, at later stages of development, expression became more pronounced during differentiation of specific tissues e.g. of the brain, liver, lung, thymus, intestine, salivary gland and kidney. In cells undergoing terminal differentiation, the level of p53 mRNA declined strongly. In the brain, hybridisation signals were also observed in postmitotic but not yet terminally differentiated cells. Therefore, gene expression of p53 does not appear to be linked with cellular proliferation in this organ. A proposed role for p53 in cellular differentiation is discussed.  相似文献   

18.
19.
20.
We have analysed the expression during mid-gestation mouse development of the four member LRRTM gene family which encodes type 1 transmembrane proteins containing 10 extracellular leucine rich repeats and a short intracellular tail. Each family member has a developmentally regulated pattern of expression distinct from all other members. LRRTM1 is expressed in the neural tube, otic vesicle, apical ectodermal ridge, forebrain and midbrain up to a sharp central boundary. LRRTM2 is expressed in a subset of progenitors in the neural tube. LRRTM3 is expressed in a half somite wide stripe in the presomitic mesoderm adjacent to the boundary with the most recently formed somite. Additional expression is seen in the neural tube, forebrain and hindbrain. LRRTM4 is expressed in the limb mesenchyme, neural tube, caudal mesoderm and in three distinct regions of the head. Later expression occurs in a subset of the developing sclerotome. Each family member has a unique expression domain within the neural tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号