首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The effects of NO on the H2-oxidizing and diaphorase activities of the soluble hydrogenase from Alcaligenes eutrophus H16 were investigated. With fully activated enzyme, NO (8-150 nM in solution) inhibited H2 oxidation in a time- and NO-concentration-dependent process. Neither H2 nor NAD+ appeared to protect the enzyme against the inhibition. Loss of activity in the absence of an electron acceptor was about 10 times slower than under turnover conditions. The inhibition was partially reversible; approx. 50% of full activity was recoverable after removal of the NO. Recovery was slower in the absence of an electron acceptor than in the presence of H2 plus an electron acceptor. The diaphorase activity of the unactivated hydrogenase was not affected by NO concentrations of up to 200 microM in solution. Exposure of the unactivated hydrogenase to NO irreversibly inhibited the ability of the enzyme to be fully activated for H2-oxidizing activity. The enzyme also lost its ability to respond to H2 during activation in the presence of NADH. The results are interpreted in terms of a complex inhibition that displays elements of (1) a reversible slow-binding inhibition of H2-oxidizing activity, (2) an irreversible effect on H2-oxidizing activity and (30 an irreversible inhibition of a regulatory component of the enzyme. Possible sites of action for NO are discussed.  相似文献   

2.
Amino acid residues His and Cys of the NAD-dependent hydrogenase from the hydrogen-oxidizing bacterium Ralstonia eutropha H16 were chemically modified with specific reagents. The modification of His residues of the nonactivated hydrogenase resulted in decrease in both hydrogenase and diaphorase activities of the enzyme. Activation of NADH hydrogenase under anaerobic conditions additionally modified a His residue (or residues) significant only for the hydrogenase activity. The rate of decrease in the diaphorase activity was unchanged. The modification of thiol groups of the nonactivated enzyme did not affect the hydrogenase activity. The effect of thiol-modifying agents on the activated hydrogenase was accompanied by inactivation of both diaphorase and hydrogenase activities. The modification degree and changes in the corresponding catalytic activities depended on conditions of the enzyme activation. Data on the modification of cysteine and histidine residues of the hydrogenase suggested that the enzyme activation should be associated with significant conformational changes in the protein globule.  相似文献   

3.
Transport of Ca2+ and Na+ across the chromaffin-granule membrane.   总被引:2,自引:1,他引:1       下载免费PDF全文
The soluble hydrogenase (hydrogen-NAD+ oxidoreductase, EC 1.12.1.2) of Alcaligenes eutrophus H16 was shown to be stabilized by oxidation with oxygen and ferricyanide as long as electron donors and reducing compounds were absent. The simultaneous presence of H2, NADH and O2 in the enzyme solution, however, caused an irreversible inactivation of hydrogenase that was dependent on the O2 concentration. The half-life periods of 4 degrees C under partial pressures of 0.1, 5, 20 and 50% O2 were 11, 5, 2.5 and 1.5 h respectively. Evidence has been obtained that hydrogenase produces superoxide free radical anions (O2-.), which were detected by their ability to oxidize hydroxylamine to nitrite. The correlation between O2 concentration, nitrite formation and inactivation rates and the stabilization of hydrogenase by addition of superoxide dismutase indicated that superoxide radicals are responsible for enzyme inactivation. During short-term activity measurements (NAD+ reduction, H2 evolution from NADH), hydrogenase activity was inhibited by O2 only very slightly. In the presence of 0.7 mM-O2 an inhibition of about 20% was observed.  相似文献   

4.
The soluble hydrogenase (hydrogen: NAD+ oxidoreductase, EC 1.12.1.2) from Alcaligenes eutrophus H 16 was purified 68-fold with a yield of 20% and a final specific activity (NAD reduction) of about 54 mumol H2 oxidized/min per mg protein. The enzyme was shown to be homogenous by polyacrylamide gel electrophoresis. Its molecular weight and isoelectric point were determined to be 205 000 and 4.85 respectively. The oxidized hydrogenase, as purified under aerobic conditions, was of high stability but not reactive. Reductive activation of the enzyme by H2, in the presence of catalytic amounts of NADH, or by reducing agents caused the hydrogenase to become unstable. The purified enzyme, in its active state, was able to reduce NAD, FMN, FAD, menaquinone, ubiquinone, cytochrome c, methylene blue, methyl viologen, benzyl viologen, phenazine methosulfate, janus green, 2,6-dichlorophenoloindophenol, ferricyanide and even oxygen. In addition to hydrogenase activitiy, the enzyme exhibited also diaphorase and NAD(P)H oxidase activity. The reversibility of hydrogenase function (i.e. H2 evolution from NADH, methyl viologen and benzyl viologen) was demonstrated. With respect to H2 as substrate, hydrogenase showed negative cooperativity; the Hill coefficient was n = 0.4. The apparent Km value for H2 was found to be 0.037 mM. The absorption spectrum of hydrogenase was typical for non-heme iron proteins, showing maxima (shoulders) at 380 and 420 nm. A flavin component could be extracted from native hydrogenase characterized by its absorption bands at 375 and 447 nm and a strong fluorescense at 526 nm.  相似文献   

5.
The soluble, cytoplasmic NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha is a heterotetrameric enzyme (HoxFUYH) and contains two FMN groups. The purified oxidized enzyme is inactive in the H2-NAD+ reaction, but can be activated by catalytic amounts of NADH. It was discovered that one of the FMN groups (FMN-a) is selectively released upon prolonged reduction of the enzyme with NADH. During this process, the enzyme maintained its tetrameric form, with one FMN group (FMN-b) firmly bound, but it lost its physiological activity--the reduction of NAD+ by H2. This activity could be reconstituted by the addition of excess FMN to the reduced enzyme. The rate of reduction of benzyl viologen by H2 was not dependent on the presence of FMN-a. Enzyme devoid of FMN-a could not be activated by NADH. As NADH-dehydrogenase activity was not dependent on the presence of FMN-a, and because FMN-b did not dissociate from the reduced enzyme, we conclude that FMN-b is functional in the NADH-dehydrogenase activity catalyzed by the HoxFU dimer. The possible function of FMN-a as a hydride acceptor in the hydrogenase reaction catalyzed by the HoxHY dimer is discussed.  相似文献   

6.
M Tomasz  A K Chawla  R Lipman 《Biochemistry》1988,27(9):3182-3187
The relative amounts of monofunctional and bifunctional alkylation products of DNA with mitomycin C (MC) depend on whether one or both masked alkylating functions of MC are activated reductively; adduct 8 is the result of one function and adducts 7 and 9, formed as a pair, are the result of both functions being activated [Tomasz, M., Lipman, R., Chowdary, C., Pawlak, J., Verdine, G. L., & Nakanishi, K. (1987) Science (Washington, D.C.) 235, 1204-1208]. To determine the mechanism governing this differential reactivity of MC with DNA, MC-Micrococcus luteus DNA complexes formed under varying conditions in vitro were digested to nucleosides and adducts. Adduct distribution, analyzed by high-performance liquid chromatography, served as the measure of monofunctional and bifunctional activation. H2/PtO2 and xanthine oxidase/reduced nicotinamide adenine dinucleotide (NADH) activated MC mostly monofunctionally, and Na2S2O4 activated the drug bifunctionally under comparable conditions. Excess MC selectively suppressed, but excess PtO2 selectively promoted, bifunctional activation by H2/PtO2; excess xanthine oxidase and/or NADH also had promoting effects. O2 tested in the Na2S2O4 system was inhibitory. 10-Decarbamoyl-MC acted strictly monofunctionally under all conditions. Monoadducts bound to DNA were converted to bis adducts upon rereduction. A mechanism with the following features was derived: (i) Activation of MC at C-1 and C-10 is sequential (C-1 first). (ii) A one-time reduction is sufficient for both. (iii) Activation of the second function may be selectively inhibited by kinetic factors or O2. (iv) 7 and 9 are coproducts of bifunctional activation; their ratio depends on the DNA base sequence. (v) Activation of the second function involves an iminium intermediate. Direct applications to the action of MC in vivo are discussed.  相似文献   

7.
The hydrogenase from Azotobacter vinelandii is typically purified under anaerobic conditions. In this work, the hydrogenase was purified aerobically. The yields were low (about 2%) relative to those of the anaerobic purification (about 20%). The rate of enzyme activity depended upon the history of the enzyme. The enzyme preparations were active as isolated in H2 oxidation, and isotope exchange. The activity increased during the assay to a new maximal level (turnover activation). Treatment with reductants (e.g., H2, dithionite, dithiothreitol, indigo carmine) resulted in greater activation (reductant activation). Activation of the hydrogenase was accompanied by decrease in visible light absorption (300-600 nm) with maximal decreases at 450 and 345 nm which indicated the reduction of iron-sulfur clusters. The aerobically purified hydrogenase was susceptible to irreversible inactivation by cyanide. Pretreatment with acetylene did not influence activation of the hydrogenase. Once activated, the aerobically purified hydrogenase was indistinguishable from the anaerobically purified hydrogenase with respect to the catalytic properties tested.  相似文献   

8.
The main catalytic properties of the Hox type hydrogenase isolated from the Gloeocapsa alpicola cells have been studied. The enzyme effectively catalyzes reactions of oxidation and evolution of H2 in the presence of methyl viologen (MV) and benzyl viologen (BV). The rates of these reactions in the interaction with the physiological electron donor/acceptor NADH/NAD+ are only 3-8% of the MV(BV)-dependent values. The enzyme interacts with NADP+ and NADPH, but is more specific to NAD+ and NADH. Purification of the hydrogenase was accompanied by destruction of its multimeric structure and the loss of ability to interact with pyridine nucleotides with retained activity of the hydrogenase component (HoxYH). To show the catalytic activity, the enzyme requires reductive activation, which occurs in the presence of H2, and NADH accelerates this process. The final hydrogenase activity depends on the redox potential of the activation medium (E(h)). At pH 7.0, the enzyme activity in the MV-dependent oxidation of H2 increased with a decrease in E(h) from -350 mV and reached the maximum at E(h) of about -390 mV. However, the rate of H2 oxidation in the presence of NAD+ in the E(h) range under study was virtually constant and equal to 7-8% of the maximal rate of H2 oxidation in the presence of MV.  相似文献   

9.
A 37,000 X g supernatant fraction prepared from fat lung homogenate demonstrated a 2- to 3-fold increase in guanylate cyclase activity after incubation at 30 degrees for 30 min (preincubation). Treatment of the supernatant fraction with Triton X-100 increased activity to approximately the same extent as preincubation, but would not increase the activity after preincubation. By chromatography on Sepharose 2B, before and after preincubation, it was demonstrated that the increase in activity was only associated with the soluble guanylate cyclase, and not the particulate enzyme. Activation by preincubation required O2. It was completely inhibited by thiols such as 2-mercaptoethanol, and by bovine serum albumin, KCN, and sodium diethyldithiocarbamate. These inhibitors suggested a copper requirement for activation, and this was confirmed by demonstrating that 20 to 60 muM CuCl2 could relieve the inhibition by 0.1 mM sodium diethyldithiocarbamate. 2-Mercaptoethanol inhibition could also be reversed by removal of the thiol on a Sephadex G-25 column, however, this treatment partially activated the enzyme. Addition of 2-mercaptoethanol to a preincubated preparation would not reverse the activation. H2O2 was found to activate guanylate cyclase, either by its generation in the lung supernatant with glucose oxidase and glucose, or by its addition to a preparation in which the catalase was inhibited with KCN. KCN or bovine serum albumin was able to partially inhibit activation by glucose oxidase plus glucose, however, larger amounts of glucose oxidase could overcome that inhibition, indicating a catalytic role for Cu2+ at low H2O2 concentrations. No direct evidence for H2O2 formation during preincubation could be found, however, indirect evidence was obtained by the spectrophotometric detection of choleglobin formation from hemoglobin present in the lung supernatant fluid. The H2O2 is believed to result from the reaction of oxyhemoglobin with ascorbate.  相似文献   

10.
Strains I-110 ARS, SR, USDA 136, USDA 137, and AK13 1c of Bradyrhizobium japonicum induced Hup activity when growing heterotrophically in medium with carbon substrate and NH4Cl in the presence of 2% H2 and 2% O2. Hup activity was induced during heterotrophic growth in the presence of carbon substrates, which were assimilated during the time of H2 oxidation. Strains I-110 ARS and SR grown heterotrophically or chemoautotrophically for 3 days had similar rates of H2 oxidation. Similar rates of Hup activity were also observed when cell suspensions were induced for 24 h in heterotrophic or chemoautotrophic growth medium with 1% O2, 10% H2, and 5% CO2 in N2. These results are contrary to the reported repression of Hup activity by carbon substrates in B. japonicum. Bradyrhizobial Hup activity during heterotrophic growth was limited by H2 and O2 and repressed by aerobic conditions, and CO2 addition had no effect. Nitrogenase and ribulosebisphosphate carboxylase activities were not detected in H2-oxidizing cultures of B. japonicum during heterotrophic growth. Immunoblot analysis of cell extracts with antibodies prepared against the 65-kilodalton subunit of uptake hydrogenase indicated that Hup protein synthesis was induced by H2 and repressed under aerobic conditions.  相似文献   

11.
A heterotrophic semisolid medium was used with two sensitive assay methods, C(2)H(2) reduction and O(2)-dependent tritium uptake, to determine nitrogenase and hydrogenase activities, respectively. Organisms known to be positive for both activities showed hydrogenase activity in both the presence and absence of 1% C(2)H(2), and thus, it was possible to test a single culture for both activities. Hydrogen uptake activity was detected for the first time in N(2)-fixing strains of Pseudomonas stutzeri. The method was then applied to the most-probable-number method of counting N(2)-fixing and H(2)-oxidizing bacteria in some natural systems. The numbers of H(2)-oxidizing diazotrophs were considerably higher in soil surrounding nodules of white beans than they were in the other systems tested. This observation is consistent with reports that the rhizosphere may be an important ecological niche for H(2) transformation.  相似文献   

12.
The genome of Pyrococcus furiosus contains the putative mbhABCDEFGHIJKLMN operon for a 14-subunit transmembrane complex associated with a Ni-Fe hydrogenase. Ten ORFs (mbhA-I and mbhM) encode hydrophobic, membrane-spanning subunits. Four ORFs (mbhJKL and mbhN) encode putative soluble proteins. Two of these correspond to the canonical small and large subunit of Ni-Fe hydrogenase, however, the small subunit can coordinate only a single iron-sulfur cluster, corresponding to the proximal [4Fe-4S] cubane. The structural genes for the small and the large subunits, mbhJ and mbhL, are separated in the genome by a third ORF, mbhK, encoding a protein of unknown function without Fe/S binding. The fourth ORF, mbhN, encodes a 2[4Fe-4S] protein. With P. furiosus soluble [4Fe-4S] ferredoxin as the electron donor the membranes produce H2, and this activity is retained in an extracted core complex of the mbh operon when solubilized and partially purified under mild conditions. The properties of this membrane-bound hydrogenase are unique. It is rather resistant to inhibition by carbon monoxide. It also exhibits an extremely high ratio of H2 evolution to H2 uptake activity compared with other hydrogenases. The activity is sensitive to inhibition by dicyclohexylcarbodiimide, an inhibitor of NADH dehydrogenase (complex I). EPR of the reduced core complex is characteristic for interacting iron-sulfur clusters with Em approximately -0.33 V. The genome contains a second putative operon, mbxABCDFGHH'MJKLN, for a multisubunit transmembrane complex with strong homology to the mbh operon, however, with a highly unusual putative binding motif for the Ni-Fe-cluster in the large hydrogenase subunit. Kinetic studies of membrane-bound hydrogenase, soluble hydrogenase and sulfide dehydrogenase activities allow the formulation of a comprehensive working hypothesis of H2 metabolism in P. furiosus in terms of three pools of reducing equivalents (ferredoxin, NADPH, H2) connected by devices for transduction, transfer, recovery and safety-valving of energy.  相似文献   

13.
The production of H2O2 by brain mitochondria was monitored employing a new technique based on the horseradish peroxidase dependent oxidation of acetylated ferrocytochrome c. It was shown that brain mitochondria release H2O2 by an intermediate autooxidation at the QH2-cytochrome c oxidoreductase level (induced by antimycin A and inhibited by myxothiazol). With both succinate and pyruvate plus malate this H2O2 release is inhibited at high substrate concentrations. With pyruvate plus malate a second source of H2O2 could be detected, apparently from autoxidation at the NADH dehydrogenase level. With alpha-glycerophosphate some H2O2 derives from autooxidation at the alpha-glycerophosphate dehydrogenase. The NADH dehydrogenase dependent, but not the QH2-cytochrome c oxidoreductase dependent H2O2 was significantly stimulated upon depletion of the mitochondrial glutathione.  相似文献   

14.
Two uptake hydrogenases were found in the obligate methanotroph Methylosinus trichosporium OB3b; one was constitutive, and a second was induced by H2. Both hydrogenases could be assayed by measuring methylene blue reduction anaerobically or by coupling their activity to nitrogenase acetylene reduction activity in vivo in an O2-dependent reaction. The H2 concentration for half-maximal activity of the inducible and constitutive hydrogenases in both assays was 0.01 and 0.5 bar (1 and 50 kPa), respectively, making it easy to distinguish these enzymes from one another both in vivo and in vitro. Hydrogen uptake was shown to be coupled to ATP synthesis in methane-starved cells. Methane, methanol, formate, succinate, and glucose all repressed the H2-mediated synthesis of the inducible hydrogenase. Furthermore, this enzyme was only expressed in N-starved cultures and was repressed by NH4+ and NO3-; synthesis of the constitutive hydrogenase was not affected by excess N in the growth medium. In nickel-free, EDTA-containing medium, the activities of these two enzymes were negligible; however, both enzyme activities appeared rapidly following the addition of nickel to the culture. Chloramphenicol, when added along with nickel, had no effect on the rapid appearance of either the constitutive or inducible activity, indicating that nickel is not required for synthesis of the hydrogenase apoproteins. These observations all suggest that these hydrogenases are nickel-containing enzymes. Finally, both hydrogenases were soluble and could be fractionated by 20% ammonium sulfate; the constitutive enzyme remained in the supernatant solution, while the inducible enzyme was precipitated under these conditions.  相似文献   

15.
Nickel is a component of hydrogenase in Rhizobium japonicum   总被引:23,自引:12,他引:11       下载免费PDF全文
The derepression of H2-oxidizing activity in free-living Rhizobium japonicum does not require the addition of exogenous metal to the derepression media. However, the addition of EDTA (6 microM) inhibited derepression of H2 uptake activity by 80%. The addition of 5 microM nickel to the derepression medium overcame the EDTA inhibition. The addition of 5 microM Cu or Zn also relieved EDTA inhibition, but to a much lesser extent; 5 microM Fe, Co, Mg, or Mn did not. The kinetics of induction and magnitude of H2 uptake activity in the presence of EDTA plus Ni were similar to those of normally derepressed cells. Nickel also relieved EDTA inhibition of methylene blue-dependent Hup activity, suggesting that nickel is involved directly with the H2-activating hydrogenase enzyme. Adding nickel or EDTA to either whole cells or crude extracts after derepression did not affect the hydrogenase activity. Cells were grown in 63Ni and the hydrogenase was subsequently purified by gel electrophoresis. 63Ni comigrated with the H2-dependent methylene blue reducing activity on native polyacrylamide gels and native isoelectric focusing gels. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the nickel-containing hydrogenase band revealed a single polypeptide with a molecular weight of ca. 67,000. We conclude that the hydrogenase enzyme in R. japonicum is a nickel-containing metalloprotein.  相似文献   

16.
The agarose-coupled triazine dye Procion Red HE-3B has been demonstrated to be applicable as an affinity gel for the purification of five diverse hydrogenases, namely the soluble, NAD-specific and the membrane-bound hydrogenase of Alcaligenes eutrophus, the membrane-bound hydrogenase of the N2-fixing Alcaligenes latus, the reversible H2-evolving and the unidirectional H2-oxidizing hydrogenase of Clostridium pasteurianum. In the case of the soluble hydrogenase of A. eutrophus, chromatography on Procion Red-agarose even permitted the separation of inactive from active enzyme, thus yielding a 2-3-fold increase in specific activity. For the homogeneous enzyme preparation obtained after two column steps (Procion Red-agarose, DEAE-Sephacel), a specific activity of 121 mumol of H2 oxidized/min per mg of protein was determined. Kinetic studies with free Procion Red provided evidence that the diverse hydrogenases are competitively inhibited by the dye, each with respect to the electron carrier (NAD, Methylene Blue, Methyl Viologen), indicating a specific interaction between Procion Red and the catalytic centres of the enzymes. For the highly purified preparations of the soluble and the membrane-bound hydrogenase of A. eutrophus, in 50 mM-potassium phosphate, pH 7.0, Ki values for Procion Red of 103 and 19 microM have been determined.  相似文献   

17.
The role for intracellular Ca2+ in modulating activity of the Na+/H+ exchanger was studied in cultured vascular smooth muscle cells. Na+/H+ exchange was activated by four distinct stimuli: 1) phorbol 12-myristate 13-acetate, 2) thrombin, 3) cell shrinkage, and 4) intracellular acid loading. [Ca2+]i was independently varied between 40 and 200 nM by varying the bathing Ca2+ from 10 nM to 5.0 mM. Thrombin-induced intracellular Ca2+ transients were blocked with bis(2-amino-5-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester (MAPTAM). In the absence of stimulators of Na+/H+ exchange, varying [Ca2+]i above or below the basal level of 140 nM did not activate Na+/H+ exchange spontaneously. However, varying [Ca2+]i did affect stimulus-induced activation of Na+/H+ exchange. Activation of the exchanger by phorbol 12-myristate 13-acetate was blunted by reduced intracellular Ca2+ (half-maximal activity at 50-90 nM [Ca2+]i), consistent with a Ca2+ requirement for protein kinase C (Ca2+/phospholipid-dependent enzyme). Activation of the exchanger by thrombin in protein kinase C-depleted cells was also sensitive to reduced intracellular Ca2+ (half-maximal activity at 90-140 nM [Ca2+]i) and was increased 40% by raising [Ca2+]i to 200 nM. Activation of the exchanger by cell shrinkage or intracellular acid loads was not significantly affected over the range of [Ca2+]i tested. Thus, altered [Ca2+]i does not itself affect Na+/H+ exchange activity in vascular smooth muscle but instead modulates activation of the transporter by particular stimuli.  相似文献   

18.
Clostridium pasteurianum has two distinct hydrogenases, the bidirectional hydrogenase and the H2-oxidizing (uptake) hydrogenase. The H2-oxidizing hydrogenase has been purified (up to 970-fold) to a specific activity of 17,600 μmol H2 oxidized/min·mg protein (5 mM methylene blue) or 3.5 μmol H2 produced/min·mg protein (1 mM methyl viologen). The uptake hydrogenase has a Mr of 53,000 (one polypeptide chain). Depending upon how protein was measured, the Fe and S= contents (gatom/mol) were 4.7 and 5.2 (by the dye-binding assay) or 7.2 and 8.0 (by the Lowry method). Both reduced and oxidized forms of the enzyme gave electron paramagnetic resonance signals. The activation energy for H2-production and H2-oxidation by the uptake hydrogenase was 59.1 and 31.2 kJ/mol, respectively. In the exponential phase of growth, the ratio of uptake hydrogenase/bidirectional hydrogenase in NH3-grown cells was much lower than that in N2-fixing cells.  相似文献   

19.
20.
An H2O2-generating fraction was prepared from porcine thyroid homogenate by differential and Percoll-density gradient centrifugations. The fraction consisted of mainly fragmented plasma membranes as judged by marker enzyme analysis and electron microscopy. The fraction produced H2O2 by reaction with NADPH only in the presence of Ca2+. The Ca2+ concentration for half-maximal activation (KCa) was about 0.1 microM and the Hill coefficient was 2. Sr2+ also activated the reaction whereas Mn2+, Zn2+, and Cd2+ inhibited it. The reaction was enhanced about twice by addition of ATP but not ADP, and inhibited by addition of hexokinase together with glucose to remove ATP. The Km value for NADPH was 35 microM and was less than 1/12 that for NADH. The NADPH oxidation rate was measured and the KCa and the Km were similar to those for the H2O2 production. The stoichiometry between the oxidation and the H2O2 formation was essentially 1. Superoxide dismutase (SOD) and KCN did not affect H2O2 production. The fraction catalyzed NADPH-cytochrome c reduction but the activity was SOD-insensitive. These results suggest that H2O2 was not generated through superoxide anion formation. NADPH-dichloroindophenol (DCIP) reductase activity was also observed and DCIP inhibited the production of H2O2. The cytochrome c and DCIP reductase activities were not influenced by Ca2+ or ATP. A unique electron transport system regulated by Ca2+ and ATP exists in the thyroid plasma membrane that produces H2O2. The concentrations of Ca2+ and ATP in thyroid cells may regulate hormone synthesis through activation of the production of H2O2, a substrate for peroxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号