首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 563 毫秒
1.
Previous studies have shown that newly encoded memories are more resistant to retroactive interference when participants are allowed to sleep after learning the original material, suggesting a sleep-related strengthening of memories. In the present study, we investigated delayed, long-term effects of sleep vs. sleep deprivation (SD) on the first post-training night on memory consolidation and resistance to interference. On day 1, participants learned a list of unrelated word pairs (AB), either in the morning or in the evening, then spent the post-training night in a sleep or sleep deprivation condition, in a within-subject paradigm. On day 4, at the same time of day, they learned a novel list of word pairs (AC) in which 50% of the word pairs stemmed with the same word than in the AB list, resulting in retroactive interference. Participants had then to recall items from the AB list upon presentation of the “A” stem. Recall was marginally improved in the evening, as compared to the morning learning group. Most importantly, retroactive interference effects were found in the sleep evening group only, contrary to the hypothesis that sleep exerts a protective role against intrusion by novel but similar learning. We tentatively suggest that these results can be explained in the framework of the memory reconsolidation theory, stating that exposure to similar information sets back consolidated items in a labile form again sensitive to retroactive interference. In this context, sleep might not protect against interference but would promote an update of existing episodic memories while preventing saturation of the memory network due to the accumulation of dual traces.  相似文献   

2.
3.
Clark's nutcrackers, Nucifraga columbiana, accurately v recover thousands of caches per year in the field. Previous experiments have confirmed that these birds possess excellent, long-lasting spatial-memory capabilities. We tested whether resistance to interference is one of the features of nutcracker spatial memory. Experiment 1 tested retroactive interference. Nutcrackers showed no decrease in accuracy overall but performed relatively poorly in their final recovery session. Interference is unlikely to have caused these sites to be poorly remembered because they had fewer neighbouring cache sites than better-remembered sites. Experiment 2 tested for proactive interference. Interference would have caused the experimental birds to be less accurate than control birds. Instead then were slightly more accurate. In experiment 3, nutcrackers were allowed to repeatedly view their cache sites from a cage between caching and recovery. Nutcrackers were less accurate when recovering from cache sites they had viewed. This effect may be due to changes in motivation. Order of caching had no effect on accuracy but nutcrackers were more accurate when recovering caches from central than from peripheral areas of experimental rooms. In summary, these experiments provide further evidence of the remarkable spatial-memory abilities of Clark's nutcrackers and demonstrate that these birds are highly resistant to interference effects on spatial memory. Comparative tests will be needed to test if specialized food storers are exceptionally resistant to interference in spatial memory.  相似文献   

4.
Acquisition of new learning is challenged by the phenomenon of proactive interference (PI), which occurs when previous learning disrupts later learning. Whereas human neuroimaging studies have focused on the cortical contributions to interference resolution, animal studies demonstrate that efficient resolution of PI depends on cholinergic modulation from basal forebrain (BF). Whether the BF promotes PI resolution in humans is unknown. Here, we adapted a PI paradigm from animal studies for use in a functional MRI experiment. During PI resolution, neurologically intact subjects recruited a BF network that included afferent anterior and posterior cortical sites associated with efficient memory acquisition and perceptual processing. Despite normal performance, nonamnesic patients with alcoholism, which is known to disrupt BF function, did not activate a BF network but instead invoked anterior cortical sites traditionally associated with executive function. These results provide evidence for parallel neural systems, each with the potential to resolve interference in the face of competing information.  相似文献   

5.
In recent years, 'stimulus competition' in the study of acquired behavior has referred exclusively to (a) associative competition between cues trained in compound (e.g. overshadowing and blocking). Rarely cited are older experiments cast in the verbal learning tradition, now complemented with data from humans and rats in Pavlovian preparations, that demonstrate (b) competition between cues separately trained with a common outcome (i.e. proactive and retroactive interference). Similarly neglected are numerous examples of (c) competition between outcomes separately trained with a common cue within the verbal learning literature (also proactive and retroactive interference) as well as within the Pavlovian literature (i.e. counterconditioning). Recent data demonstrate (d) competition between outcomes trained in compound, thereby completing the four cells of a 2x2 matrix (competing stimuli trained together vs. trained apart and the competing stimuli being cues or outcomes) which highlights the ubiquitous nature of associative stimulus interference/competition. Most contemporary theories of acquired behavior can account for the phenomena in one or at most two cells of this matrix. Whether a common mechanism underlies the phenomena in all four cells of the matrix is currently unclear, but until such time as data preclude a common mechanism, parsimony encourages efforts to develop a model that encompasses all four cells. Here we offer a tentative model that addresses all four cells, albeit with two processes.  相似文献   

6.
An experiment explored the effects of context change (renewal) and presentation of the outcome (reinstatement) upon retroactive interference in causal learning. An interference task was used where a sequential relationship between the name of a food and two different outcomes was established (A+|A*). Renewal and reinstatement effects appeared as partial attenuation of retroactive interference. The combination of both treatments produced complete recovery of first-learned information (A+). This complete reversal on the estimations of participants suggests that renewal and reinstatement effects within this paradigm imply partial recovery of the first-learned information, rather than response at a chance level emitted by confused participants. On the other hand, additivity between reinstatement and renewal suggests that reinstatement may be due to the combined effect of different underlying processes.  相似文献   

7.
Several studies, using different techniques, have established that women typically outperform men in naming odors. The mechanism for this effect was explored here in two experiments. In experiment 1, men and women learned randomly assigned Swahili names for a set of seven unfamiliar odors. Following multiple acquisition trials, participants were retested 1 week later. Although learning rates were identical during acquisition, after the 1 week interval, females were able to name more of the odors than men. Experiment 2 used a similar design but also included a retroactive interference task following the 1 week retention interval test. Although the week-long interval had the same effect as in experiment 1, interference had no effect on male or female performance. These results suggest that under conditions where experience is equated, female naming advantage may result from better consolidation of the learned material.  相似文献   

8.
Olfactory interference during inhibitory backward pairing in honey bees   总被引:1,自引:0,他引:1  
Dacher M  Smith BH 《PloS one》2008,3(10):e3513

Background

Restrained worker honey bees are a valuable model for studying the behavioral and neural bases of olfactory plasticity. The proboscis extension response (PER; the proboscis is the mouthpart of honey bees) is released in response to sucrose stimulation. If sucrose stimulation is preceded one or a few times by an odor (forward pairing), the bee will form a memory for this association, and subsequent presentations of the odor alone are sufficient to elicit the PER. However, backward pairing between the two stimuli (sucrose, then odor) has not been studied to any great extent in bees, although the vertebrate literature indicates that it elicits a form of inhibitory plasticity.

Methodology/Principal Findings

If hungry bees are fed with sucrose, they will release a long lasting PER; however, this PER can be interrupted if an odor is presented 15 seconds (but not 7 or 30 seconds) after the sucrose (backward pairing). We refer to this previously unreported process as olfactory interference. Bees receiving this 15 second backward pairing show reduced performance after a subsequent single forward pairing (excitatory conditioning) trial. Analysis of the results supported a relationship between olfactory interference and a form of backward pairing-induced inhibitory learning/memory. Injecting the drug cimetidine into the deutocerebrum impaired olfactory interference.

Conclusions/Significance

Olfactory interference depends on the associative link between odor and PER, rather than between odor and sucrose. Furthermore, pairing an odor with sucrose can lead either to association of this odor to PER or to the inhibition of PER by this odor. Olfactory interference may provide insight into processes that gate how excitatory and inhibitory memories for odor-PER associations are formed.  相似文献   

9.
Gradient descent learning procedures are most often used in neural network modeling. When these algorithms (e.g., backpropagation) are applied to sequential learning tasks a major drawback, termed catastrophic forgetting (or catastrophic interference), generally arises: when a network having already learned a first set of items is next trained on a second set of items, the newly learned information may completely destroy the information previously learned. To avoid this implausible failure, we propose a two-network architecture in which new items are learned by a first network concurrently with internal pseudo-items originating from a second network. As it is demonstrated that these pseudo-items reflect the structure of items previously learned by the first network, the model thus implements a refreshing mechanism using the old information. The crucial point is that this refreshing mechanism is based on reverberating neural networks which need only random stimulations to operate. The model thus provides a means to dramatically reduce retroactive interference while conserving the essentially distributed nature of information and proposes an original but plausible means to ‘copy and paste’ a distributed memory from one place in the brain to another.  相似文献   

10.
Experiments investigated a Pavlovian conditioning situation where the presence and absence of the stimulus are reversed temporally with respect to the presentation of a reward. Instead of a conditioned stimulus (e.g. odor) signaling the presence of a reward, the stimulus (e.g. odor) is present in the environment except just prior to the presence of the reward. Thus, the absence of the stimulus, or offset of the stimulus (e.g. absence of odor), serves as a conditioned stimulus and is the reward cue. Honey bees (Apis mellifera) were used as a model invertebrate system, and the proboscis‐conditioning paradigm was used as the test procedure. Using both simple Pavlovian conditioning and discrimination‐learning protocols, animals learned to associate the onset of an odor as conditioned stimuli when paired with a sucrose reward. They could also learn to associate the onset of a puff of air with a sucrose reward. However, bees could not associate the offset of an order stimulus with the presentation of a sucrose reward in either a simple conditioning or a discrimination‐learning situation. These results support the model that a very different cognitive architecture is used by invertebrates to deal with certain environmental situations, including signaled avoidance.  相似文献   

11.
BACKGROUND: Associative memory formation requires that animals choose predictors for experiences they need to remember. When an artificial odor is paired with an aversive experience, that odor becomes the predictor. In more natural settings, however, animals can have multiple salient experiences that need to be remembered and prioritized. The mechanisms by which animals deal with multiple experiences are incompletely understood. RESULTS: Here we show that Drosophila males can be trained to discriminate between different types of female pheromones; they suppress courtship specifically to the type of female that was associated with unsuccessful courtship. Such "trainer-specific" learning is mediated by hydrocarbon olfactory cues and modifies the male's processing of those cues. Animals that are unable to use olfactory cues can still learn by using other sensory modalities, but memory in this case is not specific to the trainer female's maturation state. Concurrent and serial presentation of different pheromones demonstrates that the ability to consolidate memory of pheromonal cues can be modified by the temporal order in which they appear. CONCLUSION: Suppression of memory by new learning demonstrates that the dynamics of memory consolidation are subject to plasticity in Drosophila. This type of metaplasticity is essential for navigation of experience-rich natural environments.  相似文献   

12.
Rat pups during a critical postnatal period (≤ 10 days) readily form a preference for an odor that is associated with stimuli mimicking maternal care. Such a preference memory can last from hours, to days, even life-long, depending on training parameters. Early odor preference learning provides us with a model in which the critical changes for a natural form of learning occur in the olfactory circuitry. An additional feature that makes it a powerful tool for the analysis of memory processes is that early odor preference learning can be lateralized via single naris occlusion within the critical period. This is due to the lack of mature anterior commissural connections of the olfactory hemispheres at this early age. This work outlines behavioral protocols for lateralized odor learning using nose plugs. Acute, reversible naris occlusion minimizes tissue and neuronal damages associated with long-term occlusion and more aggressive methods such as cauterization. The lateralized odor learning model permits within-animal comparison, therefore greatly reducing variance compared to between-animal designs. This method has been used successfully to probe the circuit changes in the olfactory system produced by training. Future directions include exploring molecular underpinnings of odor memory using this lateralized learning model; and correlating physiological change with memory strength and durations.  相似文献   

13.
Wind tunnel experiments were conducted to determine roles of odor learning in food foraging of the larval parasitoid,Microplitis croceipes (Hymenoptera: Braconidae). Females that had neither fed on sucrose water nor experienced any odor and females that had experienced an odor without feeding failed to respond to any odors in a wind tunnel. Most of the females that had fed without an odor also did not respond to odors. However, most of the females that had experienced an odor during feeding on sucrose water flew to the odor. These results indicate that when females experience an odor during feeding, they learn to associate the odor with food and subsequently respond to the odor. As age of females increased, their response to an experienced odor increased, peaked 2 to 5 days after emergence, and then decreased. With an increasing number of odor experiences while feeding, accuracy of females choosing the experienced odor increased. Females that experienced an odor while feeding three to five times chose the experienced odor 90% of the time. When females experienced an odor while feeding five times, the memory of food associated odor lasted at least 2 days. When they experienced food with two odors successively, they could memorize both odors, and multiple experiences did not cause memory interference. Even when females had learned a food-associated odor, their response to the learned odor ceased after several visits on patches containing the odor but no food. Such negative experience may cause switching of food searching to new odors by females.  相似文献   

14.
Yu D  Ponomarev A  Davis RL 《Neuron》2004,42(3):437-449
In the olfactory bulb of vertebrates or the homologous antennal lobe of insects, odor quality is represented by stereotyped patterns of neuronal activity that are reproducible within and between individuals. Using optical imaging to monitor synaptic activity in the Drosophila antennal lobe, we show here that classical conditioning rapidly alters the neural code representing the learned odor by recruiting new synapses into that code. Pairing of an odor-conditioned stimulus with an electric shock-unconditioned stimulus causes new projection neuron synapses to respond to the odor along with those normally activated prior to conditioning. Different odors recruit different groups of projection neurons into the spatial code. The change in odor representation after conditioning appears to be intrinsic to projection neurons. The rapid recruitment by conditioning of new synapses into the representation of sensory information may be a general mechanism underlying many forms of short-term memory.  相似文献   

15.
Diiodotyrosine induced receptor 'memory' at a concentration as low as 10(-18) M. Repeated exposure enhanced cellular responsiveness. Treatment with diiodotyrosine for 1 h, 4 times, induced receptor 'memory' more efficiently than a single uninterrupted treatment for 4 h. Immediately after induction, the receptor 'memory' is subject to retroactive interference by foreign hormonal stimuli, and can be extinguished completely by combined hormone treatment. Thus, the phenomenon of retroactive interference also takes effect at the unicellular level. The experimental observations indicate that receptor 'memory', induced in Tetrahymena by hormonal imprinting, has certain common features with the neuronal memory of higher organisms.  相似文献   

16.
Hartshorne JK 《PloS one》2008,3(7):e2716

Background

Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated.

Methodology/Principal Findings

Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%.

Conclusions/Significance

This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals.  相似文献   

17.
In addition to human error and variation in laboratory conditions, there are numerous factors that can complicate comparisons among studies. Furthermore, differences in how experimental methods are executed can make it difficult to distinguish between effects of focal versus extraneous variables. Insect neural function is commonly evaluated using Pavlovian conditioning techniques; learning and memory in many species can be assessed using the proboscis extension reflex (PER). However, there are significant inconsistencies in methods used to immobilize insects prior to PER tests. We compared responses of honeybees immobilized in a refrigerator, on ice, and in a freezer, and evaluated influence of recovery interval before testing. Ice-chilling weakly decreased learning (response to an originally neutral odor) more so than refrigeration or freezing, but not 24-h recall of odor. We found no significant differences in responsiveness to sucrose relative to cooling method, but responsiveness was significantly lower among honeybees left to recover for only 0.75 h versus 1.5 or 3 h. Finally, we observed increased responsiveness to sucrose and geraniol between June and August. Our results suggest that inconsistencies in cold immobilization methods could confound interpretation and comparison of results from a large body of work on honeybee learning and memory.  相似文献   

18.
Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a key molecule in many systems of learning and memory in vertebrates, but roles of CaMKII in invertebrates have not been characterized in detail. We have suggested that serial activation of NO/cGMP signaling, cyclic nucleotide-gated channel, Ca2+/CaM and cAMP signaling participates in long-term memory (LTM) formation in olfactory conditioning in crickets, and here we show participation of CaMKII in LTM formation and propose its site of action in the biochemical cascades. Crickets subjected to 3-trial conditioning to associate an odor with reward exhibited memory that lasts for a few days, which is characterized as protein synthesis-dependent LTM. In contrast, animals subjected to 1-trial conditioning exhibited memory that lasts for only several hours (mid-term memory, MTM). Injection of a CaMKII inhibitor prior to 3-trial conditioning impaired 1-day memory retention but not 1-hour memory retention, suggesting that CaMKII participates in LTM formation but not in MTM formation. Animals injected with a cGMP analogue, calcium ionophore or cAMP analogue prior to 1-trial conditioning exhibited 1-day retention, and co-injection of a CaMKII inhibitor impaired induction of LTM by the cGMP analogue or that by the calcium ionophore but not that by the cAMP analogue, suggesting that CaMKII is downstream of cGMP production and Ca2+ influx and upstream of cAMP production in biochemical cascades for LTM formation. Animals injected with an adenylyl cyclase (AC) activator prior to 1-trial conditioning exhibited 1-day retention. Interestingly, a CaMKII inhibitor impaired LTM induction by the AC activator, although AC is expected to be a downstream target of CaMKII. The results suggest that CaMKII interacts with AC to facilitate cAMP production for LTM formation. We propose that CaMKII serves as a key molecule for interplay between Ca2+ signaling and cAMP signaling for LTM formation, a new role of CaMKII in learning and memory.  相似文献   

19.
A significant interaction between N-methyl-D-aspartate (NMDA) and muscarinic receptors has been suggested in the modulation of learning and memory processes. The present study further investigates this issue and explores whether d-cycloserine (DCS), a partial agonist at the glycine binding site of the NMDA receptors that has been regarded as a cognitive enhancer, would reverse scopolamine (SCOP)-induced amnesia in two olfactory learning tasks when administered into the prelimbic cortex (PLC). Thus, in experiment 1, DCS (10 µg/site) was infused prior to acquisition of odor discrimination (ODT) and social transmission of food preference (STFP), which have been previously characterized as paradigms sensitive to PLC muscarinic blockade. Immediately after learning such tasks, SCOP was injected (20 µg/site) and the effects of both drugs (alone and combined) were tested in 24-h retention tests. To assess whether DCS effects may depend on the difficulty of the task, in the STFP the rats expressed their food preference either in a standard two-choice test (experiment 1) or a more challenging three-choice test (experiment 2). The results showed that bilateral intra-PLC infusions of SCOP markedly disrupted the ODT and STFP memory tests. Additionally, infusions of DCS alone into the PLC enhanced ODT but not STFP retention. However, the DCS treatment reversed SCOP-induced memory deficits in both tasks, and this effect seemed more apparent in ODT and 3-choice STFP. Such results support the interaction between the glutamatergic and the cholinergic systems in the PLC in such a way that positive modulation of the NMDA receptor/channel, through activation of the glycine binding site, may compensate dysfunction of muscarinic neurotransmission involved in stimulus-reward and relational learning tasks.  相似文献   

20.
The basolateral amygdala (BLA) and the insular cortex (IC) represent two major areas for odor-taste associations, i.e. flavor integration. This learning may require the development of convergent odor and taste neuronal activation allowing the memory representation of such association. Yet identification of neurons that respond to such coincident input and the effect of flavor experience on odor-taste convergence remain unclear. In the present study we used the compartmental analysis of temporal activity using fluorescence in situ hybridization for Arc (catFISH) to visualize odor-taste convergence onto single neurons in the BLA and in the IC to assess the number of cells that were co-activated by both stimuli after odor-taste association. We used a sucrose conditioned odor preference as a flavor experience in rats, in which 9 odor-sucrose pairings induce a reliable odor-taste association. The results show that flavor experience induced a four-fold increase in the percentage of cells activated by both taste and odor stimulations in the BLA, but not in the IC. Because conditioned odor preference did not modify the number of cells responding selectively to one stimulus, this greater odor-taste convergence into individual BLA neurons suggests the recruitment of a neuronal population that can be activated by both odor and taste only after the association. We conclude that the development of convergent activation in amygdala neurons after odor-taste associative learning may provide a cellular basis of flavor memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号