首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Angiogenesis defects and mesenchymal apoptosis in mice lacking SMAD5   总被引:32,自引:0,他引:32  
The transforming growth factor-beta (TGF-beta) signals are mediated by a family of at least nine SMAD proteins, of which SMAD5 is thought to relay signals of the bone morphogenetic protein (BMP) pathway. To investigate the role of SMAD5 during vertebrate development and tumorigenesis, we disrupted the Smad5 gene by homologous recombination. We showed that Smad5 was expressed predominantly in mesenchyme and somites during embryogenesis, and in many tissues of the adult. Mice homozygous for the mutation died between days 10.5 and 11.5 of gestation due to defects in angiogenesis. The mutant yolk sacs lacked normal vasculature and had irregularly distributed blood cells, although they contained hematopoietic precursors capable of erythroid differentiation. Smad5 mutant embryos had enlarged blood vessels surrounded by decreased numbers of vascular smooth muscle cells, suffered massive apoptosis of mesenchymal cells, and were unable to direct angiogenesis in vitro. These data suggest that SMAD5 may regulate endothelium-mesenchyme interactions during angiogenesis and that it is essential for mesenchymal survival.  相似文献   

2.
The TGF-beta signaling pathways are implicated in cancer. Cysteine cathepsins can contribute to the carcinogenic potential of tumor cells. The aim of this study was to investigate the regulation of cysteine cathepsin expression by TGF-beta1 and the functional implications in tumor cells. We found an upregulation of cathepsin B (CathB, 2- to 5-fold) in different myeloid tumor cells (THP-1, MonoMac-1, MonoMac-6) after incubation with TGF-beta1. No upregulation was found in monocytes, and there was suppression of CathB expression in epithelial tumor cells (A549). Increased cathepsin B activity led to enhanced carcinogenic potential, which was reflected by increased migration and invasion of the cells and resistance to inhibitor-induced apoptosis. Analysis of the TGF-beta signaling pathways showed no alterations in TGF-beta/BMP receptor expression or SMAD2/3 phosphorylation, and no influence of MAP kinase pathways. However, a reduction in SMAD1 expression was detected. The lack of BMP action on cysteine cathepsin expression in myeloid tumor cells, but not in epithelial tumor cells, suggests a defect in the Smad1/Smad5 pathway. We located a related TGF-beta1-responsive element within the first intron of the CathB gene. In conclusion, alterations in the TGF-beta1 signaling pathway lead to upregulation of CathB, which contributes to the carcinogenic potential of tumor cells.  相似文献   

3.
4.
5.
6.
7.
Bone morphogenetic proteins (BMPs) control multiple cellular processes in embryos and adult tissues. BMPs signal through the activation of type I BMP receptor kinases, which then phosphorylate SMADs 1/5/8. In the canonical pathway, this triggers the association of these SMADs with SMAD4 and their translocation to the nucleus, where they regulate gene expression. BMPs can also signal independently of SMAD4, but this pathway is poorly understood. Here, we report the discovery and characterization of PAWS1/FAM83G as a novel SMAD1 interactor. PAWS1 forms a complex with SMAD1 in a SMAD4-independent manner, and BMP signalling induces the phosphorylation of PAWS1 through BMPR1A. The phosphorylation of PAWS1 in response to BMP is essential for activation of the SMAD4-independent BMP target genes NEDD9 and ASNS. Our findings identify PAWS1 as the first non-SMAD substrate for type I BMP receptor kinases and as a novel player in the BMP pathway. We also demonstrate that PAWS1 regulates the expression of several non-BMP target genes, suggesting roles for PAWS1 beyond the BMP pathway.  相似文献   

8.
9.
10.
11.
12.
We uncovered a new regulation of thyrocyte function by bone morphogenetic protein (BMP) under the influence of thyrotropin (TSH) using primary culture of porcine thyrocytes. The BMP type I receptors, ALK-2 (ActRIA), -3 (BMPRIA), and -6 (BMPRIB), were expressed in porcine thyrocytes, while ALK-6 was not detected in human thyroid. Treatment with BMP-2, -4, -6, -7, and TGF-beta1 exhibited a dose-dependent suppression of DNA synthesis by porcine thyrocytes. BMP-2, -4, -6, -7, and TGF-beta1 suppressed TSH receptor mRNA expression on thyrocytes, which was consistent with their suppressive effect on TSH-induced cAMP synthesis and TSH-induced insulin-like growth factor-1 expression. Activin exhibited minimal suppression of thyrocyte DNA synthesis and did not exhibit suppressive effects on TSH receptor mRNA expression. Phosphorylated Smad1/5/8 was detected in the lysates of porcine thyrocytes treated with BMP-2, -4, -6, and -7. However, in the presence of TSH, BMP-6 and -7 failed to activate Smad1/5/8 phosphorylation and 3TP-reporter activity, whereas BMP-2 and -4 maintained clear activation of the BMP signaling regardless of the presence of TSH. This diverged regulation of thyroid BMP system by TSH is most likely due to the reduction of ALK-6 expression caused by TSH. Thus, the thyroid BMP system is functionally linked to TSH actions through modulating TSH receptor expression and TSH, in turn, selectively inhibits BMP signaling. Given that BMP system is present in human thyroid and the expression pattern of ALK-2 and BMPRII is different between follicular adenomas and normal thyroid tissues, the endogenous BMP system may be involved in regulating thyrocyte growth and TSH sensitivity of human thyroid adenomas.  相似文献   

13.
14.
15.
16.
Genome-wide association studies (GWAS) of colorectal cancer (CRC) have led to the identification of a number of common variants associated with modest risk. Several risk variants map within the vicinity of TGFβ/BMP signaling pathway genes, including rs4939827 within an intron of SMAD7 at 18q21.1. A previous study implicated a novel SNP (novel 1 or rs58920878) as a functional variant within an enhancer element in SMAD7 intron 4. In this study, we show that four SNPs including novel 1 (rs6507874, rs6507875, rs8085824, and rs58920878) in linkage disequilibrium (LD) with the index SNP rs4939827 demonstrate allele-specific enhancer effects in a large, multi-component enhancer of SMAD7. All four SNPs demonstrate allele-specific protein binding to nuclear extracts of CRC cell lines. Furthermore, some of the risk-associated alleles correlate with increased expression of SMAD7 in normal colon tissues. Finally, we show that the enhancer is responsive to BMP4 stimulation. Taken together, we propose that the associated CRC risk at 18q21.1 is due to four functional variants that regulate SMAD7 expression and potentially perturb a BMP negative feedback loop in TGFβ/BMP signaling pathways.  相似文献   

17.
Osteoblasts are mechanosensitive cells, which respond to biomechanical stimuli to regulate the bone structure through anabolic and catabolic gene regulation. To examine the effects of mechanical forces on the osteogenic responses through the SMAD signaling in osteoblasts, the cells were cultured in well-characterized mechanoresponsive 3-D scaffolds and exposed to 10% dynamic compressive strain (Cmp) at 1 Hz. Subsequently, SMAD phosphorylation and osteogenic gene induction was examined. Osteoblasts cultured in 3-D scaffolds exhibited increased constitutive SMAD 1/5/8 phosphorylation, as compared to monolayers cultures. This SMAD 1/5/8 phosphorylation was further upregulated after 10, 30 and 60 min in response to Cmp, exhibiting a peak activation at 30 min. No significant changes in SMAD2 phosphorylation were observed, suggesting signals generated by Cmp may not activate the Transforming Growth Factor-β signaling cascade. Subsequently, biomechanical stimulation-induced SMAD 1/5/8 phosphorylation upregulated the expression of osteogenic genes such as Osteoprotegrin, Msx2 and Runx2. Dorsomorphin, a selective inhibitor of the bone morphogenetic protein (BMP) receptor type 1 (BMPR1), blocked Cmp-induced SMAD 1/5/8 phosphorylation, as well as Osteoprotegrin, Msx2 and Runx2 gene expression. Collectively, the present findings demonstrate that biomechanical stimulation of osteoblasts activates SMAD 1/5/8 in the BMP signaling pathway through BMPR1 and may enhance osteogenesis by upregulating SMAD-dependent osteogenic genes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号