首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The complete amino acid sequence of acetyl-CoA carboxylase from chicken liver has been deduced by cloning and sequence analysis of DNA complementary to its messenger RNA. The results were confirmed by Edman degradation of peptide fragments obtained by digestion of the enzyme polypeptide with Achromobacter proteinase I or staphylococcal serine proteinase. Chicken liver acetyl-CoA carboxylase is predicted to be composed of 2,324 amino acid residues, having a calculated molecular weight of 262,706. The biotin carboxyl carrier protein domain is located in the middle region of the enzyme polypeptide. The amino-terminal portion of the acetyl-CoA carboxylase has been found to exhibit a homologous primary structure to that of carbamyl phosphate synthetase. Localization of possible functional domains including biotin carboxylase subsite in the acetyl-CoA carboxylase polypeptide is discussed.  相似文献   

2.
Using stabilizing conditions the acetyl-CoA carboxylase (EC 6.4.1.2) of Pseudomonas citronellolis has been isolated as a complex containing four different polypeptide chains with molecular weights of 53 000, 36 000, 33 000 and 25 000. Evidence is presented to suggest that these polypeptide chains correspond to distinct biotin carboxylase, transcarboxylase and biotin carboxyl carrier protein subunits in analogy with similar subunits of Escherichia coli acetyl-CoA carboxylase, an unstable complex in vitro.  相似文献   

3.
We report the molecular cloning and DNA sequence of the gene encoding the biotin carboxylase subunit of Escherichia coli acetyl-CoA carboxylase. The biotin carboxylase gene encodes a protein of 449 residues that is strikingly similar to amino-terminal segments of two biotin-dependent carboxylase proteins, yeast pyruvate carboxylase and the alpha-subunit of rat propionyl-CoA carboxylase. The deduced biotin carboxylase sequence contains a consensus ATP binding site and a cysteine-containing sequence preserved in all sequenced bicarbonate-dependent biotin carboxylases that may play a key catalytic role. The gene encoding the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase is located upstream of the biotin carboxylase gene and the two genes are cotranscribed. As previously reported by others, the BCCP sequence encoded a protein of 16,688 molecular mass. However, this value is much smaller than that (22,500 daltons) obtained by analysis of the protein. Amino-terminal amino acid sequencing of the purified BCCP protein confirmed the deduced amino acid sequence indicating that BCCP is a protein of atypical physical properties. Northern and primer extension analyses demonstrate that BCCP and biotin carboxylase are transcribed as a single mRNA species that contains an unusually long untranslated leader preceding the BCCP gene. We have also determined the mutational alteration in a previously isolated acetyl-CoA carboxylase (fabE) mutant and show the lesion maps within the BCCP gene and results in a BCCP species defective in acceptance of biotin. Translational fusions of the carboxyl-terminal 110 or 84 (but not 76) amino acids of BCCP to beta-galactosidase resulted in biotinated beta-galactosidase molecules and production of one such fusion was shown to result in derepression of the biotin biosynthetic operon.  相似文献   

4.
T Takai  K Wada  T Tanabe 《FEBS letters》1987,212(1):98-102
Limited proteolysis of chicken liver acetyl-CoA carboxylase by staphylococcal serine proteinase yielded a fragment of 31 kDa which contained the biotinyl active site. This polypeptide was purified by preparative polyacrylamide gel electrophoresis and characterized. The complete amino acid sequence of this polypeptide has been deduced from the nucleotide sequence of cloned DNA complementary to the chicken liver acetyl-CoA carboxylase mRNA. A highly conserved sequence of Met-Lys-Met was found in the biotin-binding site. Appreciable homology was observed among the sequences in close vicinity of the biotin sites of chicken liver acetyl-CoA carboxylase and other biotin-dependent carboxylases including biotin carboxyl carrier protein of Escherichia coli acetyl-CoA carboxylase.  相似文献   

5.
The biotin-protein populations in several bacterial strains were analyzed by solubilization of [3H]biotin-labeled cells with sodium dodecylsulfate followed by electrophoresis on polyacrylamide gels containing the detergent. A variety of patterns of biotin-labeled polypeptide chains was seen, ranging from a single biotin-protein in Escherichia coli, corresponding to the biotin carboxyl carrier protein component of acetyl-CoA carboxylase, to multiple species in Enterobacter aerogenes, Pseudomonas citronellolis, Bacillus cereus, Propionibacterium shermanii, Lactobacillus plantarum, and Mycobacterium phlei, which probably represent subunits of multiple biotin-dependent enzymes present in these organisms. In the case of Pseudomonas citronellolis two major biotin-containing polypeptides with approximate molecular weights of 65 000 and 25 000 were shown to correspond to the biotin carboxyl carrier components of pyruvate carboxylase and acetyl-CoA carboxylase, respectively. Thus in the case of Pseudomonas citronellolis two different biotin-dependent enzymes in the same cell do not share common biotin carboxyl carrier subunits.  相似文献   

6.
Acetyl-CoA carboxylase catalyzes the first committed step in the synthesis of long-chain fatty acids. The Escherichia coli form of the enzyme consists of a biotin carboxylase protein, a biotin carboxyl carrier protein, and a carboxyltransferase protein. In this report, the synthesis of a bisubstrate analog inhibitor of carboxyltransferase is described. The inhibitor was synthesized by covalently linking biotin to coenzyme A via an acyl bridge between the sulfur of coenzyme A and the 1'-N of biotin. The steady-state kinetics of carboxyltransferase are characterized in the reverse direction, in which malonyl-CoA reacts with biocytin to form acetyl-CoA and carboxybiocytin. The inhibitor exhibited competitive inhibition versus malonyl-CoA and noncompetitive inhibition versus biocytin, with a slope inhibition constant (K(is)) of 23 +/- 2 microM. The bisubstrate analog has an affinity for carboxyltransferase 350 times higher than biotin. This suggests the inhibitor will be useful in structural studies, as well as aid in the search for chemotherapeutic agents that target acetyl-CoA carboxylase.  相似文献   

7.
A biotin-containing hexapeptide Ac-Glu-Ala-Met-Bct-Met-Met (1) that represents the local biotin-containing site of Escherichia coli acetyl-CoA carboxylase has been prepared by the solid phase method. Peptide 1 is carboxylated by the biotin carboxylase subunit dimer of E. coli acetyl-CoA carboxylase with the following kinetic parameters; Km 12 mM, Vmax 2.8 microM X min-1. These compare with the parameters for biotin of Km 214 mM and Vmax 28 microM X min -1. Hence, the overall reactivity (Vmax/Km) of 1 is 1.8 times greater than that of free biotin. When all methionines in 1 are replaced by alanine, the resulting peptide (2) retains a similar binding ability but with a much decreased Vmax. It was also found that peptide 3, which carries an N epsilon-benzyloxycarbonyllysine in place of biocytin in 1, decreases the Km of biotin threefold.  相似文献   

8.
The role of biotin-dependent enzymes in the fatty liver and kidney syndrome of young chicks was studied. Under conditions of a marginal deficiency of dietary biotin, the level of biotin in the liver has differing effects on the activities of two biotin-dependent enzymes, pyruvate carboxylase and acetyl-CoA carboxylase. The activity of acetyl-CoA carboxylase is increased, but when the dietary deficiency of biotin produces biotin levels which are below 0-8 mug/g of liver, the activity of pyruvate carboxylase may be insufficient to completely metabolize pyruvate via gluconeogenesis. There is an increase in liver size and in the activities of enzymes involved in alternate pathways for the removal of pyruvate. Blood lactate accumulates and there is increased synthesis of fatty acids, and an accumulation of palmitoleic acid; these steps are accomplished by increased activities of at least the following enzymes: acetyl-CoA carboxylase, malate dehydrogenase (decarboxylating) (NADP+) and the desaturase enzyme. When the biotin level is below 0-35 mug/g of liver and the chick is subjected to a stress, physiological defence mechanisms of the chick may be inadequate to maintain homeostasis and they finally collapse, resulting in accumulation of triacylglycerol in the liver and blood; the chick is unable to maintain blood glucose levels and death occurs, often only a few hours after the imposition of the stress.  相似文献   

9.
The biotin carboxyl carrier protein (BCCP) is a subunit of acetyl-CoA carboxylase, a biotin-dependent enzyme that catalyzes the first committed step of fatty acid biosynthesis. In its functional cycle, this protein engages in heterologous protein-protein interactions with three distinct partners, depending on its state of post-translational modification. Apo-BCCP interacts specifically with the biotin holoenzyme synthetase, BirA, which results in the post-translational attachment of biotin to a single lysine residue on BCCP. Holo-BCCP then interacts with the biotin carboxylase subunit of acetyl-CoA carboxylase, which leads to the addition of the carboxylate group of bicarbonate to biotin. Finally, the carboxy-biotinylated form of BCCP interacts with transcarboxylase in the transfer of the carboxylate to acetyl-CoA to form malonyl-CoA. The determinants of protein-protein interaction specificity in this system are unknown. The NMR solution structure of the unbiotinylated form of an 87 residue C-terminal domain fragment (residue 70-156) of BCCP (holoBCCP87) and the crystal structure of the biotinylated form of a C-terminal fragment (residue 77-156) of BCCP from Escherichia coli acetyl-CoA carboxylase have previously been determined. Comparative analysis of these structures provided evidence for small, localized conformational changes in the biotin-binding region upon biotinylation of the protein. These structural changes may be important for regulating specific protein-protein interactions. Since the dynamic properties of proteins are correlated with local structural environments, we have determined the relaxation parameters of the backbone 15N nuclear spins of holoBCCP87, and compared these with the data obtained for the apo protein. The results indicate that upon biotinylation, the inherent mobility of the biotin-binding region and the protruding thumb, with which the biotin group interacts in the holo protein, are significantly reduced.  相似文献   

10.
BODIPY-labeled Soraphen A derivative 4 was synthesized and characterized as an acetyl-CoA carboxylase (ACC) binder. Biophysical measurements indicate that the molecule binds in the biotin carboxylase domain where Soraphen A has been shown to bind. The fluorescent label of the BODIPY can be used to biophysically identify a compound that binds to the Soraphen A site of the biotin carboxylase domain versus the carboxytransferase domain of ACC.  相似文献   

11.
Acetyl-CoA carboxylase is thought to be absent in the heart since the latter is highly catabolic and nonlipogenic. It has been suggested that the high level of malonyl-CoA that is found in the heart is derived from mitochondrial propionyl-CoA carboxylase, which also uses acetyl-CoA. In the present study, acetyl-CoA carboxylase was identified and purified from homogenates of rat heart. The isolated enzyme had little activity in the absence of citrate (specific activity, less than 0.1 units/mg); however, citrate stimulated its activity (specific activity, 1.8 units/mg in the presence of 10 mM citrate). Avidin inhibited greater than 95% of activity, and addition of biotin reversed this inhibition. Further, malonyl-CoA (1 mM) and palmitoyl-CoA (100 microM) inhibited greater than 90% of carboxylase activity. Similar to acetyl-CoA carboxylase of lipogenic tissues, the heart enzyme could be activated greater than 6-fold by preincubation with liver (acetyl-CoA carboxylase)-phosphatase 2. The activation was accompanied by a decrease in the K0.5 for citrate to 0.68 mM. These observations suggest that the activity in preparations from heart is due to authentic acetyl-CoA carboxylase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the preparation from heart showed the presence of one major protein band (Mr 280,000) and a minor band (Mr 265,000) while that from liver gave a major protein band (Mr 265,000). A Western blot probed with avidin-peroxidase suggested that both the 280- and 265-kDa species contained biotin. Antibodies to liver acetyl-CoA carboxylase, which inhibited greater than 95% of liver carboxylase activity, inhibited only 35% of heart enzyme activity. In an immunoblot (using antibodies to liver enzyme) the 265-kDa species, and not the major 280-kDa species, in the heart preparation was specifically stained. These observations suggest the presence of two isoenzymes of acetyl-CoA carboxylase that are immunologically distinct, the 265-kDa species being predominant in the liver and the 280-kDa species being predominant in the heart.  相似文献   

12.
Acyl coenzyme A carboxylase (acyl-CoA carboxylase) was purified from Acidianus brierleyi. The purified enzyme showed a unique subunit structure (three subunits with apparent molecular masses of 62, 59, and 20 kDa) and a molecular mass of approximately 540 kDa, indicating an alpha(4)beta(4)gamma(4) subunit structure. The optimum temperature for the enzyme was 60 to 70 degrees C, and the optimum pH was around 6.4 to 6.9. Interestingly, the purified enzyme also had propionyl-CoA carboxylase activity. The apparent K(m) for acetyl-CoA was 0.17 +/- 0.03 mM, with a V(max) of 43.3 +/- 2.8 U mg(-1), and the K(m) for propionyl-CoA was 0.10 +/- 0.008 mM, with a V(max) of 40.8 +/- 1.0 U mg(-1). This result showed that A. brierleyi acyl-CoA carboxylase is a bifunctional enzyme in the modified 3-hydroxypropionate cycle. Both enzymatic activities were inhibited by malonyl-CoA, methymalonyl-CoA, succinyl-CoA, or CoA but not by palmitoyl-CoA. The gene encoding acyl-CoA carboxylase was cloned and characterized. Homology searches of the deduced amino acid sequences of the 62-, 59-, and 20-kDa subunits indicated the presence of functional domains for carboxyltransferase, biotin carboxylase, and biotin carboxyl carrier protein, respectively. Amino acid sequence alignment of acetyl-CoA carboxylases revealed that archaeal acyl-CoA carboxylases are closer to those of Bacteria than to those of Eucarya. The substrate-binding motifs of the enzymes are highly conserved among the three domains. The ATP-binding residues were found in the biotin carboxylase subunit, whereas the conserved biotin-binding site was located on the biotin carboxyl carrier protein. The acyl-CoA-binding site and the carboxybiotin-binding site were found in the carboxyltransferase subunit.  相似文献   

13.
Acetyl-CoA carboxylase catalyzes the first committed step in the synthesis of long chain fatty acids. In this study, we observed that treatment of 3T3-L1 cells with biotin chloroacetylated at the 1' nitrogen reduced the enzymatic activity of cytosolic acetyl-CoA carboxylase and concomitantly inhibited the differentiation of 3T3-L1 cells in a dose-dependent manner. Treatment with chloroacetylated biotin blocked the induction of PPARgamma, STAT1, and STAT5A expression that normally occurs with adipogenesis. Moreover, addition of chloroacetylated biotin inhibited lipid accumulation, as judged by Oil Red O staining. Our results support recent studies that indicate that acetyl-CoA carboxylase may be a suitable target for an anti-obesity therapeutic.  相似文献   

14.
We have cloned a DNA fragment from a genomic library of Myxococcus xanthus using an oligonucleotide probe representing conserved regions of biotin carboxylase subunits of acetyl coenzyme A (acetyl-CoA) carboxylases. The fragment contained two open reading frames (ORF1 and ORF2), designated the accB and accA genes, capable of encoding a 538-amino-acid protein of 58.1 kDa and a 573-amino-acid protein of 61.5 kDa, respectively. The protein (AccA) encoded by the accA gene was strikingly similar to biotin carboxylase subunits of acetyl-CoA and propionyl-CoA carboxylases and of pyruvate carboxylase. The putative motifs for ATP binding, CO(2) fixation, and biotin binding were found in AccA. The accB gene was located upstream of the accA gene, and they formed a two-gene operon. The protein (AccB) encoded by the accB gene showed high degrees of sequence similarity with carboxyltransferase subunits of acetyl-CoA and propionyl-CoA carboxylases and of methylmalonyl-CoA decarboxylase. Carboxybiotin-binding and acyl-CoA-binding domains, which are conserved in several carboxyltransferase subunits of acyl-CoA carboxylases, were found in AccB. An accA disruption mutant showed a reduced growth rate and reduced acetyl-CoA carboxylase activity compared with the wild-type strain. Western blot analysis indicated that the product of the accA gene was a biotinylated protein that was expressed during the exponential growth phase. Based on these results, we propose that this M. xanthus acetyl-CoA carboxylase consists of two subunits, which are encoded by the accB and accA genes, and occupies a position between prokaryotic and eukaryotic acetyl-CoA carboxylases in terms of evolution.  相似文献   

15.
The subunit molecular weight of chicken liver acetyl-CoA carboxylase has been redetermined by immunoprecipitation and sodium dodecyl sulfate gel electrophoresis. In the presence of parotid trypsin inhibitor, the immunoprecipitate gave a single band corresponding to a molecular weight of 230,000, which was also found to contain bound biotin. From the biotin content of the protomer (1.0 prosthetic group per 480,000 daltons) it appears that it consists of two non identical subunits, both with molecular weights of approximately 230,000.Electron microscopy has been carried out on the active filamentous form of the enzyme and on paracrystals formed under high-salt conditions. These indicate that the filaments are readily distortable helical ribbons, with an approximate axial repeat of 1100 Å, containing eight protomers. The paracrystals are made up of a staggered lateral packing of filaments.  相似文献   

16.
The activity of the biotin-dependent enzyme pyruvate carboxylase from many organisms is highly regulated by the allosteric activator acetyl-CoA. A number of X-ray crystallographic structures of the native pyruvate carboxylase tetramer are now available for the enzyme from Rhizobium etli and Staphylococcus aureus. Although all of these structures show that intersubunit catalysis occurs, in the case of the R. etli enzyme, only two of the four subunits have the allosteric activator bound to them and are optimally configured for catalysis of the overall reaction. However, it is apparent that acetyl-CoA binding does not induce the observed asymmetrical tetramer conformation and it is likely that, under normal reaction conditions, all of the subunits have acetyl-CoA bound to them. Thus the activation of the enzyme by acetyl-CoA involves more subtle structural effects, one of which may be to facilitate the correct positioning of Arg353 and biotin in the biotin carboxylase domain active site, thereby promoting biotin carboxylation and, at the same time, preventing abortive decarboxylation of carboxybiotin. It is also apparent from the crystal structures that there are allosteric interactions induced by acetyl-CoA binding in the pair of subunits not optimally configured for catalysis of the overall reaction.  相似文献   

17.
Acetyl-coenzyme A carboxylase in maize leaves   总被引:6,自引:0,他引:6  
Purified chloroplasts from mesophyll and bundle sheath cells of maize leaves have been shown to be the location of acetyl-CoA carboxylase. In disrupted chloroplasts the enzyme was recovered in the stromal fraction, along with protein-bound biotin; acetyl-CoA carboxylase activity did not require a membrane component. Mg2+ and ATP are required for activity and sulfhydryl protecting agents enhance stability of the enzyme. Acetyl-CoA carboxylase activity was independent of leaf development in cell-free extracts of maize. Comparison of acetyl-CoA carboxylase activity with [14C]acetate incorporation into lipids, in isolated chloroplasts from developing leaves of maize, indicate that acetyl-CoA carboxylase is not limiting fatty acid synthesis.  相似文献   

18.
Biotin uptake, utilization, and efflux were studied in normal and biotin-deficient cultured rat hepatocytes. Biotin-deficient cells accumulate about 16-fold more biotin than do normal cells when incubated with a physiological concentration of biotin for 24 h. This difference is due to the greater amount of protein-bound biotin relative to free biotin in biotin-deficient hepatocytes, and is attributable to the presence of more apocarboxylases in deficient cells. The rate of biotin uptake and the rate of activation of the carboxylases, acetyl-CoA carboxylase, pyruvate carboxylase, propionyl-CoA carboxylase, and beta-methylcrotonyl-CoA carboxylase, are proportional to the concentration of exogenous biotin. Increases in carboxylase activities are proportional to the concentration of biotin only at exogenous biotin concentrations of less than 410 nM. Concentrations of 410 nM or more biotin increase carboxylase activities to normal or near normal. Biocytin inhibits biotin uptake at very high concentrations, whereas desthiobiotin and lipoic acid have no effect. Biocytin in the medium results in carboxylase activation either intracellularly or extracellularly by conversion to biotin by biotinidase. Investigation of the efflux of biotin from normal and biotin-deficient cells preincubated with the vitamin showed greater retention of biotin by biotin-deficient cells than by normal cells over 24 h. Retention of free biotin is similar in biotin-deficient and normal cells. The greater amount of biotin retained by biotin-deficient cells is accounted for by the greater amount of bound biotin in these cells. These results suggest that the free and bound biotin pools are independently regulated. The ready loss of free biotin from these cells has implications for the treatment of inherited, biotin-responsive carboxylase deficiencies.  相似文献   

19.
Autotrophic Archaea of the family Sulfolobaceae (Crenarchaeota) use a modified 3-hydroxypropionate cycle for carbon dioxide assimilation. In this cycle the ATP-dependent carboxylations of acetyl-CoA and propionyl-CoA to malonyl-CoA and methylmalonyl-CoA, respectively, represent the key CO2 fixation reactions. These reactions were studied in the thermophilic and acidophilic Metallosphaera sedula and are shown to be catalyzed by one single large enzyme, which acts equally well on acetyl-CoA and propionyl-CoA. The carboxylase was purified and characterized and the genes were cloned and sequenced. In contrast to the carboxylase of most other organisms, acetyl-CoA/propionyl-CoA carboxylase from M. sedula is active at 75 degrees C and is isolated as a stabile functional protein complex of 560 +/- 50 kDa. The enzyme consists of two large subunits of 57 kDa each representing biotin carboxylase (alpha) and carboxytransferase (gamma), respectively, and a small 18.6 kDa biotin carrier protein (beta). These subunits probably form an (alpha beta gamma)4 holoenzyme. It has a catalytic number of 28 s-1 at 65 degrees C and at the optimal pH of 7.5. The apparent Km values were 0.06 mm for acetyl-CoA, 0.07 mm for propionyl-CoA, 0.04 mm for ATP and 0.3 mm for bicarbonate. Acetyl-CoA/propionyl-CoA carboxylase is considered the main CO2 fixation enzyme of autotrophic members of Sulfolobaceae and the sequenced genomes of these Archaea contain the respective genes. Due to its stability the archaeal carboxylase may prove an ideal subject for further structural studies.  相似文献   

20.
Acetyl-CoA carboxylase regulates the rate of fatty acid synthesis. This enzyme in plants is localized in plastids and is believed to be composed of biotin carboxyl carrier protein, biotin carboxylase, and carboxyltransferase made up of alpha and beta polypeptides, although the enzyme has not been purified yet. Accumulated evidence shows that pea plastidic acetyl-CoA carboxylase is activated by light and the activation is caused by light-dependent reduction of carboxyltransferase, but not of biotin carboxylase, via a redox cascade. To understand the reductive activation of carboxyltransferase at the molecular level here, we obtained the active enzyme composed of decahistidine-tagged (His tag) alpha and beta polypeptides through the expression of the pea plastidic carboxyltransferase gene in Escherichia coli. Gel filtration showed that the molecular size of the recombinant carboxyltransferase is in agreement with that of partially purified carboxyltransferase from pea chloroplasts. The catalytic activity of the recombinant enzyme was similar to that of native carboxyltransferase. These results indicate that the molecular structure and conformation of recombinant carboxyltransferase resemble those of its native counterpart and that native carboxyltransferase is indeed composed of alpha and beta polypeptides. This recombinant enzyme was activated by dithiothreitol, a known reductant of S-S bonds, with a profile similar to that of its native counterpart. The recombinant enzyme was activated by reduced thioredoxin-f, a signal transducer of redox potential in chloroplasts under irradiation. Thus, this enzyme was redox-regulated, like that of the native carboxyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号