首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The responses of photosynthesis, transpiration and leaf conductance to changes in vapour pressure deficit were followed in well-watered plants of the herbaceous species, Helianthus annuus, Helianthus nuttallii, Pisum sativum and Vigna unguiculata, and in the woody species having either sclerophyllous leaves, Arbutus unedo, Nerium oleander and Pistacia vera, or mesomorphic leaves, Corylus avellana, Gossypium hirsutum and Prunus dulcis. When the vapour pressure deficit of the air around a single leaf in a cuvette was varied from 10 to 30 Pa kPa-1 in 5 Pa kPa-1 steps, while holding the remainder of the plant at a vapour presure deficit of 10 Pa kPa-1, the leaf conductance and net photosynthetic rate of the leaf decreased in all species. The rate of transpiration increased initially with increase in vapour pressure deficit in all species, but in several species a maximum transpiration rate was observed at 20 to 25 Pa kPa-1. Concurrent measurements of the leaf water potential by in situ psychrometry showed that an increase in the vapour pressure deficit decreased the leaf water potential in all species. The decrease was greatest in woody species, and least in herbaceous species. When the vapour pressure deficit around the remainder of the plant was increased while the leaf in the cuvette was exposed to a low and constant vapour pressure deficit, similar responses in both degree and magnitude in the rates of transpiration and leaf conductance were observed in the remainder of the plant as those occurring when the vapour pressure deficit around the single leaf was varied. Increasing the external vapour pressure deficit lowered the water potential of the leaf in the cuvette in the woody species and induced a decrease in leaf conductance in some, but not all, speies. The decrease in leaf conductance with decreasing water potential was greater in the woody species when the vapour pressure deficit was increased than when it remained low and constant, indicating that changing the leaf-to-air vapour pressure difference had a direct effect on the stomata in these species. The low hydraulic resistance and maintenance of a high leaf water potential precluded such an analysis in the herbaceous species. We conclude that at least in the woody species studied, an increase in the vapour pressure deficit around a leaf will decrease leaf gas exchange through a direct effect on the leaf epidermis and sometimes additionally through a lowering of the mesophyll water potential.  相似文献   

2.
Three types of observations were used to test the hypothesis that the response of stomatal conductance to a change in vapour pressure deficit is controlled by whole-leaf transpiration rate or by feedback from leaf water potential. Varying the leaf water potential of a measured leaf by controlling the transpiration rate of other leaves on the plant did not affect the response of stomatal conductance to vapour pressure deficit in Glycine max. In three species, stomatal sensitivity to vapour pressure deficit was eliminated when measurements were made at near-zero carbon dioxide concentrations, despite the much higher transpiration rates of leaves at low carbon dioxide. In Abutilon theophrasti, increasing vapour pressure deficit sometimes resulted in both decreased stomatal conductance and a lower transpiration rate even though the response of assimilation rate to the calculated substomatal carbon dioxide concentration indicated that there was no ‘patchy’ stomatal closure at high vapour pressure deficit in this case. These results are not consistent with stomatal closure at high vapour pressure deficit caused by increased whole-leaf transpiration rate or by lower leaf water potential. The lack of response of conductance to vapour pressure deficit in carbon dioxide-free air suggests that abscisic acid may mediate the response.  相似文献   

3.
A model of stomatal conductance was developed to relate plant transpiration rate to photosynthetic active radiation (PAR), vapour pressure deficit and soil water potential. Parameters of the model include sensitivity of osmotic potential of guard cells to photosynthetic active radiation, elastic modulus of guard cell structure, soil‐to‐leaf conductance and osmotic potential of guard cells at zero PAR. The model was applied to field observations on three functional types that include 11 species in subtropical southern China. Non‐linear statistical regression was used to obtain parameters of the model. The result indicated that the model was capable of predicting stomatal conductance of all the 11 species and three functional types under wide ranges of environmental conditions. Major conclusions included that coniferous trees and shrubs were more tolerant for and resistant to soil water stress than broad‐leaf trees due to their lower osmotic potential, lignified guard cell walls, and sunken and suspended guard cell structure under subsidiary epidermal cells. Mid‐day depression in transpiration and photosynthesis of pines may be explained by decreased stomatal conductance under a large vapour pressure deficit. Stomatal conductance of pine trees was more strongly affected by vapour pressure deficit than that of other species because of their small soil‐to‐leaf conductance, which is explainable in terms of xylem tracheids in conifer trees. Tracheids transport water by means of small pit‐pairs in their side walls, and are much less efficient than the end‐perforated vessel members in broad‐leaf xylem systems. These conclusions remain hypothetical until direct measurements of these parameters are available.  相似文献   

4.
 Predawn leaf water potential, stomatal conductance and microclimatic variables were measured on 13 sampling days from November 1995 through August 1996 to determine how environmental and physiological factors affect water use at the canopy scale in a plantation of mature clonal Eucalyptus grandis Hill ex-Maiden hybrids in the State of Espirito Santo, Brazil. The simple ”big leaf” Penman-Monteith model was used to estimate canopy transpiration. During the study period the predawn leaf water potential varied from –0.4 to –1.3 MPa, with the minimum values observed in the winter months (June and August 1996), while the average estimated values for canopy conductance and canopy transpiration fell from 17.3 to 5.8 mm s–1 and from 0.54 to 0.18 mm h–1, respectively. On the basis of all measurements, the average value of the decoupling coefficient was 0.25. During continuous soil water shortage a proportional reduction was observed in predawn leaf water potential and in daily maximum values of stomatal conductance, canopy transpiration and decoupling coefficient. The results showed that water vapour exchange in this canopy is strongly dominated by the regional vapour pressure deficit and that canopy transpiration is controlled mainly by stomatal conductance. On a seasonal basis, stomatal conductance and canopy transpiration were mainly related to predawn leaf water potential and, thus, to soil moisture and rainfall. Good results were obtained with a multiplicative empirical model that uses values of photosynthetically active radiation, vapour pressure deficit and predawn leaf water potential to estimate stomatal conductance. Received: 10 June 1998 / Accepted: 20 July 1998  相似文献   

5.
Gmelina arborea L. seedling growth and diurnal stomatal opening (as measured by stomatal resistance) were studied at soil matric potential 0, -0.1 and -0.72 × 10?5 Pa. Leaf area, leaf number, plant height and dry weights of the vegetative parts were significantly reduced as soil matric potential decreased from 0 to -0.72 × 10?5 Pa. The growth responses followed the same trend as net assimilation rate and relative growth rate. The highest moisture stress induced leaf senescence and leaf fall. Leaf water potential decreased from - 2 × 10?5 Pa to - 20 × 10?5 Pa with increasing soil moisture stress. Results indicate that the diurnal stomatal opening is controlled by photon flux density when this species is grown at soil matrio potential 0 Pa. However, with decreasing soil matrio potential (- 0.10 and -0.72 × 10?5 Pa) the internal plant water deficit appears to oontrol the stomatal opening.  相似文献   

6.
A dual-surface leaf chamber was used to investigate the responsesof net photosynthesis and leaf conductance to independent changesin the humidity environments of the upper and lower surfacesof leaves of sunflower and soybean. In sunflower decreasingthe humidity around the upper leaf surface while maintainingthat of the lower surface constant and high reduced both thephotosynthetic rate and the conductance of the lower surface.These reductions could not be attributed to changes in bulkleaf water potential since the transpiration rate of the wholeleaf remained constant. Similarly, the reductions were not relatedto localized water deficits in the lower epidermis or lowermesophyll since the transpiration rate of the lower surfacewas reduced. Possible mechanisms whereby the gas exchange characteristicsof the lower leaf surface of sunflower respond to the humidityenvironment of the upper surface are discussed. In contrastto sunflower, the photosynthetic rate of the lower surface ofsoybean was insensitive to the humidity environment of the uppersurface. In leaves of sunflower grown under a moderate temperature anda medium light level, simultaneous decreases of humidity atboth leaf surfaces reduced the photosynthetic rate of the wholeleaf without affecting the substomatal partial pressure of CO2.In contrast, with leaves developed under a cool temperatureand a high light level, both the photosynthetic rate and thesubstomatal partial pressure of CO2 were reduced. Evidently,the occurrence in sunflower of the response pattern suggestinga non-stomatal inhibition of photosynthesis by low humiditydepends upon the environment during growth. The possibilitythat this non-stomatal inhibition may be an artifact due toan error in the assumption of water vapour saturation withinthe leaf airspace is considered. Key words: Vapour pressure deficit, photosynthesis, conductance, non-stomatal inhibition, Helianthus annuus, Glycine max  相似文献   

7.
Jojoba [ Simmondsia chinensis (Link) Schneider] cuttings were grown in pots under constant light intensity and vapour pressure deficit at wir temperatures of 18 and 27°C in climate-controlled cabinets. Leaf conductance and transpiration rate decreased exponentially as the xylen water potential (Ψx) decreased concurrently with the drying out of the soil. At high Ψx'leaf conductance and transpiration rate were much higher at the higher air temperature, and as Ψx declined both parameters decreased more rapidly at 27°C than at 18°C. When soil temperatures were decreased from 27 to 13°C, leaf water potential was not affected at either air temperatures, but transpiration rate was reduced. A linear negative correlation was found between transpiration rates and soil temperatures. It is suggested that the low soil temperature may restrict reducion of water flux in turn reduces stomatal conductance and transpiration without affecting the water potential in the shoot. The releavance of the response to changes in soil or air temperature to the performance of the plant in its semi-arid habitat is discussed.  相似文献   

8.
冬小麦光合特征及叶绿素含量对保水剂和氮肥的响应   总被引:9,自引:0,他引:9  
以不施保水剂和氮(N)肥为对照,测定了保水剂(60 kg·hm-2)与不同N肥水平(0、225、450 kg·hm-2)及其配施条件下大田小麦的光合特征、叶绿素含量和水分利用效率等指标,研究了冬小麦拔节期和灌浆期光合生理特征、叶绿素含量及水分利用对保水剂和N肥的响应.结果表明:灌浆期各处理的光合速率、气孔导度、胞间CO2浓度、叶片水分利用效率及叶绿素含量均大于拔节期.在拔节期,单施N肥条件下,随施N量的增加,单叶水分利用效率提高,光合速率、气孔导度、胞间CO2浓度及蒸腾速率均先增后减;225 kg·hm-2 N肥处理的叶绿素含量最高.施用保水剂后,随施N量的增加,胞间CO2浓度降低,而光合速率等均提高;单施保水剂及其与N肥配施提高了叶绿素含量,而过多N肥效果不显著在灌浆期,单施N肥显著提高了小麦的光合速率及水分利用效率,降低了气孔导度、胞间CO2浓度及蒸腾速率;叶绿素含量随N肥用量的增加而增加.施用保水剂后,随N肥用量的增加,光合速率和叶片水分利用效率均先增后减,而胞间CO2浓度和蒸腾速率先减后增,但均低于对照,气孔导度随施N量的增加而提高.单施保水剂的叶绿素含量显著提高,但其与N肥配施叶绿素含量有所降低.保水剂与N肥配合施用显著提高了小麦的千粒重、产量及水分生产效率.其中,保水剂与225 kg·hm-2N肥配施处理的产量及水分生产效率均最高.  相似文献   

9.
Bunce, J. A. 1987. In-phase cycling of photosynthesis and conductanceat saturating carbon dioxide pressure induced by increases inwater vapour pressure deficit.—J. exp. Bot. 38: 1413–1420. The leaf to air water vapour deficit was increased suddenlyfrom about 1·0 to 2·5 IcPa for single leaves ofsoybean (Glycine max L. Merr.) plants held at 30 °C, 2·0mmol m –2 s–1 photosynthetic photon flux density(PPFD) and carbon dioxide pressures saturating to photosynthesis.After a lag of about 10 min, photosynthetic rate and stomatalconductance to water vapour began to decrease, and then cycledin phase with each other. The period of the cydes was about20 min. During these cycles the substomatal carbon dioxide pressurewas constant in the majority of leaves examined, and was alwaysabove saturation for photosynthesis. Epidermal impressions showedthat most stomata changed in aperture during the cycles, andthat very few were ever fully closed. Water potential measuredon excised discs changed by at most 0·1 MPa from theminima to the maxima in transpiration rate. In contrast, forleaves of sunflower (Helianthus animus L.) grown at low PPFD,the increase in VPD led to leaf wilting and decreased photosynthesis,followed by recovery of turgor and photosynthesis as stomatalconductance began to decrease. In these leaves photosynthesisand conductance then cycled approximately 180° out of phase.It is suggested that in soybeans decreased leaf conductanceinduced by high VPD provided a signal which decreased the rateof photosynthesis at carbon dioxide saturation by a mechanismthat was not related to a water deficit in the mesophyll. Key words: Photosynthesis, stomatal conductance, cycling, vapour pressure deficit  相似文献   

10.
During the grain filling period we followed diurnal courses in leaf water potential (ψ1), leaf osmotic potential (ψπ), transpiration (E), leaf conductance to water vapour transfer (g) and microclimatic parameters in field-grown spring barley (Hordeum distichum L. cv. Gunnar). The barley crop was grown on a coarse textured sandy soil at low (50 kg ha−1) or high (200 kg ha−1) levels of potassium applied as KCl. The investigation was undertaken at full irrigation or under drought. Drought was imposed at the beginning of the grain filling period. Leaf conductance and rate of transpiration were higher in the flag leaf than in the leaves of lower insertion. The rate of transpiration of the awns on a dry weight basis was of similar magnitude to that of the flag leaves. On clear days the rate of transpiration of fully watered barley plants was at a high level during most part of the day. The transpiration only decreased at low light intensities. The rate of transpiration was high despite leaf water potentials falling to rather low values due to high evaporative demands. In water stressed plants transpiration decreased and midday depression of transpiration occurred. Normally, daily accumulated transpirational water loss was lower in high K leaves than in low K leaves and generally the bulk water relations of the leaves were more favourable in high K plants than in low K plants. The factorial dependency of the flag leaf conductances on leaf water potential, light intensity, leaf temperature, and leaf-to-air water vapour concentration difference (ΔW) was analysed from a set of field data. From these data, similar sets of microclimatic conditions were classified, and dependencies of leaf conductance on the various environmental parameters were ascertained. The resulting mathematical functions were combined in an empirical simulation model. The results of the model were tested against other sets of measured data. Deviations between measured and predicted leaf conductance occurred at low light intensities. In the flag leaf, water potentials below-1.6 MPa reduced the stomatal apertures and determined the upper limit of leaf conductance. In leaves of lower insertion level conductances were reduced already at higher leaf water potentials. Leaf conductance was increased hyperbolically as photosynthetic active radiation (PAR) increased from darkness to full light. Leaf conductance as a function of leaf temperature followed an optimum curve which in the model was replaced by two linear regression lines intersecting at the optimum temperature of 23.4°C. Increasing leaf-to-air water vapour concentration difference caused a linear decrease in leaf conductance. Leaf conductances became slightly more reduced by lowered water potentials in the low K plants. Stomatal closure in response to a temperature change away from the optimum was more sensitive in high K plants, and also the decrease in leaf conductance under the influence of lowered ambient humidity proceeded with a higher sensitivity in high K plants. Thus, under conditions which favoured high conductances increase of evaporative demand caused an about 10% larger decrease in leaf conductance in the high K plants than in the low K plants. Stomatal sizes and density in the flag leaves differed between low and high K plants. In plants with partially open stomata, leaf conductance, calculated from stomatal pore dimensions, was up to 10% lower in the high K plants than in the low K plants. A similar reduction in leaf conductance in high K plants was measured porometrically. It was concluded that the beneficial effect of K supply on water use efficiency reported in former studies primarily resulted from altered stomatal sizes and densities.  相似文献   

11.
The oil palm (Elaeis guineensis Jacq.) maintains a large leafarea throughout the year, but its productivity is limited bya low rate of dry matter production per unit leaf area. Stomatalclosure, at times of low soil water availability and high atmosphericvapour pressure deficit, is an important factor limiting photosynthesisand hence dry matter production. In this paper, laboratory andfield data are used to prepare a model of the relationshipsbetween net photosynthetic rate and stomatal conductance, andbetween stomatal conductance and environmental variables. Resultsshow that high atmospheric vapour pressure deficits may limitproduction even in parts of the world where oil palms are notnormally considered to suffer from water stress. The model canbe used to design and evaluate irrigation systems, and to helpquantify the potential value of oil palm genotypes with lowstomatal sensitivity to either VPD or available soil water foruse where irrigation is impractical. Key words: Elaeis guineensis Jacq., drought, irrigation, plant breeding  相似文献   

12.
Wang L  Zhang T  Ding S Y 《农业工程》2006,26(7):2073-2078
Field experiments were conducted on soybean Glycine max, yudou29, a major cultivated variety in the Henan Province of China to study the relationship between photosynthetic characteristics and other physioecological parameters of its leaves under soil drying and rewatering treatments. The study showed that the dawn water potential of soybean leaves under the drying treatment was very close to that of soybean leaves under well-watered treatments (CK) when soil water content was higher than 47% of field water capacity (FWC). But when soil water content dropped below 47% of FWC, the leaf water potential decreased rapidly, indicating a significant threshold reaction. The dawn water potential threshold of soybean leaves was about ?1.02 MPa. Below this, the leaf water potential and net photosynthesis ratio dropped rapidly. When the soil water content was 47%, the leaf water potential and net photosynthesis ratio were nearly as high as those in CK, but the transpiration ratio was 67% lower, indicating that transpiration was more sensitive to drought than photosynthesis. After rewatering, the water status of soybean leaves improved, the net photosynthesis ratio and transpiration ratio increased linearly, and leaf stomata conductance (Gs) also recovered quickly. These results showed that after stress removal, soybean had fast-growing characteristics.  相似文献   

13.
Ashraf  M.  Ahmad  Ashfaq  McNeilly  T. 《Photosynthetica》2001,39(3):389-394
Influence of supra-optimal concentrations of K on growth, water relations, and photosynthetic capacity in pearl millet under severe water deficit conditions was assessed in a glasshouse. Nineteen-days-old plants of two lines, ICMV-94133 and WCA-78, of Pennisetum glaucum (L.) R.Br. were subjected for 30 d to 235.0, 352.5, and 470.0 mg(K) kg–1(soil) and two water regimes (100 and 30 % field capacity). Increasing K supply did not alleviate the effect of water deficit on the growth of two lines of pearl millet since additional amount of K in the growth medium had no effect on shoot dry mass, relative growth rate, plant leaf area, net assimilation rate, or leaf area ratio, although there was significant effect of drought stress on these variables. Soil moisture had a significant effect on net photosynthetic rate (P N), transpiration rate, stomatal conductance, and water use efficiency of both pearl millet lines, but there was no significant effect of varying K supply on these variables. In WCA-78 an ameliorative effect of increasing supply of K on P N was observed under water deficit. Chlorophyll (Chl) a and b contents increased significantly in both lines with increase in K supply under well watered conditions, but under water deficit they increased only in ICMV-94133. Chl a/b ratios were reduced significantly in WCA-78 with increasing K supply under both watering regimes, but by contrast, in ICMV-94133 this variable was decreased only under water stress. Leaf water potential and osmotic potential of both lines decreased significantly with the imposition of drought. Leaf pressure potential in both lines increased with increase in K supply under water stress. Contents of total free amino acids in the leaves of both pearl millet lines increased significantly with increase in K supply under water stress. Potassium supply had no effect on leaf soluble sugars or soluble proteins. Considerable osmotic adjustment occurred in pearl millet plants experiencing water deficit under high K supply.  相似文献   

14.
The gas exchange characteristics are reported for Amaranthus tricolor, a C4 vegetable amaranth of southeastern Asia. Maximum photosynthetic capacity was 48.3±1.0μmol CO2 m?2s?1 and the temperature optimum was 35°C. The calculated intercellular CO2 concentration at this leaf temperature and an incident photon flux (400–700 mm) of 2 mmol m?2s?1 averaged 208±14 μl l?1, abnormally high for a C4 species. The photosynthetic rate, intercellular CO2 concentration, and leaf conductance all decreased with an increase in water vapor pressure deficit. However, the decrease in leaf conductance which resulted in a decrease in intercellular CO2 concentration accounted for only one fourth of the observed decrease in photosynthetic rate as water vapor pressure deficit was increased. Subsequent measurements indicated that the depence of net photosynthesis on intercellular CO2 concetration changed with water vapor pressure deficit.  相似文献   

15.
The gas exchange characteristics are reported for Amaranthus tricolor, a C4 vegetable amaranth of southeastern Asia. Maximum photosynthetic capacity was 48.3±1.0 μmol CO2 m-2 s-1 and the temperature optimum was 35°C. The calculated intercellular CO2 concentration at this leaf temperature and an incident photon flux (400–700 mm) of 2 mmol m-2 s-1 averaged 208±14 μl l-1, abnormally high for a C4 species. The photosynthetic rate, intercellular CO2 concentration, and leaf conductance all decreased with an increase in water vapor pressure deficit. However, the decrease in leaf conductance which resulted in a decrease in intercellular CO2 concentration accounted for only one fourth of the observed decrease in photosynthetic rate as water vapor pressure deficit was increased. Subsequent measurements indicated that the dependence of net photosynthesis on intercellular CO2 concentration changed with water vapor pressure deficit.  相似文献   

16.
刘英  雷少刚  程林森  程伟  卞正富 《生态学报》2018,38(9):3069-3077
采煤塌陷引起的土壤环境因子的变化对矿区植物生长的影响越来越受到人们的关注,气孔导度、蒸腾与光合作用作为环境变化响应的敏感因子,研究植物气孔导度、蒸腾与光合作用的变化是揭示荒漠矿区自然环境变化及其规律的重要手段之一。研究采煤塌陷条件下植物光合生理的变化是探究煤炭开采对植物叶片水分蒸腾散失和CO_2同化速率影响的关键环节,是探讨采煤塌陷影响下植物能量与水分交换动态的基础,而采煤矿区植物叶片气孔导度、蒸腾与光合作用速率对采煤塌陷影响下土壤含水量变化的响应如何尚不清楚。选取神东煤田大柳塔矿区52302工作面为实验场地,以生态修复物种柠条为研究对象,对采煤塌陷区和对照区柠条叶片气孔导度、蒸腾和光合作用速率以及土壤体积含水量进行监测,分析了采煤塌陷条件下土壤含水量的变化以及其对柠条叶片气孔导度、蒸腾与光合作用速率的影响。结果显示:(1)煤炭井工开采在地表形成大量裂缝,破坏了土体结构,潜水位埋深降低,土壤含水量均低于沉陷初期,相对于对照区,硬梁和风沙塌陷区土壤含水量分别降低了18.61%、21.12%;(2)柠条叶片气孔导度、蒸腾和光合作用速率均与土壤含水量呈正相关关系;煤炭开采沉陷增加了地表水分散失,加剧了土壤水分胁迫程度,为了减少蒸腾导致的水分散失,柠条叶片气孔阻力增加,从而气孔导度降低,阻碍了光合作用CO_2的供应,从而导致柠条叶片光合作用速率的降低,蒸腾速率也显著降低。  相似文献   

17.
为了探究喀斯特石漠化地区植物叶片功能性状及影响因素,以及揭示其对石漠化环境的适应机理,该文以中国南方喀斯特高原峡谷地区的泡核桃(Juglans sigillata)为对象,揭示土壤养分对叶片结构和光合性状的影响效应。结果表明:(1)泡核桃叶功能性状随石漠化等级增加,叶面积减小,比叶面积增大,叶干物质含量和叶组织密度先降后升,蒸腾速率、胞间CO2浓度、气孔导度和光能利用率先下降后升高,其他性状变化趋势不显著。(2)冗余分析表明土壤养分能够解释37.4%的光合性状变异与53.4%的结构性状变异,其中全磷和溶解性有机碳对光合性状影响最大,而对结构性状影响最显著的是碱解氮和速效磷。(3)比叶面积分别与叶干物质含量极显著负相关,与净光合速率极显著正相关,叶厚度与叶组织密度极显著负相关,蒸腾速率与胞间CO2浓度、气孔导度极显著正相关,水分利用速率与蒸腾速率、胞间CO2浓度、气孔导度极显著负相关,光能利用率与净光合速率显著正相关。研究结果表明,泡核桃为适应喀斯特石漠化的特殊生境采取增强生长功能性状,同时提高资源获取能力的开拓型生长策略...  相似文献   

18.
A system for measurement of leaf gas exchange while regulating leaf to air vapour pressure difference has been developed; it comprises an assimilation chamber, leaf temperature controller, mass flow controller, dew point controller and personal computer. A relative humidity sensor and air and leaf temperature sensors, which are all used for regulating the vapour pressure difference, are mounted into the chamber. During the experiments, the computer continuously monitored the photosynthetic parameters and measurement conditions, so that accurate and intenstive measurements could be made.When measuring the light-response curve of CO2 assimilation for single leaves, in order to regulate the vapour pressure difference, the leaf temperature and relative humidity in the chamber were separately and simultaneously controlled by changing the air temperature around the leaf and varying the air flow rate through the chamber, respectively. When the vapour pressure difference was regulated, net CO2 assimilation, transpiration and leaf conductance for leaves of rice plant increased at high quantum flux density as compared with those values obtained when it was not regulated.When measuring the temperature-response curve of CO2 assimilation, the regulation of vapour pressure difference was manipulated by the feed-forward control of the dew point temperature in the inlet air stream. As the vapour pressure difference was regulated at 12 mbar, the maximum rate of and the optimum temperature for CO2 assimilation in rice leaves increased 5 molCO2 m–2 s–1 and 5°C, respectively, as compared with those values obtained when the vapour pressure difference took its own course. This was reasoned to be due to the increase in leaf conductance and the decrease in transpiration rate. In addition, these results confirmed that stomatal conductance essentially increases with increasing leaf temperature under constant vapour pressure difference conditions, in other words, when the influence of the vapour pressure difference is removed.This system may be used successfully to measure inter- and intra-specific differences and characteristics of leaf gas exchange in plants with a high degree of accuracy.Abbreviations A CO2 assimilation rate - Amax Maximum rate of CO2 assimilation - Aopt Optimum teperature for CO2 assimilation - CTWB Controlled-temperature water bath - DPC Dew point controller - E Transpiration rate; gl, leaf conductance - HCC Humidity control circuit - IRGA Infrared gas analyzer - LT Leaf temperature - LTC Leaf temperature controller - MFC Mass flow controller - QFD Quantum flux density - RH Relative humidity - RHC Relative humidity controller - VPD Vapour pressure difference - CO2 Difference of CO2 concentration between inlet and outlet air  相似文献   

19.
Effects of Humidity on Photosynthesis   总被引:2,自引:0,他引:2  
It was found for two species that net carbon dioxide uptakerates were reduced at constant intercellular carbon dioxidepartial pressure when single attached leaves were exposed tolarge leaf to air water vapour pressure differences. Leaf temperature,irradiance, and ambient carbon dioxide and oxygen partial pressureswere kept constant. Net carbon dioxide uptake rates decreasedlinearly with increasing vapour pressure difference, even incases where transpiration rates were highest at intermediatevalues of vapour pressure difference. Decreases in net carbondioxide uptake rates were quickly reversible. Different windspeeds across the measured leaf, different vapour pressure deficitsaround the rest of the shoot, and transient responses of netcarbon dioxide uptake rate to abrupt changes in vapour pressuredifference all gave the same response of net carbon dioxideuptake rate to vapour pressure difference. The data show thatthe inhibition of net carbon dioxide uptake rate at a givenvapour pressure difference was not simply related to whole leaftranspiration rate or stomatal conductance. Key words: Vapour pressure difference, CO2 uptake rate, Leaf temperature  相似文献   

20.
Changes in leaf and canopy water potential of sugar beet growingin soil of decreasing water content depended on soil water potentialand were independent of water flux from the plant when thiswas varied by changing the water vapour content of the air.The calculated hydraulic conductance of the plant increasedas flux increased and decreased as leaf water potential decreasedand as the plant aged. The conductances to water vapour of individualleaves and of the canopy decreased as leaf water potential decreasedand increased with increasing humidity of the air. The lattereffect was independent of changes in leaf water potential. Theconductances were not affected by the rate of evaporation orleaf temperature. The rate of photosynthesis was directly relatedto leaf conductance except in severely stressed, mature leavesin which leaf water potential had a more direct effect on photosynthesis.Stomatal conductances, transpiration, and photosynthesis weregreater in young leaves than mature leaves on the same plantand at the same leaf water potential. These results are discussedin relation to current agricultural irrigation practices usedfor sugar beet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号