共查询到20条相似文献,搜索用时 15 毫秒
1.
Duckweed Lemna minor L. was grown on Wang culture medium supplemented with lead ions for 24 hours. Metal was tested at 1.5, 3 and 6 mg·dm−3 concentrations. The response of antioxidant enzymes, such as superoxide dismutase, catalase and peroxidase in lead-treated
roots of duckweed was investigated. Lead ions had no effect on the spectrum of catalase and peroxidase isoenzymes while a
new isoform of superoxide dismutase appeared on the Pb treated roots. A lead-depended increase in activities of superoxide
dismutase and peroxidase was observed, whereas catalase activity was maintained at relatively constant values at lower lead
concentrations and then decreased markedly below control level. 相似文献
2.
The duckweed Lemna minor is one of the smallest vascular plants with a known strong capacity for metal accumulation. L. minor is proposed as a phytomonitor for coal ash drainage systems and for bio-assay studies directed to complexation and speciation. The duration of the experiment can be restricted to fourteen days; it is then possible to determine accurate data of differences in growth of the clone forming plant by using image processing techniques. Leaching of pulverized fuel ash (PFA) with acetic acid according to EPA instruction resulted in effects attributed to the acetic acid itself rather than to the metals in solution. Toxic effects of both leachates, natural and artificial, are discussed. The order of toxicity of metals studied so far in separate metal experiments is Cd > Cu > Zn > As(Arsenite) > Se(Selenite) > Ge > B > Mo. 相似文献
3.
Phytotoxicity and inhibitory effects of the fusarial toxins fumonisin B1 (FB1) [m.p. 103–105 °C], fusaric acid [m.p. 106–107 °C], butenolide (4-acetamido-4-hydroxy-2-butenoic acid lactone) [116–117 °C], 9, 10-dihydroxyfusaric acid [m.p. 150–155 ° C], and moniliformin on chlorophyll synthesis in the aquatic macrophyte Lemna minor (duckweed) were examined. FB1 proved to be most active, reducing the growth of L. minor fronds and their ability to synthesize chlorophyll by 53% and 59%, respectively, at 0.7 g/ml. The growth rate of L. minor was reduced 59% by 6.7 g/ml fusaric acid, 62% by 66.7 g/ml butenolide, and 22% by 66.7 g/ml 9,10-dihydroxyfusaric acid. Moniliformin was the least phytotoxic to L. minor, with only a 16% suppression of growth rate and a 54% reduction in chlorophyll at 66.7 g/ml.The mention of firm names or trade products does not imply that they are endorsed or recommended by the US Department of Agriculture over other firms or similar products not mentioned. 相似文献
4.
Duckweed Lemna minor L. was grown on Wang culture medium supplemented with lead ions for 24 hours. Metal was tested at 1.5, 3 and 6 mg·dm−3 concentrations. The growth of Lemna minor was inhibited by lead ions, but the dry to fresh weight ratio increased as the concentration of Pb2+ in the medium increased. With increased concentrations of Pb ions, the contents of chlorophyll a and chlorophyll b in roots and fronds were correspondingly lower in comparision with the control. The effect of lead upon activities of some
glycolitic and fermentative enzymes in roots of duckweed was examined. The activity of pyruvate kinase decreased with increasing
lead concentrations, but cytosolic malate dehydrogenase behaved in an opposite manner. The lowest concentration of Pb stimulated
alcohol dehydrogenase; phosphoenolopyruvate carboxylase activity was maintained at relatively constant values at all tested
lead concentrations. 相似文献
5.
Severing at sites of microtubule crossover contributes to microtubule alignment in cortical arrays 总被引:1,自引:0,他引:1
The cortical microtubule (MT) array and its organization is important in defining the growth axes of plant cells. In roots, the MT array exhibits a net-like configuration in the division zone, and a densely-packed transverse alignment in the elongation zone. This transition is essential for anisotropic cell expansion and consequently has been the subject of intense study. Cotyledons exhibit a net-like array in pavement cells and a predominantly aligned array in the petioles, and provide an excellent system for determining the basis of plant MT organization. We show that in both kinds of MT array, growing MTs frequently encounter existing MTs. Although some steep-angled encounters result in catastrophes, the most frequent outcome of these encounters is successful negotiation of the existing MT by the growing MT to form an MT crossover. Surprisingly, the outcome of such encounters is similar in both aligned and net-like arrays. In contrast, aligned arrays exhibit a much higher frequency of MT severing events compared with net-like arrays. Severing events occur almost exclusively at sites where MTs cross over one another. This process of severing at sites of MT crossover results in the removal of unaligned MTs, and is likely to form the basis for the difference between a net-like and an aligned MT array. 相似文献
6.
Melissa A. Melan 《Protoplasma》1990,153(3):169-177
Summary We have investigated the effects of microtubule stabilizing conditions upon microtubule patterns in protoplasts and developed a new method for producing protoplasts which have non-random cortical microtubule arrays. Segments of elongating pea epicotyl tissue were treated with the microtubule stabilizing drug taxol for 1 h before enzymatic digestion of the cell walls in the presence of the drug. Anti-tubulin immunofluorescence showed that 40 M taxol preserved regions of ordered microtubules. The microtubules in these regions were arranged in parallel arrays, although the arrays did not always show the transverse orientation seen in the intact tissue. Protoplasts prepared without taxol had microtubules which were random in distribution. Addition of taxol to protoplasts with random microtubule arrangements did not result in organized microtubule arrays. Taxol-treated protoplasts were used to determine whether or not organized microtubule arrays would affect the organization of cell wall microfibrils as new walls were regenerated. We found that protoplasts from taxol-treated tissue which were allowed to regenerate cell walls produced organized arrays of microfibrils whose patterns matched those of the underlying microtubules. Protoplasts from untreated tissue synthesized microfibrils which were disordered. The synthesis of organized microfibrils by protoplasts with ordered microtubules arrays shows that microtubule arrangements in protoplasts influence the arrangement of newly synthesized microfibrils.Abbreviations DIC
differential interference contrast
- DMSO
dimethyl sulfoxide
- FITC
fluorescein isothiocyanate
- IgG
immunoglobulin G
- PIPES
piperazine-N,N-bis[2-ethane-sulfonic acid]
- PBS
phosphate buffered saline 相似文献
7.
Gulshan Chhabra Darshna Chaudhary Manish Sainger Pawan K. Jaiwal 《Physiology and Molecular Biology of Plants》2011,17(2):129-136
Transgenic plants of an Indian isolate of Lemna minor have been developed for the first time using Agrobacterium tumefaciens and hard nodular cell masses ‘nodular calli’ developed on the BAP - pretreated daughter frond explants in B5 medium containing sucrose (1.0 %) with 2,4-D (5.0 μM) and 2-iP (50.0 μM) or 2,4-D (50.0 μM) and TDZ (5.0 μM) under light conditions. These calli were co-cultured with A. tumefaciens strain EHA105 harboring a binary vector that contained genes for β-glucuronidase with intron and neomycin phosphortransferase. Transformed cells selected on kanamycin selection medium were regenerated into fronds whose transgenic nature was confirmed by histochemical assay for GUS activity, PCR analysis and Southern hybridization. The frequency of transformation obtained was 3.8 % and a period of 11–13 weeks was required from initiation of cultures from explants to fully grown transgenic fronds. The pretreatment of daughter fronds with BAP, use of non-ionic surfactant, presence of acetosyringone in co-cultivation medium, co-culture duration of 3 d and 16 h photoperiod during culture were found crucial for callus induction, frond regeneration and transformation of L. minor. This transformation system can be used for the production of pharmaceutically important protein and in bioremediation. 相似文献
8.
Emmanuel Panteris Ioannis-Dimosthenis S Adamakis Gerasimos Daras Stamatis Rigas 《Plant signaling & behavior》2015,10(6)
Cell elongation requires directional deposition of cellulose microfibrils regulated by transverse cortical microtubules. Microtubules respond differentially to suppression of cell elongation along the developmental zones of Arabidopsis thaliana root apex. Cortical microtubule orientation is particularly affected in the fast elongation zone but not in the meristematic or transition zones of thanatos and pom2–4 cellulose-deficient mutants of Arabidopsis thaliana. Here, we report that a uniform phenotype is established among the primary cell wall mutants, as cortical microtubules of root epidermal cells of rsw1 and prc1 mutants exhibit the same pattern described in thanatos and pom2–4. Whether cortical microtubules assume transverse orientation or not is determined by the demand for cellulose synthesis, according to each root zone''s expansion rate. It is suggested that cessation of cell expansion may provide a biophysical signal resulting in microtubule reorientation. 相似文献
9.
The pectic polysaccharide of duckweed Lemna minor L. termed lemnan (LM) was shown to contain the ramified, "hairy" region. Using partial acid hydrolysis and Smith degradation followed by NMR spectroscopy of the fragments obtained, some structural features of the hairy region of LM were elucidated. Partial acid hydrolysis of LM afforded the crude polysaccharide fraction LMH that was separated into two polysaccharide fractions: LMH-1 and LMH-2. In addition, the oligosaccharide fraction LMH-3 contained 97% D-apiose was obtained from the supernatant. A further more rigorous acidic hydrolysis of LMH led to the crude polysaccharide fraction LMHR which was separated in to two fractions: LMHR-1 and LMHR-2. Smith degradation of LMH afforded the polysaccharide fragment LMHS differed in low contents of apiose residues. Unfortunately, NMR-spectroscopy failed to provide significant evidence concerning the structure of LMH-1 due to the complexity of the macromolecule. The structure of the 1H/13C-NMR spectroscopy including the correlation 2D NMR spectroscopy. As a result, alpha-1,4-D-galactopyranosyluronan was confirmed to be the main constituent of the LM backbone. In addition, the ramified, "hairy" region of the macromolecule appeared to contain segments consisting of residues of terminal and beta-1,5-linked apiofuranose, terminal and alpha-1,5-linked arabinofuranose, terminal and beta-1,3- and beta-1,4- linked galactopyranose, the terminal and beta-1,4-linked xylopyranose, and beta-1,4-linked 2-mono-O-methyl xylopyranose. Analytical and NMR-spectral data of LMHS confirmed the presence of considerable amounts of the non-oxidized of 1,4-linked D-galactopyranosyl uronic acid residues. Thus, some side chains of the ramified region of lemnan appeared to attach to D-galactopyranosyl uronic acid residues of the backbone. 相似文献
10.
Summary Cortical cells of mycorrhizal roots undergo drastic morphological changes, such as vacuole fragmentation, nucleus migration,
and deposition of cell wall components at the plant-fungus interface. We hypothesized that the cytoskeleton is involved in
these mechanisms leading to cell reorganization. We subjected longitudinal, meristem to basal zone, sections of uninfectedNicotiana tabacum roots to immunofluorescence methods to identify the microtubular (MT) structures associated with root cells. Similar sections
were obtained from tobacco roots grown in the presence ofGigaspora margarita, an arbuscular mycorrhizal fungus which penetrates the root via the epidermal cells, but mostly develops in the inner cortical
cells. While the usual MT structures were found in uninfected roots (e.g., MTs involved in mitosis in the meristem and cortical
hoops in differentiated parenchyma cells), an increase in complexity of MT structures was observed in infected tissues. At
least three new systems were identified: (i) MTs running along large intracellular hyphae, (ii) MTs linking hyphae, (iii)
MTs binding the hyphae to the host nucleus. The experiments show that mycorrhizal infection causes reorganization of root
MTs, suggesting their involvement in the drastic morphological changes shown by the cortical cells. 相似文献
11.
V. R. Franceschi 《Protoplasma》1989,148(2-3):130-137
Summary
Lemna minor root tips form raphide Ca oxalate crystals in both the root cap and root proper. An in vivo system was developed to examine raphide crystal bundle formation in the root of intact plants. By increasing the exogenous Ca concentration, crystal bundle formation could be induced. Entire new crystal bundles could be formed within 30 minutes of an inductive stimulus. The process was reversible with recently formed crystal bundles being dissolved over a period of about 3 hours. Older, previously existing bundles were more resistant to dissolution. The calmodulin antagonists, chlorpromazine and trifluoperazine (300 M), prevented crystal formation and caused dissolution of some crystal bundles, even in the presence of exogenous Ca. When the antagonists were flushed out and replaced with fresh medium, crystals were formed in cells where dissolution had occurred under the influence of the antagonists. The Ca ionophore A 23187 (20 M) caused slow dissolution of crystal bundles, even in the presence of exogenous Ca. A model describing the control of and physiological significance of Ca oxalate formation in plants is presented and discussed with respect to the results obtained in this study. 相似文献
12.
Cryo-microprobe analysis of quench-frozen fronds of a Zn-tolerant clone of Lemna minor exposed to a high level of Zn (300 μM) showed the presence of cellular deposits consisting of Zn, Mg, K and P or Zn, K and P (Zn phytate). The same Zn-tolerant clone of Lemna minor, when exposed to a high level of Cd (30 μM), showed the presence of globular deposits consisting of Cd, K and P in mature fronds, but the immature cells of the enclosed daughter fronds contained relatively large deposits with Cd and S as the main components (Cd-phytochelatin?). Selection for Zn tolerance in a population of Lemna minor was easily achieved but selection for Cd tolerance has so far not been successful. The Zn-tolerant clone also tolerates high levels of phosphate. 相似文献
13.
Summary Cortical microtubules in callus derived fromPisum sativum roots form parallel arrays within cells but are randomly oriented across the tissue. These arrays align perpendicular to the direction of an applied electric field of 6 mV per cell. Application of a field of 6 mV per cell for 4 days resulted in the co-ordinated expansion of cells parallel to the field direction. Cortical microtubule arrays were still aligned perpendicular to the applied field 24 h after removal of the field. The imposition of a field to callus after the removal of cortical microtubules by oryzalin and in the presence of the herbicide resulted in the orientation of recovering microtubules perpendicular to the direction of the field, indicating that microtubules are not directly involved in the detection of the field.Abbreviations EGTA
ethylene glycol-bis (-aminoethyl ether) N,N,N-tetraacetic acid
- FITC
fluorescein isothiocyanate
- MSB
microtubule stabilising buffer
- PIPES
piperazine-N,N-bis(2-ethanesulphonic acid)
- oryzalin
3,5-dinitro-N4,N4 dipropylsulphanil-amide 相似文献
14.
The concentrations of total free amino acids (TFAA) and humic substances (HS) accumulating in media conditioned by axenic and non-axenic duckweed fronds (Lemna minor L.) were analyzed at various time intervals over a 21-day incubation period with the aid of a Shimadzu HPLC system. In the non-axenic Lemna cultures, the concentrations of both TFAA and HS continued to increase throughout the incubation period, although the rate of increase was higher in the initial stages. In contrast, the concentrations of both TFAA and HS reached asymptotic values in media conditioned by non-axenic Lemna after 10–12 days. As a result, the concentrations of both FAA and HS became significantly higher in media conditioned by axenic Lemna fronds than in those conditioned by non-axenic Lemna from days 10–12 until the end of the experiment. The possible reasons for the differences in the accumulation patterns of TFAA and HS in media conditioned by axenic and non-axenic Lemna and their ecological significance are discussed. 相似文献
15.
Mirta Tkalec Tatjana Prebeg Vibor Roje Branka Pevalek-Kozlina Nikola Ljubešić 《Acta Physiologiae Plantarum》2008,30(6):881-890
Although duckweed Lemna minor L. is a known accumulator of cadmium, detailed studies on its physiological and/or defense responses to this metal are still
lacking. In this study, the effects of 10 μM CdCl2 on Lemna minor were monitored after 6 and 12 days of treatment, while growth was estimated every 2 days. Cadmium treatment resulted in progressive
accumulation of the metal in the plants and led to a decrease in the growth rate to 54% of the control value. The metal also
considerably impaired chloroplast ultrastructure and caused a significant reduction in pigment content, i.e., at day 12, by
30 and 34% for chlorophylls a and b, and by 25% for carotenoids. During cadmium treatment, the contents of malondialdehyde and endogenous H2O2 progressively increased (rising 77 and 46% above the controls by day 12), indicating that cadmium induced considerable oxidative
stress. On the other hand, higher activities of pyrogallol peroxidase (PPX), ascorbate peroxidase (APX) and catalase (CAT),
as well as the induction of a new APX isoform, in cadmium-treated plants, clearly showed activation of an antioxidative response.
At day 6, only PPX activity was significantly above the controls (15%), while, at day 12, PPX, APX and CAT activities were
increased (74, 78 and 63%). Cadmium also led to accumulation of the heat shock protein 70 (HSP70) and induced an additional
isoform of this protein. The obtained results suggest that cadmium (10 μM) is phytotoxic to Lemna minor, inducing oxidative stress, and that antioxidative enzymes and HSP70 play important roles in the defense against cadmium
toxicity.
M. Tkalec and T. Prebeg contributed equally to this work 相似文献
16.
Mardanov AV Ravin NV Kuznetsov BB Samigullin TH Antonov AS Kolganova TV Skyabin KG 《Journal of molecular evolution》2008,66(6):555-564
The complete nucleotide sequence of the duckweed (Lemna minor) chloroplast genome (cpDNA) was determined. The cpDNA is a circular molecule of 165,955 bp containing a pair of 31,223-bp inverted repeat regions (IRs), which are separated by small and large single-copy regions of 89,906 and 13,603 bp, respectively. The entire gene pool and relative positions of 112 genes (78 protein-encoding genes, 30 tRNA genes, and 4 rRNA genes) are almost identical to those of Amborella trichopoda cpDNA; the minor difference is the absence of infA and ycf15 genes in the duckweed cpDNA. The inverted repeat is expanded to include ycf1 and rps15 genes; this pattern is unique and does not occur in any other sequenced cpDNA of land plants. As in basal angiosperms and eudicots, but not in other monocots, the borders between IRs and a large single-copy region are located upstream of rps19 and downstream of trnH, so that trnH is not included in IRs. The model of rearrangements of the chloroplast genome during the evolution of monocots is proposed as the result of the comparison of cpDNA structures in duckweed and other monocots. The phylogenetic analyses of 61 protein-coding genes from 38 plastid genome sequences provided strong support for the monophyly of monocots and position of Lemna as the next diverging lineage of monocots after Acorales. Our analyses also provided support for Amborella as a sister to all other angiosperms, but in the bayesian phylogeny inference based on the first two codon positions Amborella united with Nymphaeales. 相似文献
17.
Summary The establishment of actinorhizal root nodules involves penetration of host cell walls and intracellular colonization by the nitrogen-fixing endosymbiont,Frankia (Actinomycetales). In the early stages of the infection process inAlnus, unusual cell walls with undulate profiles were observed in root tip meristematic derivatives, and in early (preinfection) derivatives of the nodule lobe meristem, inFrankia-inoculated plants. The irregular cell walls attached obliquely to preexisting walls, but were not discontinuous. Serial sections revealed that the unusual walls divided two daughter cells. Microtubules in bundled arrays were abundant near the undulate walls, and radiated in several planes. In the root tips, the anomalous cell walls were observed within one day of inoculation withFrankia. 相似文献
18.
EDDHA added in an optimal concentration (20.5 mumol.L-1) to a modified Pirson-Seidel nutrient solution induces flowering in some clones of the species Lemna minor, Lemna gibba and Spirodela polyrrhiza, which in the absence of EDDHA in the same nutrient solution do not flower. By adding EDDHA (20.5 mumol.L-1), floral induction under LD conditions is optimally promoted in the long-day (LD) species Lemna minor. After adding EDDHA to the nutrient solution, before floral induction and during flowering, Zn, Mn and Cu content is significantly increased in plants. Zn-EDDHA (0.86 mumol.L-1), Mn-EDDHA (1.51 mumol.L-1) and Cu-EDDHA (0.12 mumol.L-1), when used individually, greatly promote flowering under LD conditions as compared to flowering in the same nutrient solution with an equivalent quantity of Zn, Mn or Cu in the nonchelate form. If, on the other hand, Zn-EDDHA and Mn-EDDHA are added to the nutrient solution together (instead of Zn and Mn in nonchelate form), their effect on the promotion of flowering is less than in the case of their individual use. This shows that there is antagonism between Zn-EDDHA and Mn-EDDHA that is eliminated by adding EDDHA to the nutrient solution. We obtained the highest percentage of flowering plants (i.e. 74%) if we added EDDHA (20.5 mumol.L-1) to the nutrient solution containing Mn, Zn and Cu in chelate form. 74% of flowering plants actually means that flowering was achieved in all physiologically mature plants. Our results show that EDDHA promotes floral induction in Lemna minor under LD conditions, especially through chelating Zn, Mn and Cu, and, in addition, through eliminating the antagonism between Mn and Zn chelates EDDHA. Zn-EDDHA (0.86 mumol.L-1) also promote floral differentiation, especially cell division of microspore mother cells into dyads and those into microspore tetrads, which can be seen in microphotographs. When investigating possible pathways through which Mn-EDDHA, Zn-EDDHA and Cu-EDDHA promote flowering, we studied the effects of various concentrations of IAA and sucrose added to the nutrient solution as well. The results support the hypothesis that one of the possible pathways in which Mn-EDDHA promotes floral induction is through auxin oxidase, whereas Zn-EDDHA and Cu-EDDHA probably promote it through the enhancement of the photosynthesis and synthesis of sucrose. 相似文献
19.
Yuri T. Yamamoto Nirmala Rajbhandari Xiaohong Lin Ben A. Bergmann Yufuko Nishimura Anne-Marie Stomp 《In vitro cellular & developmental biology. Plant》2001,37(3):349-353
Summary We developed efficient genetic transformation protocols for two species of duckweed, Lemna gibba (G3) and Lemna minor (8627 and 8744), using Agrobacterium-mediated gene transfer. Partially differentiated nodules were co-cultivated with Agrobacterium tumefaciens harboring a binary vector containing β-glucuronidase and nptII expression cassettes. Transformed cells were selected and allowed to grow into nodules in the presence of kanamycin. Transgenic
duckweed fronds were regenerated from selected nodules. We demonstrated that transgenic duckweed could be regenerated within
3 mo. after Agrobacterium-mediated transformation of nodules. Furthermore, we developed a method for transforming L. minor 8627 in 6 wk. These transformation protocols will facilitate genetic engineering of duckweed, ideal plants for bioremediation
and large-scale industrial production of biomass and recombinant proteins. 相似文献
20.
Summary Overall cellular arrangement of cortical microtubules (MTs) is studied by reconstruction of MT images on serial thin sections. The mature root cortex ofHyacinthus orientalis L. cv. Delft blue is composed of elongate, highly vacuolate nondividing parenchyma cells. In longitudinal sections in these cells, MTs generally form parallel arrays at oblique angles to longitudinal cell axes. These MTs extend towards the transverse face of the cell where they appear in localized parallel arrays as well as in crisscross patterns. Repeated observations of oblique parallel arrays of MTs along the length of the cell and the continuity of MT bundles in serial sections suggest that MTs form a single helix in the cell. MTs in neighboring cells appear in sections either as parallel or as herringbone patterns, suggesting that the MT helices in these cells may spiral in the same or the opposite directions.Abbreviations MT
Microtubule
- MF
microfibil
- EM
electron microscopy 相似文献