首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the effects by cysteamine in vitro and in vivo on hormone production and islet cell metabolism in isolated pancreatic islets and perfused pancreas of the rat. In isolated islets, cysteamine dose-dependently depleted somatostatin immunoreactivity by 50% after 60 min exposure to 1 mmol/l of the compound. This effect appeared to be independent of interaction of the drug with secretion of somatostatin from the pancreatic D-cells. Cysteamine, however, interacted acutely not only with the D-cells, but also markedly suppressed glucose-induced insulin release. Moreover, cysteamine inhibited islet glucose oxidation, an effect which reflects interference with the metabolism mainly of the B-cells. The effect of cysteamine on glucose-induced insulin release was prolonged, since it was still observed in the isolated rat pancreas perfused 24 h after in vivo treatment with cysteamine. In contrast to the effects on glucose-induced insulin release, the response to glibenclamide remained unaffected by a previous exposure to cysteamine in vivo. However, both glucose- and glibenclamide-induced somatostatin secretion was reduced by 50%, whereas basal glucagon secretion was significantly enhanced in pancreata from cysteamine-treated rats vs. control rats. We conclude that (1) cysteamine does not specifically affect the D-cells of the islets, and (2) the multiple effects by cysteamine on islet cell function, particularly on B-cell metabolism and secretion, renders the compound unsuitable for the study of paracrine interactions in the islets.  相似文献   

2.
Glucagon and secretin and some of their hybrid analogs potentiate glucose-induced release of insulin from isolated mouse pancreatic islets. It was recently shown that the synthetic glucagon analog, desHis1[Glu9]glucagon amide, does not stimulate the formation of cyclic adenosine monophosphate in the rat hepatocyte membrane, but binds well to the glucagon receptor and is a good competitive antagonist of glucagon. In the present study the effect of this analog on isolated islets was examined. desHis1-[Glu9]glucagon amide at 3 x 10(-7) M, in the presence of 0.01 M D-glucose, increased the release of insulin by 30% and maintained that level for the full 30-min test period. The rate of insulin release returned to the glucose-induced base line after removal of the peptide. The same insulin level was produced by 3 x 10(-9) M glucagon, and at 3 x 10(-7) M glucagon insulin release was enhanced 290% above the glucose base line.  相似文献   

3.
The effect of secretin on glucagon and insulin release and its interaction with glucose has been studied in cultured mouse pancreatic islets by column perifusion. Glucose alone showed the well-known stimulation of insulin release and inhibition of glucagon release. Addition of 10 mM secretin increased glucagon secretion at 3 mM D-glucose by 300% while no change in insulin release could be seen at this low glucose concentration. At maximal stimulation of insulin release by 20 mM D-glucose addition of 10 nM secretin increased insulin release by 30%. Despite this insulin concentration and the high glucose concentration an increase in glucagon secretion of 1800% was found. These effects of secretin were dose-dependent at 10 mM D-glucose with 1 nM secretin being the lowest effective dose.  相似文献   

4.
Conflicting opinions were recently expressed concerning the possible effect of 2-adrenergic agonists upon cyclic AMP production in pancreatic islets. In the present: study, clonidine inhibited glucose-induced insulin release from rat pancreatic islets, this inhibitory effect being abolished by idazoxan. Clonidine did not suppress the capacity of forskolin to augment glucose-induced insulin release. In a particulate subcellular fraction derived from the islets, adenylate cyclase was activated by calmodulin (in the presence of Ca2+), NaF, GTP,, L-arginine, and forskolin, and slightly inhibited by clonidine. The inhibitory action of clonidine upon basal adenylate cyclase activity was more pronounced in islet crude homogenates. The inhibitory effect of clonidine was antagonized by forskolin whether in the particulate fraction or crude homogenate. At variance with the modest effects of glucagon, D-glucose, L-arginine, or a tumor-promoting phorbol ester upon cyclic AMP production by intact islets, forskolin caused a six-fold increase in cyclic AMP production. Clonidine inhibited cyclic AMP production by intact islets, whether in the absence or presence of forskolin. It is proposed that the inhibitory action of clonidine upon insulin release is attributable , in part at least, to inhibition of adenylate cyclase.  相似文献   

5.
Although it is agreed that autoimmune destruction of pancreatic islets in diabetic BB rats is rapid, reports of endocrine cell content of islets from BB diabetic rats at the time of onset of diabetes vary considerably. Because of the rapid onset of the disease (hours) and the attendant changes in islet morphology and insulin secretion, it was the aim of this study to compare islet beta-cell numbers to other islet endocrine cells as close to the time of onset of hyperglycemia as possible (within 12 h). As it has been reported that hyperglycemia renders the beta cell insensitive to glucose, the early effects of different levels of insulin therapy (well-controlled vs. poorly controlled glycemia) on islet morphology and insulin secretion were examined. When measured within 12 h of onset, insulin content of BB diabetic islets, measured by morphometric analysis or pancreatic extraction, was 60% of insulin content of control islets. Despite significant amounts of insulin remaining in the pancreas, 1-day diabetic rats exhibited fasting hyperglycemia and were glucose intolerant. The insulin response from the isolated perfused pancreas to glucose and the glucose-dependent insulinotropic hormone, gastric inhibitory polypeptide (GIP), was reduced by 95%. Islet content of other endocrine peptides, glucagon, somatostatin, and pancreatic polypeptide, was normal at onset and at 2 weeks post onset. A group of diabetic animals, maintained in a hyperglycemic state for 7 days with low doses of insulin, were compared with a group kept normoglycemic by appropriate insulin therapy. No insulin could be detected in islets of poorly controlled diabetics, while well-controlled animals had 30% of the normal islet insulin content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Investigation of glucagon secretion in isolated Wistar rat islets was carried out to elucidate further the regulatory function of glucose and arginine on pancreatic A-cells. The suppressive effect of D-glucose could also be demonstrated with L-glucose, D-mannose, D-fructose, D-galactose, D-glyceraldehyde and DL-dihydroxyacetone, but not in the presence of 3-O-methylglucose or mannitol. Sugars other than D-glucose inhibited glucagon secretion only at much higher concentrations than those at which D-glucose was effective. Furthermore, although 7.5 mM D-glucose up to 80% inhibition, the effects of other sugars appeared to level off at only 50--60% inhibition. The inhibitory action of D-glucose or D-glyceraldedyde on glucagon secretion could not be overcome by L-arginine, but 3-O-methylglucose, mannoheptulose, 2-deoxy-D-glucose, iodoacetamide, theophylline, epinephrine and acetylcholine were effective. The insulin secretion in response to glucose was inhibited by the metabolic inhibitors used, whereas the B-cell response in the presence of glyceraldehyde was diminished by iodoacetamide only. Like D-glucose, a variety of other sugars markedly reduced the stimulatory effect of L-arginine in glucagon release. The results show that the suppression of glucagon secretion is not specific for D-glucose and not strongly connected on a stimulated insulin secretion.  相似文献   

7.
Proghrelin, the precursor of the orexigenic and adipogenic peptide hormone ghrelin, is synthetized in endocrine (A-like) cells in the gastric mucosa. During its cellular processing, proghrelin gives rise to the 28-amino acid peptide desacyl ghrelin, which after octanoylation becomes active acyl ghrelin, and to the 23-amino acid peptide obestatin, claimed to be a physiological opponent of acyl ghrelin. This study examines the effects of the proghrelin products, alone and in combinations, on the secretion of insulin, glucagon, pancreatic polypeptide (PP) and somatostatin from isolated islets of mice and rats. Surprisingly, acyl ghrelin and obestatin had almost identical effects in that they stimulated the secretion of glucagon and inhibited that of PP and somatostatin from both mouse and rat islets. Obestatin inhibited insulin secretion more effectively than acyl ghrelin. In mouse islets, acyl ghrelin inhibited insulin secretion at low doses and stimulated at high. In rat islets, acyl ghrelin inhibited insulin secretion in a dose-dependent manner but the IC(50) for the acyl ghrelin-induced inhibition of insulin release was 7.5 x 10(-8) M, while the EC(50) and IC(50) values, with respect to stimulation of glucagon release and to inhibition of PP and somatostatin release, were in the 3 x 10(-12)-15 x 10(-12) M range. The corresponding EC(50) and IC(50) values for obestatin ranged from 5 x 10(-12) to 20 x 10(-12) M. Desacyl ghrelin per se did not affect islet hormone secretion. However, at a ten times higher concentration than acyl ghrelin (corresponding to the ratio of the two peptides in circulation), desacyl ghrelin abolished the effects of acyl ghrelin but not those of obestatin. Acyl ghrelin and obestatin affected the secretion of glucagon, PP and somatostatin at physiologically relevant concentrations; with obestatin this was the case also for insulin secretion. The combination of obestatin, acyl ghrelin and desacyl ghrelin in concentrations and proportions similar to those found in plasma resulted in effects that were indistinguishable from those induced by obestatin alone. From the data it seems that the effects of endogenous, circulating acyl ghrelin may be overshadowed by obestatin or blunted by desacyl ghrelin.  相似文献   

8.
Investigation of glucagon secretion in isolated Wistar rat islets was carried out to elucidate further the regulatory function of glucose and arginine on pancreatic A-cells. The suppressive effect of D-glucose could also be demonstrated with L-glucose, D-mannose, D-fructose, D-galactose, D-glyceraldehyde and DL-dihyroxyacetone, but not in the presence of 3-O-methylglucose or mannitol. Sugars other than D-glucose inhibited glucagon secretion only at much higher concentrations than those at which D-glucose was effective. Furthermore, although 7.5 mM D-glucose caused up to 80% inhibition, the effects of other sugars appeared to level off at only 50–60% inhibition. The inhibitory action of D-glucose or D-glyceraldehyde on glucagon secretion could not be overcome by L-arginine, but 3-O-methylglucose, mannoheptulose, 2-deoxy-D-glucose, iodoacetamide, theophylline, epinephrine and acetylcholine were effective. The insulin secretion in response to glucose was inhibited by the metabolic inhibitors used, whereas the B-cell response in the presence of glyceraldehyde was diminished by iodoacetamide only. Like D-glucose, a variety of other sugars markedly reduced the stimulatory effect of L-arginine in glucagon release.The results show that the suppression of glucagon secretion is not specific for D-glucose and not strongly connected on a stimulated insulin secretion.  相似文献   

9.
The effects of glucose and GIP on glucagon secretion were studied in perifused microdissected murine pancreatic islets. Glucagon levels were determined in effluent samples collected at 1-min intervals by radioimmunoassay using the glucagon-specific antibody, 30 K. There was no significant difference in the total amount (7740 +/- 212 pg vs 8630 +/- 36 pg, n = 10) of glucagon secreted over a 20 min period when the glucose concentration was alternately shifted between 5.5 mM and 11.1 mM, respectively. However, 22.2 mM glucose profoundly suppressed glucagon secretion. The suppressive effect of high glucose on glucagon release was partially, yet significantly, reversed by the presence of GIP, as glucagon secretion increased from a non-detectable level at 22.2 mM glucose alone to 10,175 +/- 145 pg, n = 10 (P less than 0.01). The glucagonotropic effect of GIP was dose-dependent in the range of 2 x 10(-9) - 2 x 10(-7) M, at 11.1 mM glucose. Our data show that GIP is able to substantially reverse the suppressive effect of a high glucose load on glucagon secretion.  相似文献   

10.
Objective of this study was to characterize osmotically-induced insulin secretion in two tumor cell lines. We compared response of freshly isolated rat pancreatic islets and INS-1 and INS-1E tumor cell lines to high glucose, 30 % hypotonic medium and 20 % hypertonic medium. In Ca(2+)-containing medium glucose induced insulin release in all three cell types. Hypotonicity induced insulin secretion from islets and INS-1 cells but not from INS-1E cells, in which secretion was inhibited despite similar increase in cell volume in both cell types. GdCl(3) (100 micromol/l) did not affect insulin response from INS-1E cells to hypotonic challenge. Hypertonic medium inhibited glucose-induced insulin secretion from islets but not from tumor cells. Noradrenaline (1 micromol/l) inhibited glucose-induced but not swelling-induced insulin secretion from INS-1 cells. Surprisingly, perifusion with Ca(2+)-depleted medium showed distinct secretory response of INS-1E cells to hypotonicity while that of INS-1 cells was partially inhibited. Functioning glucose-induced insulin secretion is not sufficient prerequisite for hypotonicity-induced response in INS-1E cells suggesting that swelling-induced exocytosis is not essential step in the mechanism mediating glucose-induced insulin secretion. Both cell lines are resistant to inhibitory effect of hyperosmolarity on glucose-induced insulin secretion. Response of INS-1E cells to hypotonicity is inhibited by the presence of Ca(2+) in medium.  相似文献   

11.
The effects of sodium salicylate, a prostaglandin synthesis inhibitor, on glucose-induced secretion of insulin and glucagon by the isolated perfused rat pancreas have been studied. Sodium salicylate inhibited both basal (2.8 mM glucose) and stimulated (16.7 mM glucose) insulin release in a dose dependent manner (1, 5 and 10 mM). This inhibition is not interpretable in terms of a simple inhibition of cyclooxygenase by sodium salicylate. Basal glucagon release was not changed by 1 mM sodium salicylate but the latter partially blocked its inhibition by 16.7 mM glucose. Higher doses of sodium salicylate (5 and 10 mM) inhibited basal glucagon secretion without affecting its response to 16.7 mM glucose. These findings suggest a predominant stimulatory action of endogenous prostaglandins on glucagon release.  相似文献   

12.
To investigate the effects of chronic exposure to ketone bodies on glucose-induced insulin secretion, we evaluated insulin release, intracellular Ca2+ and metabolism, and Ca2+ efficacy of the exocytotic system in rat pancreatic islets. Fifteen-hour exposure to 5 mM d-beta-hydroxybutyrate (HB) reduced high glucose-induced insulin secretion and augmented basal insulin secretion. Augmentation of basal release was derived from promoting the Ca2+-independent and ATP-independent component of insulin release, which was suppressed by the GDP analog. Chronic exposure to HB affected mostly the second phase of glucose-induced biphasic secretion. Dynamic experiments showed that insulin release and NAD(P)H fluorescence were lower, although the intracellular Ca2+ concentration ([Ca2+](i)) was not affected 10 min after exposure to high glucose. Additionally, [Ca2+](i) efficacy in exocytotic system at clamped concentrations of ATP was not affected. NADH content, ATP content, and ATP-to-ADP ratio in the HB-cultured islets in the presence of high glucose were lower, whereas glucose utilization and oxidation were not affected. Mitochondrial ATP production shows that the respiratory chain downstream of complex II is not affected by chronic exposure to HB, and that the decrease in ATP production is due to decreased NADH content in the mitochondrial matrix. Chronic exposure to HB suppresses glucose-induced insulin secretion by lowering the ATP level, at least partly by inhibiting ATP production by reducing the supply of NADH to the respiratory chain. Glucose-induced insulin release in the presence of aminooxyacetate was not reduced, which implies that chronic exposure to HB affects the malate/aspartate shuttle and thus reduces NADH supply to mitochondria.  相似文献   

13.
Hyperinsulinemia and exaggerated insulin response to glucose are among the hallmarks of obesity. However, the role of hyperinsulinemia in the etiology and maintenance of obesity has been controversial. If hyperinsulinemia plays a critical role as proposed, then its reversal may have therapeutic potential. To test this hypothesis, the activity of Ro 23–7637, {4-(2,2-diphenylethenyl)-1-[1-oxo-9-(3-pyridinyl) nonyl]piperidine}, which partially normalizes plasma insulin by an action on pancreatic islets from obese rats, was assessed. When islets were cultured for 2 days with 10 μM Ro 23–7637, a significant reduction in the exaggerated glucose-induced insulin secretion was observed. When islets from lean rats were exposed to Ro 23–7637, no reduction in insulin secretion was observed. The effects of oral administration of Ro 23–7637 were assessed in Zucker and diet-induced obese rats in doses ranging from 5 to 90 mg/kg/day. Dose-related reductions were observed in: 1) glucose-induced insulin secretion; 2) basal insulin concentration; 3) daily food intake; and 4) body weight gain. In diet-induced obese rats, selective mobilization of fat, maintenance of body protein, and decreased energetic efficiency were also observed. An association between the partial normalization of glucose-induced insulin responses and reductions of basal insulin, reduced rates of body weight gain or body weight loss and decreased food intake was observed in obese rats. Therefore, these studies indicate that Ro 23–7637 is an orally active, efficacious antiobesity agent.  相似文献   

14.
Pancreastatin is a novel peptide, isolated from porcine pancreatic extracts, which has been shown to inhibit glucose-induced insulin release "in vitro". To achieve further insight into the influence of pancreastatin on pancreatic hormone secretion, we have studied the effects of this peptide on unstimulated insulin, glucagon and somatostatin output, as well as on the responses of these hormones to glucose and to tolbutamide in the perfused rat pancreas. Pancreastatin strongly inhibited unstimulated insulin release as well as the insulin responses to glucose and to tolbutamide. It did not significantly affect glucagon or somatostatin output under any of the above-mentioned conditions. These findings suggest that pancreastatin inhibits B-cell secretory activity directly, and not through an A-cell or D-cell paracrine effect.  相似文献   

15.
Glucose metabolism and insulin secretion were studied in isolated rat pancreatic islets of different sizes and the amount of tissue was quantitated by the measurement of DNA. It was found that larger islets (140-210 ng DNA/islet) utilized more glucose (based on the conversion of 3H-5-glucose to [3H]20) per ng of DNA than islets containing less DNA (60-120 ng/islet). However, the insulin secreted per ng of DNA in response to a given glucose concentration was the same in islets of all sizes. Also, the islet insulin and glucagon content when expressed in terms of DNA did not depend upon islet size. Thus, although glucose utilization rates expressed as a function of islet DNA content were greater in larger islets, no such relationship was found for glucose-induced insulin release or insulin and glucagon content.  相似文献   

16.
The effect of jejunoileal bypass (JIB) on the enteroinsular axis was studied in vivo and in vitro in the rat. Glucose, insulin and GIP responses to oral glucose were compared in JIB and control rats. The effect of glucose and GIP on insulin release from the isolated perfused pancreas of the same animals was investigated to determine if JIB altered the sensitivity of the beta cell. Immunocytochemical studies of gut and pancreas were also carried out. Glucose, insulin and GIP responses to a glucose load were blunted after JIB, although basal GIP levels were elevated in these animals. The insulin response of the perfused JIB pancreas to GIP was 70% reduced from controls although the insulin response to glucose appeared normal. The size and area of JIB islets were unchanged from controls as was the distribution of insulin, glucagon, somatostatin and pancreatic polypeptide. GIP immunoreactive cells were present in all regions of the intestine including the JIB blind loop. This study confirms the findings of others that a relationship exists between reduced GIP and insulin response to oral glucose after JIB, and indicates that a decrease in sensitivity of the beta cell to GIP occurs following JIB that is not rapidly reversible. GIP secreted from blind loop mucosa may contribute to the high basal GIP found in JIB rats and may be causally connected to the fall in beta cell sensitivity.  相似文献   

17.
The role of the gaseous messengers NO and CO for β-cell function and survival is controversial. We examined this issue in the hyperglycemic-hyperinsulinemic ob/ob mouse, an animal model of type 2 obese diabetes, by studying islets from obese vs lean mice regarding glucose-stimulated insulin release in relation to islet NO and CO production and the influence of modulating peptide hormones. Glucose-stimulated increase in ncNOS-activity in incubated lean islets was converted to a decrease in ob/ob islets associated with markedly increased insulin release. Both types of islets displayed iNOS activity appearing after ~60 min in high-glucose. In ob/ob islets the insulinotropic peptides glucagon, GLP-1 and GIP suppressed NOS activities and amplified glucose-stimulated insulin release. The insulinostatic peptide leptin induced the opposite effects. Suppression of islet CO production inhibited, while stimulation amplified glucose-stimulated insulin release. Nonincubated isolated islets from young and adult obese mice displayed very low ncNOS and negligible iNOS activity. In contrast, production of CO, a NOS inhibitor, was impressively raised. Glucose injections induced strong activities of islet NOS isoforms in lean but not in obese mice and confocal microscopy revealed iNOS expression only in lean islets. Islets from ob/ob mice existing in a hyperglycemic in vivo milieu maintain elevated insulin secretion and protection from glucotoxicity through a general suppression of islet NOS activities achieved by leptin deficiency, high CO production and insulinotropic cyclic-AMP-generating hormones. Such a beneficial effect on islet function and survival might have its clinical counterpart in human leptin-resistant type 2 obese diabetes with hyperinsulinemia.  相似文献   

18.
We have found that preexposure to an elevated concentration of glucose reversibly induces an enhancement of basal insulin release from rat pancreatic islets dependent on glucose metabolism. This basal insulin release augmented by priming was not suppressed by reduction of the intracellular ATP or Ca(2+) concentration, because even in the absence of ATP at low Ca(2+), the augmentation was not abolished from primed electrically permeabilized islets. Moreover, it was not inhibited by an alpha-adrenergic antagonist, clonidine. A threshold level of GTP is required to induce these effects, because together with adenine, mycophenolic acid, a cytosolic GTP synthesis inhibitor, completely abolished the enhancement of basal insulin release due to the glucose-induced priming without affecting the glucose-induced increment in ATP content and ATP-to-ADP ratio. In addition, a GDP analog significantly suppressed the enhanced insulin release due to priming from permeabilized islets in the absence of ATP at low Ca(2+), suggesting that the GTP-sensitive site may play a role in the augmentation of basal insulin release due to the glucose-induced priming effect.  相似文献   

19.
20.
Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted by endocrine K-cells in response to nutrient absorption. This study has utilised numerous well-characterised dipeptidyl peptidase IV-resistant GIP analogues to evaluate the glucagonotropic actions of GIP in Wistar rats and isolated rat islets. Intraperitoneal administration of GIP analogues (25 nmol/kg body weight) in combination with glucose had no effect on circulating glucagon concentrations compared to controls in Wistar rats. However, plasma glucose concentrations were significantly (p<0.05 to p<0.001) lowered by the GIP-receptor agonists, N-AcGIP, GIP(Lys37)PAL and N-AcGIP(Lys37)PAL. The GIP antagonist, (Pro3)GIP, caused a significant (p<0.05) reduction in glucagon levels following concurrent administration with saline in Wistar rats. In isolated rat islets native GIP induced a significant (p<0.01) enhancement of glucagon release at basal glucose concentrations, which was completely annulled by (Pro3)GIP. Furthermore, glucagon release in the presence of GLP-1, GIP(Lys37)PAL, N-AcGIP(Lys37)PAL and (Pro3)GIP was significantly (p<0.05 to p<0.001) decreased compared to native GIP in isolated rat islets. These data indicate a modest effect of GIP on glucagon secretion from isolated rat islets, which was not observed in vivo. However, the GIP agonists N-AcGIP, GIP(Lys37)PAL and N-AcGIP(Lys37)PAL had no effect on glucagon release demonstrating an improved therapeutic potential for the treatment of type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号