首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ratio of accessory phycobiliproteins to chlorophyll a is controlled by light intensity in the marine red alga Griffithsia pacifica. The greatest changes in pigment ratios are observed below 300 ft-c; above 300 ft-c the response approaches saturation. Ultrastructural examination of chloroplasts of plants grown at different intensities reveals that the number of phycobilisomes per unit of photosynthetic thylakoid changes in direct proportion to the pigment ratios and in inverse proportion to the light intensity.  相似文献   

2.
The pigment composition of phytoperiphyton was studied for the Sylva River and its tributaries in 2005–2006. The seasonal dynamics of chlorophyll a, b, c was analyzed for the epiphyton (on macrophytes) and epilithon (on stones and rocky soil). A significant variability of the relative chlorophyll a concentration (per wet weight unit) was observed in phytoperiphyton.  相似文献   

3.
Reductions in the growth light level (40 to 6 μmol m-2 s-1) resulted in increases in chlorophyll and protein per cell for all of the species examined. Only Dunaliella tertiolecta exhibited a reduction in chlorophyll a:b ratio with decreases in the photon flux density. However, the specific absorption coefficient (ā? i ) normalized to chlorphyll a (ā? a remained invariant for all of the microalgae studied. Constant values for the specific absorption coefficient normalized to the total pigment content (ā? a+b ) were also found for the species Chlamydomonas rheinhardii, Euglena viridis and Scenedesmus obliquus. In contrast ā? a+b for D. tertiolecta decreased with a reduction in light level due to an increase in the proportion of chlorophyll b. Differences in ā? i were related to cell size and pigment content and possible reasons for the constancy of ā? a discussed. Increases in the absorption cross sections (¯sQ a ) were also found at reduced light levels due to an increase in the absorptance per cell (αcell). The lower αcell for D. tertiolecta, compared with C. rheinhardii was exactly compensated for by a larger light-capturing area. Although the increase in αcell does not compensate for the reduction in the incident light level, it does reduce this range by half on an absorbed light basis.  相似文献   

4.
Aquatic habitats are usually structured by light attenuation with depth resulting in different microalgal communities, each one adapted to a certain light regime by their specific pigment composition. Several taxa contain pigments restricted to one phylogenetic group, making them useful as marker pigments in phytoplankton community studies. The nuisance and invasive freshwater microalga Gonyostomum semen (Raphidophyceae) is mainly found in brown water lakes with sharp vertical gradients in light intensity and color. However, its pigment composition and potential photoadaptations have not been comprehensively studied. We analyzed the photopigment composition of 12 genetically different strains of G. semen by high performance liquid chromatography after acclimation to different light conditions. We confirmed the pigments chl a, chl c1c2, diadinoxanthin, trans‐neoxanthin, cis‐neoxanthin, α and β carotene, which have already been reported for G. semen. In addition, we identified, for the first time, the pigments violaxan‐thin, zeaxanthin, and alloxanthin in this species. Alloxanthin has never been observed in raphidophytes before, suggesting differences in evolutionary plastid acquisition between freshwater lineages and the well‐described marine species. The amount of total chl a per cell generally decreased with increasing light intensity. In contrast, the increasing ratios of the prominent pigments diadinoxanthin and alloxanthin per chl a with light intensity suggest photoprotective functions. In addition, we found significant variation in cell‐specific pigment concentration among strains, grouped by lake of origin, which might correspond to genetic differences between strains and populations.  相似文献   

5.
Barbara B. Prézelin 《Planta》1976,130(3):225-233
Summary The marine dinoflagellate, Glenodinium sp., was cultured at a series of light levels and growth, pigmentation, and photosynthetic rates were compared. Under decreasing light conditions, growth rates decreased, cellular chlorophyll a and peridinin content per cell increased, and maximum cellular photosynthetic rates remained unchanged. Pigmentation changes were related to alterations in cellular concentrations of a peridinin-chlorophyll a-protein and an unidentified chlorophyll a component of the chloroplast membrane. Maintenance of photosynthetic rates with decreased irradiance is interpreted as an increase in the number of pigment molecules in the light-harvesting antenna associated with the reaction centers of the photosynthetic apparatus, thus increasing the potential for photon capture for photosynthesis.Abbreviations ASP 7 medium see Provasoli, 1963 - PCP peridinin-chlorophyll a-protein - PSU photosynthetic unit - P-I photosynthesis-irradiance curve - TLC thin layer chromatography - A optical absorbance at a designated wavelength - SIO (F.T. Haxo) Scripps Institution of Oceanography collection This paper represents a portion of a thesis submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy from the University of California, San Diego  相似文献   

6.
The effects of photon flux density (PFD) and spectral quality on biomass, pigment content and composition, and the photosynthetic activity of Oscillatoria agardhii Gomont were investigated in steady-state populations. For alterations of PFD, chemostat populations were exposed to 50, 130 and 230 μmol photons·m?2·s?1 of photosynthetic active radiation (PAR). Decreases in biomass, chlorophyll a (Chl a) and c-phycocyanin (CPC) contents, and CPC: Chl a and CPC: carotenoid content was not altered. Increases in the relative abundances of myxoxanthophyll and zeaxanthin and deceases in the relative abundances of echinenone and β-carotene within the carotenoid pigments coincided with increasing PFD. Increases in Chl a-specific photosynthetic rates and maxima and decreases in biomass-specific photosynthetic rates and maxima with increasing PFD were attributed to increased light harvesting by carotenoids per unit Chl a and reduction in total pigment content, respectively. Responses to spectral quality were tested by exposing chemostat populations to a gradient of spectral transmissions at 50 μmol photons·m?2·s?1 PAR. Biomass differences among populations were likely attributable to the distinct absorption of the PAR spectrum by Chl a, CPC, and carotenoids. Although pigment contents were not altered by spectral quality, relative abundances of zeaxanthin and echinenone in the carotenoid pigments increased in populations exposed to high-wavelength PAR. The population adapted to green light possessed a greater photosynthetic maximum than populations adapted to other spectral qualities.  相似文献   

7.
The chlorophyll b-containing alga Mantoniella squamata was analyzed with respect to its capacity to balance the energy distribution from the light-harvesting antenna to photosystem I or photosystem II. It was shown, that this alga is unable to alter the absorption cross section of the two photosystems in terms of short-time regulations (state transitions). The energy absorbed by the LHC, which contains 60% of total photosynthetic pigments, is transferred to both photosystems without any preference. The stoichiometry of the two photosystems is found to be extremely unequal and variable during light adaptation. In high light, the molar ratio of P-680 per P-700 is found to be two, whereas under low light conditions this ratio accounts to nearly four. This very unbalanced stoichiometry of the reaction centers gives some new insights into the concept of the photosynthetic unit as well as in the importance of the regulation of the energy distribution. It is assumed that the high concentration of photosystem II can be understood as a mechanism to prevent the overexcitation of photosystem I. In addition, the changes im membrane protein pattern are not accompanied by variations in the ratio of appressed to nonappressed membranes as probed by ultrastructural analysis. It is suggested that the thylakoids are organized like a homogenous pigment bed. The lack of state transitions can be interpreted as a consequence of this unusual membrane morphology.Abbreviations Chl chlorophyll - CPa chlorophyll a-protein of PSII - CPl P-700 chlorophyll a-protein - CPD Chlorophyll packing density index - cyt f cytochrome f - FP free pigments - LHC light-harvesting complex - Pmax light saturated photosynthetic rates per chlorophyll - n number of experiments - PQ plastoquinone - PS photosystem - PSU photosynthetic unit - QE non-photochemical quenching - QQ photochemical quenching  相似文献   

8.
Young plants of Laminaria hyperborea collected from the field were grown for 2·5–4 weeks in blue, green, red and white (simulated underwater) light fields at 5, 20 and 100 μmol m-2s-1. The absolute concentrations of all pigments showed little variation with irradiance in green and white light, but decreased in high irradiances of red and blue light. The ratio of fucoxanthin to chlorophyll a also increased in the latter treatments, as did the chlorophyll c:a ratio in bright red light. There was little difference in the action spectrum for photosynthesis between the different light qualities at any one irradiance, but the action spectra for plants grown at 100 μmol m-2s-1 showed deeper troughs and higher peaks than those for plants grown at lower irradiances. Gross photosynthesis per unit of thallus area at 10 μmol m-2s-1 decreased in plants with low total pigment concentrations, but the photosynthesis per unit of pigment concentration increased. This suggestion of self-shading of pigment molecules within the algal thalli was supported by a flattening of the action spectrum in plants with higher chlorophyll a contents. The variations observed between the action spectra for different plants could thus be attributed to the decrease in pigment content at high irradiances, and not to the light quality in which the plants were grown.  相似文献   

9.
Summary Exponentially grown cells of the freshwater diatom Navicula pelliculosa (Bréb) Hilse, contained chlorophyll a, chlorophyll c, fucoxanthin, diadinoxanthin, diatoxanthin, neofucoxanthin, -carotene, and an unknown pigment, the absorption spectrum of which is reported. Changes in amounts of chlorophyll a, fucoxanthin and diadinoxanthin were determined during the course of silicon-starvation synchrony carried out in the light or dark. Changes in the rate of chlorophyll a and fucoxanthin syntheses were similar. Synthesis ceased after 5–7 hr of silicon starvation, but recommenced in cultures kept in the light, once silicon was re-introduced. In cultures kept in the dark no significant synthesis was observed after re-introduction of silicon. Diadinoxanthin synthesis continued in the light at all times, although at a lower rate during the silicon-starvation period. In the dark, synthesis of this pigment ceased when cell division stopped, and the amount per unit volume of culture decreased. These results are discussed in relation both to the effect of silicon on the metabolism of the diatom and to the possible function of the carotenoids.Dedicated to Prof. C. B. van Niel on the occasion of his 70th birthday.  相似文献   

10.
To better predict plant production in the sea, it would be desirable to be able to calculate, from easily obtainable measurements at one sampling, the growth rate of the prevailing stock of phytoplankton. To this end growth rates, pigment composition, cell volume and cell surface area data were collected for several species of marine phytoplankton in logarithmic growth at 20–21°C and 0.07 cal/cm2. min light intensity. Similar data for one species, Dunaliella tertiolecta, are given for several combinations of light intensity and temperature, and for another species, Ditylum brightwellii, grown in nitrogen deficiency. The problem of estimating growth rates of phytoplankton was divided into three parts: 1) variation of growth rate among diverse species and its relationship to light absorption by cell chlorophyll a: 2) variation in growth rate with light intensity; 3) variation in growth rate with temperature. An equation has been formulated for calculating growth rate which provides a more precise fit of the data than do equations for growth rate based upon cell surface/volume ratios or cell volume. The formulation is based upon light absorption by chlorophyll a. It allows for variations in the efficiency of utilization of light absorbed by chlorophyll a and the changes in chlorophyll a content resulting from light intensity and temperature differences. We do not attempt to predict variations in growth rate with photoperiod or spectral distribution, nor do we allow for light effects upon growth rate not mediated by photosynthesis, so the model is, at best, a rough approximation of reality.  相似文献   

11.
Summary Four autotrophic compartments were recognised in Lake Kitiesh, King George Island (Southern Shetland) at the beginning of the summer in 1987: snow microalgae, ice bubble communities, phytoplankton in the water column and benthic communities of moss with epiphytes. Chlorophyll a concentration and pigment absorption spectra were obtained in these four compartments before and/or after the thawing of the ice cover. During the ice free period, carbon fixation and biomass was measured in the phytoplankton and in the benthic moss Campyliadelphus polygamus. From these measurements we conclude that the benthic moss is the most significant autotrophic component in this lake in terms of biomass, chlorophyll a content and primary productivity. The integral assimilation number (The ratio of carbon fixation per unit area to biomass per unit area) values were similar for both phytoplankton and the moss, ranging from 3.6 to 5.4 mg C (mg Chl a)–1h–1in phytoplankton and from 4.0 to 6.4 mgC (mg Chl a)–1h–1 in the benthic moss. This approach allows comparisons of carbon fixation efficiency of the chlorophyll a under a unit area between compartments in their different light environments.  相似文献   

12.
Photosynthetic light‐response curves of the deep‐water Laminaria abyssalis Oliveira and of the intertidal L. digitata Lamoroux were determined and related to photoinhibition phenomena as monitored by oxygen evolution and photosystem II efficiency (FV/FM). L. abyssalis has half the pigment content, number of cells and plastids, and photosynthetic capacity per unit area compared with L. digitata. L. abyssalis showed a higher in vivo Chl a absorption coefficient and higher photosynthetic efficiency on a Chl a basis, although the two algae showed somewhat similar light‐response curves on a Chl a basis. Both species showed similar Chl a/Chl c and Chl a/fucoxanthin ratios, and similar dark respiration rates and light compensation points. In addition, they also showed similar convexities in their light‐response curves and no differences in their light saturation of FV/FM. Room temperature chlorophyll fluorescence induction measurements of fronds incubated in 3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea (DCMU) suggest that both species may have a similar PSII absorption cross section. Thus, L. abyssalis appears to optimize its light absorption at very low light intensities, not by increasing the pigment content, but by absorbing light more efficiently. However, L. abyssalis was more sensitive to photoinhibition than L. digitata and showed no recovery of FV/FM and O2 evolution after a photoinhibitory treatment, even with a subsequent exposure to 24 h of dim light. L. digitata, on the other hand, recovered its photosynthetic capacity within 6 h under dim light. These results suggest that photosynthetic light‐induction curves based on Chl a are not a good indicator of either the photosynthetic capacity or the sensitivity to photoinhibition when macroalgae of different species are being compared. Based on their light‐response and photoinhibition characteristics, we suggest that L. abyssalis, a deep‐water oceanic macroalgae, is an atypical shade alga whereas L. digitata has the properties of a sun alga.  相似文献   

13.
Photosynthetic rates, growth rates, cell carbon, cell protein, and chlorophyll a content of two diatom and two dinoflagellate species were measured. The microalgae were chosen to have one small and one large species from each phylogenetic group; the two size categories differed from each other by 1.5 orders of magnitude in terms of cell carbon or cell protein. The cultures for the experiments were grown under continuous light at an irradiance high enough for the light-saturation of growth for all four species. The four species were found to have similar maximum photosynthetic rates per unit chlorophyll a. The diatom species showed lower carbon/chlorophyll a ratios and higher photosynthetic rates per unit carbon than the dinoflagellates. The higher growth rates of the diatoms were shown to be related to their higher photosynthetic rates per unit carbon. The ecological significance of the physiological difference between these two groups of microalgae is discussed.  相似文献   

14.
The effect of light quality on the composition, function and structure of the thylakoid membranes, as well as on the photosynthetic rates of intact fronds from Asplenium australasicum, a shade plant, grown in blue, white, or red light of equal intensity (50 microeinsteins per square meter per second) was investigated. When compared with those isolated from plants grown in white and blue light, thylakoids from plants grown in red light have higher chlorophyll a/chlorophyll b ratios and lower amounts of light-harvesting chlorophyll a/b-protein complexes than those grown in blue light. On a chlorophyll basis, there were higher levels of PSII reaction centers, cytochrome f and coupling factor activity in thylakoids from red light-grown ferns, but lower levels of PSI reaction centers and plastoquinone. The red light-grown ferns had a higher PSII/PSI reaction center ratio of 4.1 compared to 2.1 in blue light-grown ferns, and a larger apparent PSI unit size and a lower PSII unit size. The CO2 assimilation rates in fronds from red light-grown ferns were lower on a unit area or fresh weight basis, but higher on a chlorophyll basis, reflecting the higher levels of electron carriers and electron transport in the thylakoids.

The structure of thylakoids isolated from plants grown under the three light treatments was similar, with no significant differences in the number of thylakoids per granal stack or the ratio of appressed membrane length/nonappressed membrane length. The large freeze-fracture particles had the same size in the red-, blue-, and white-grown ferns, but there were some differences in their density. Light quality is an important factor in the regulation of the composition and function of thylakoid membranes, but the effects depend upon the plant species.

  相似文献   

15.
Corals as light collectors: an integrating sphere approach   总被引:3,自引:3,他引:0  
An integrating sphere was used to estimate the fraction of the incident quantum flux absorbed by a coral colony placed within it. This method allows one to examine the in vivo light absorption of intact coral colonies. We used this method to study effects of colony morphology, size, and photoacclimation status on the light harvesting efficiency by the zooxanthellae. Light absorption per unit of coral surface area decreased with increase in colony size, with a clear effect of different coral morphologies. In branched colonies, shading among branches reduced the absorbed light per unit area and per zooxanthellae. Photoacclimation to low light resulted in increased cellular chlorophyll concentrations in the zooxanthellae. In shade acclimated colonies, areal chlorophyll concentrations increased significantly, leading to more overlap among the optical cross-sections of pigments within cells and mutual shading among cells. These package effects showed up as a decrease in the in vivo, chlorophyll-a specific, spectral average, effective optical cross-section, a*. An integrating sphere is a useful tool for collecting optical information on corals.  相似文献   

16.
Illumination of etiolated maize leaves with low-intensity light produces a chlorophyll/pheophytin-containing complex. The complex contains two native chlorophyll forms Chl 671/668 and Chl 675/668 as well as pheophytin Pheo 679/675 (with chlorophyll/pheophytin ratio of 2/1). The complex is formed in the course of two successive reactions: reaction of protochlorophyllide Pchlde 655/650 photoreduction resulted in chlorophyllide Chlde 684/676 formation, and the subsequent dark reaction of Chlde 684/676 involving Mg substitution by H2 in pigment chromophore and pigment esterification by phytol. Out data show that the reaction leading to chlorophyll/pheophytin-containing complex formation is not destructive. The reaction is in fact biosynthetic, and is competitive with the known reactions of biosynthesis of the bulk of chlorophyll molecules. The relationship between chlorophyll and pheophytin biosynthesis reactions is controlled by temperature, light intensity and exposure duration.The native complex containing pheophytin a and chlorophyll a is supposed to be a direct precursor of the PS II reaction centre in plant leaves.Abbreviations Chl chlorophyll - Chlde chlorophyllide - Pchl protochlorophyll - Pchlde protochloropyllide - Pheo pheophytin - PS II RC Photosystem II reaction centres. Abbreviations for native pigment forms: the first number after pigment symbol corresponds to the maximum position of low-temperature fluorescence band (nm); the second number corresponds to the maximum position of long wave absorption band  相似文献   

17.
The variation in Skeletonema cells grown at 3 klux continuous illumination and 20°C is reported. Four different types of lamps gave no difference in the photosynthetic characteristics. The average diameter of the cells decreased from 8–3.5 μ during their six months vegetative period. The ratio between the pigment content in the largest and the smallest cells was about 2:1. A good correlation between cell volume and chlorophyll a content was found for this species. The content of chlorophyll c generally varied between 4 and 17 per cent of the chlorophyll a content. — A distinct correlation between the chlorophyll a content and the rate of photosynthesis per unit of cells at low light intensity was found. The rate of photosynthesis, in mg C per mg chlorophyll a and hour at 1 klux, varied between 0.40 and 0.70 for all 60 experiments with an average value of 0.56. The corresponding value for cells deficient in phosophorus was 0.19 and for cells deficient in nitrogen 0.09. — The material also showed a good correlation between the rate of photosynthesis per cell at 1 klux and the light-saturated rate of photosynthesis. Ik varied between 7 and 13 klux.  相似文献   

18.
The luminescence of the marine dinoflagellate Gonyaulax polyedra shows an endogenous diurnal rhythm. The effect of light during the phase of low luminescence capacity may be observed as an enhancement of luminescence during the subsequent bright phase. During the bright phase, however, illumination diminishes the capacity for luminescence. The action spectra for these two effects of light have been determined, and the major pigments of Gonyaulax have been examined. A consideration of the action spectrum and the pigment complement of Gonyaulax suggests that photosynthesis during the day is responsible, directly or indirectly, for the enhancement of luminescence during the following night. Photoinhibition of luminescence is in part attributable to light absorbed by the photosynthetic pigments. However, activity observed in the far red region of the spectrum beyond the absorption maximum of chlorophyll a suggests that an additional pigment, present in small amounts, may also act as sensitizer for photoinhibition.  相似文献   

19.
Light-harvesting Chl a/b protein complexes were isolated from the higher plant Sinapis alba, the green alga Chlorella fusca, and the prasinophycean alga Mantoniella squamata by mild gel electrophoresis. The energy transfer from chlorophyll b and the accessory xanthophyll was measured by means of fluoresence spectroscopy at 77 K. The pigment composition of the isolated antenna complexes was determined by high performance liquid chromatography in order to calculate the number of light absorbing molecules per chlorophyll a in the different light-harvesting complexes. These results were complemented by the quantitation of the pigments in total thylakoids as well as in the different electrophoretic fractions. On the basis of these data the in vivo ratios of xanthophylls per chlorophyll a could be estimated. The results show that the light-harvesting complexes from Chlorella and from Sinapis exhibit identical ratios of total xanthophylls per chlorophyll a. By contrast, in the prasinophycean alga Mantoniella, the light-harvesting complex markedly differs from the other chlorophyll b containing proteins. It contains, in addition to neoxanthin and violaxanthin, high amounts of prasinoxanthin and its epoxide, which contribute significantly to light absorption. The concentration of chlorophyll b in the complex is very much higher in the antenna of Mantoniella than in those of Chlorella and Sinapis. Furthermore, it must be emphasized that in addition to chlorophyll b, a third chlorophyll species acts in the energy transfer to chlorophyll a. This chlorophyll c-like pigment is found to be present in a concentration which improves very efficiently the absorption in blue light. In light of these results it can be concluded that the absorption cross section in Mantoniella is higher not only because of an enhanced number of light-harvesting particles in the membrane, but also because of a higher ratio of accessory pigments to chlorophyll a.Abbreviations Chl Chlorophyll - FP Free Pigments - HPLC High Performance Liquid Chromatography - LHC Light-harvesting Chlorophyll protein complex - PAGE Polyacrylamide Gel Electrophoresis - PS Photosystem  相似文献   

20.
The protochlorophyll(ide) present in primary roots of dark-grown corn (Zea mays) seedlings has an in vivo absorption maximum at 634 nm. Red light converts the pigment to chlorophyll(ide) a with an absorption maximum at 675 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号