首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Catabolism of human erythrocyte membrane band 3 protein in the presence of Ca2+ was studied. An increase in the amount of a 30 kDa amino terminal fragment of band 3 was observed when erythrocyte membranes were incubated for 30 min with 1 mM Ca2+ in the presence of whole erythrosol. Incubation of the membranes with Ca2+ alone did not result in band 3 breakdown. Generation of the 30 kDa fragment from band 3 was related to the action of a leupeptin-sensitive Ca2+-dependent proteinase in the cytosol. This proteinase was also responsible for the increased production of a 52 kDa and a 70 kDa transmembrane carboxyl terminal fragment of band 3. From the size of the generated fragments, it is deduced that in the presence of Ca2+ and Ca2+-dependent proteinase, band 3 protein is cleaved at the cytoplasm/membrane interface and along its cytoplasmic domain.  相似文献   

2.
Intracellular localization of two molecular species of calpain (Ca2+-dependent cysteine proteinase) was studied by immunocyto- and histochemical methods employing antibodies strictly monospecific for the respective antigens. Apparent immunological cross-reactivity between the larger subunits of calpain I (low Ca2+-requiring form) and calpain II (high Ca2+-requiring form) was calculated to be 15-17%, and two steps of affinity chromatography were needed to obtain antibodies which can discriminate between the two proteases. Indirect immunofluorescent staining of cultured PK 15 cells revealed diffuse staining of the cytoplasm with both antibodies against calpain I and calpain II. Preincubation with Ca2+-ionophore had no effect on the staining patterns. Sections of porcine kidney were stained by the avidin-biotinylated peroxidase complex method. The proximal and distal tubules and collecting duct were stained, but the glomerulus, macula densa, and vascular vessels were not stained by either anti-calpain I or anti-calpain II antibodies.  相似文献   

3.
Identification of calpain II in porcine sperm   总被引:2,自引:0,他引:2  
The role that proteolytic enzymes may play in membrane-associated phenomena of sperm has been the subject of extensive investigation. In the present study, we have examined the possibility that a Ca2+-activated, neutral protease, calpain II, may be associated with sperm membranes. Using indirect immunofluorescence with primary antibodies, which are polyclonal and monoclonal antibodies directed against the 80 kDa subunit of calpain II, we have established the presence of this antigen in porcine sperm. Staining by anticalpain II (80 kDa subunit) of the apical segment of the acrosomal cap and basal body (centriolar) region was seen consistently. Variable staining of the sperm tail was also observed. These observations, combined with our positive identification of a 80 kDa protein in acrosomal membranes (via immunoblot), document the association of this protease with sperm membranes. The proximity of calpain II to the acrosome suggests a potential role for the protease in the Ca2+-mediation of the acrosome reaction.  相似文献   

4.
Ca2+-ATPase of human erythrocyte membranes, after being washed to remove Ca2+ after incubation with the ion, was found to be activated. Stimulation of the ATPase was related neither to fluidity change nor to cytoskeletal degradation of the membranes mediated by Ca2+. Activation of the transport enzyme was also unaffected by detergent treatment of the membrane, but was suppressed when leupeptin was included during incubation of the membranes with Ca2+. Stimulation of the ATPase by a membrane-associated Ca2+-dependent proteinase was thus suggested. Much less 138 kDa Ca2+-ATPase protein could be harvested from a Triton extract of membranes incubated with Ca2+ than without Ca2+. Activity of the activated enzyme could not be further elevated by exogenous calpain, even after treatment of the membranes with glycodeoxycholate. There was also an overlap in the effect of calmodulin and the Ca2+-mediated stimulation of membrane Ca2+-ATPase. While Km(ATP) of the stimulated ATPase remained unchanged, a significant drop in the free-Ca2+ concentration for half-maximal activation of the enzyme was observed.  相似文献   

5.
The cytosol of human erythrocytes was found to contain a Ca2+-dependent thiol protease (calpain) and its specific inhibitor (calpastatin) by DEAE-cellulose chromatography at pH 8.0, although no proteolytic activity toward casein was detected in the unfractionated hemolysate. The protease required only 40 microM Ca2+ for 50% activation, indicating that it belongs to the highly Ca2+-sensitive type of calpain, namely, calpain I. It was not inactivated by heating at 58 degrees C for 10 min at pH 7.2, the optimal pH for its action on casein. The inhibitor comprised major and minor components, calpastatin H (Mr = 280,000) and caplastatin L (Mr = 48,000). Both were heat-stable proteins which were readily inactivated by tryptic digestion. The inhibition of erythrocyte calpain by erythrocyte calpastatin H or L was not due to sequestering of Ca2+ from the reaction medium by the inhibitor protein. The calpain preparation preferentially digests bands III and IVa of human erythrocyte membrane proteins, with little or no cleavage of the bands corresponding to spectrin.  相似文献   

6.
Possible role of calpain I and calpain II in differentiating muscle   总被引:2,自引:0,他引:2  
The variable distribution of the 80-kD subunit of two calcium-activated proteases, calpain I and calpain II, has been examined in L8 and L6 myoblasts, and their non-fusing variants, fu-1 and M3A using non-cross-reacting monoclonal antibodies to both subunits. Immunofluorescence results have shown that while the 80-kD subunit of calpain I is localized in the cytoplasm of all the myoblasts, the 80-kD subunit of calpain II appears to be predominantly associated with the plasma membranes of L8 and L6 myoblasts. The distribution of the 80-kD subunit of calpain II in non-fusing myoblasts, fu-1 and M3A, is generally cytoplasmic and diffuse. Immunoblot analysis of membrane and cytosol fractions of all the myoblasts using the monoclonal antibodies described above essentially confirms the immunofluorescence findings. Because calpain II exhibits a peripheral distribution in cells which are fusion-competent, L6 and L8 myoblasts, but not in fu-1 and M3A myoblasts, we suggest that calpain II may play a role in the Ca2+-mediated fusion events of differentiating (prefusion) myoblasts.  相似文献   

7.
Isovalerylcarnitine, a product of the catabolism of L-leucine, is a potent activator of rat calpains isolated from erythrocytes, kidney, liver, skeletal and heart muscle. Only calpains II, but not calpains I, are activated by IVC, with the only exception of rat erythrocyte calpain I, the only species present in these cells which has a Ca2+ requirement higher than that of most calpain I isoenzymes. Activation by IVC involves a dual effect: 1) a ten fold increase in the affinity of calpain for Ca2+, and 2) an increase in the Vmax 1.3-1.6 fold above the values observed with the native enzymes at saturating [Ca2+] as well as with the autolyzed fully active calpain form at 5 microM Ca2+. The increased affinity for calcium results in an increased rate of autoproteolysis of calpain II. Activation by IVC is additive to that promoted by interaction (or association) to phospholipids vesicles. Together these results suggest that IVC may operate as a selective activator of calpain both in the cytosol and at the membrane level; in the latter case in synergism with the activation induced by association of the proteinase to the cell membrane.  相似文献   

8.
Preincubation of human erythrocyte membranes with calcium in the submillimolar to millimolar concentration range resulted in an increase of the Ca2+ affinity and apparent maximum velocity of the Ca2(+)-stimulated Mg2(+)-dependent ATPase (Ca2(+)-ATPase). The activation was persistent, as it was not reversed when the Ca2(+)-preincubated membranes were washed with ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid-containing buffers. Magnesium was not required for the activation, whereas greater than 2 mM Mg2+ partially antagonized the activation by Ca2+. In some membrane preparations ATP was required in addition to Ca2+ for activation of the Ca2(+)-ATPase, but nonhydrolyzable analogs of ATP had the same effect. Calmodulin prevented the activation by Ca2+ over the same concentration range in which it interacts with the Ca2(+)-ATPase. Taken together the results obtained provided strong evidence that the Ca2+ activation of the enzyme was not due to proteolytic cleavage by endogenous calpain. Thus, activation by Ca2+ was not blocked by leupeptin (100-200 microM), did not require dithiothreitol, and occurred at Ca2+ concentrations greater than those required for activation of calpain I. Furthermore, Ca2+ activation did not result in change in the mobility the native 136-kDa species of the Ca2(+)-ATPase on SDS-gel electrophoresis. Moreover, solubilization of the Ca2(+)-pretreated membranes with Triton X-100 reversed the Ca2+ activation of the Ca2(+)-ATPase. On the other hand, Ca2(+)-pretreatment of the membranes modified the susceptibility of the Ca2(+)-ATPase to both cleavage and activation by exogenously added calpain I. We conclude that pretreatment of Ca2(+)-ATPase in erythrocyte membranes with millimolar Ca2+ activates the enzyme by inducing a persistent conformational change of the enzyme which is, however, subsequently reversed by detergent solubilization.  相似文献   

9.
Summary Observations described here provide the first demonstration that calpain (Ca2+-dependent cysteine protease) can degrade proteins of skeletal muscle plasma membranes. Frog muscle plasma membrane vesicles were incubated with calpain preparations and alterations of protein composition were revealed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Calpain II (activated by millimolar concentrations of Ca2+) was isolated from frog skeletal muscle, but the activity of calpain I (activated by micromolar concentrations of Ca2+) was lost during attempts at fractionation. Calpain I obtained from skeletal muscle and erythrocytes of rats was tested instead, and exerted effects similar to those of frog muscle calpain on the membrane proteins. All of the calpain preparations caused striking losses of a major membrane protein of molecular mass of approximately 97 kDa, designated band c, and diminution of a thinner band of approximately 200 kDa. There were concomitant increases in 83-and 77-kDa polypeptides. These effects were absolutely dependent on the presence of free Ca2+, and were completely blocked by calpastatin, a specific inhibitor of calpain action. Frog muscle calpain differed only in being relatively more active at 0°C than were the calpains from rat tissues. Experimental observations suggest that calpain acts at the cytoplasmic surface of the plasma membrane.  相似文献   

10.
In the presence of micromolar concentrations of Ca2+ the catalytic 80 kDa subunit of human erythrocyte procalpain binds to the cytosolic surface of the erythrocyte membrane. Binding is rapid, highly specific and is reversed by the removal of Ca2+. In the bound form the 80 kDa catalytic subunit undergoes a rapid conversion to calpain, the active 75 kDa Ca2+-requiring proteinase. The activated proteinase produces extensive degradation of membrane components, particularly of band 4.1 and 2.1 proteins. Binding to membranes may represent an obligatory physiological mechanism for the conversion of procalpain to calpain.  相似文献   

11.
Limited proteolysis of the plasma membrane calcium transport ATPase (Ca2+-ATPase) from human erythrocytes by trypsin produces a calmodulin-like activation of its ATP hydrolytic activity and abolishes its calmodulin sensitivity. We now demonstrate a similar kind of activation of the human erythrocyte membrane Ca2+-ATPase by calpain (calcium-dependent neutral protease) isolated from the human red cell cytosol. Upon incubation of red blood cell membranes with purified calpain in the presence of Ca2+ the membrane-bound Ca2+-ATPase activity was increased and its sensitivity to calmodulin was lost. In contrast to the action of other proteases tested, proteolysis by calpain favors activation over inactivation of the Ca2+-ATPase activity, except at calpain concentrations more than 2 orders of magnitude higher. Exogenous calmodulin protects the Ca2+-ATPase against calpain-mediated activation at concentrations which also activate the Ca2+-ATPase activity. Calcium-dependent proteolytic modification of the Ca2+-ATPase could provide a mechanism for the irreversible activation of the membrane-bound enzyme.  相似文献   

12.
Activation of erythrocyte membrane Ca2+-ATPase by calpain   总被引:1,自引:0,他引:1  
Ca2+-ATPase of erythrocyte membranes, prepared from erythrocytes substantially removed of contaminating leukocytes, was found to be activated by calpain isolated from the same source. Saponin or glycodeoxycholate treatment of membranes was essential for elicitation of the calpain response. Unlike the membrane bound ATPase, solubilized ATPase was inactivated by calpain. Digestion of membranes with the protease did not affect the Km (ATP) of Ca2+-ATPase though stimulation of the membrane ATPase by calmodulin could be partially substituted by calpain treatment. As compared with control, Ca2+-ATPase of calpain-digested membranes attained maximal activity at a lower free Ca2+ concentration.  相似文献   

13.
Two forms of Ca2+-dependent cysteine proteinase (calpain, EC 3.4.22.17) and their specific endogenous inhibitor (calpastatin) were partially purified from porcine retina: calpain I (low-Ca2+-requiring form) was half-maximally activated at 8 microM-Ca2+, and calpain II (high-Ca2+-requiring form) at 250 microM-Ca2+. Both calpain I and calpain II were inhibited by calpastatin. Calpain I from porcine retina was shown to be composed of 83 000- and 29 000-Mr subunits, and calpain II of 80 000- and 29 000-Mr subunits, by the use of monospecific antibodies. Calpains I and II were both found to hydrolyse microtubule-associated proteins 1 and 2 rapidly.  相似文献   

14.
Comparison of calpain I and calpain II from carp muscle   总被引:2,自引:0,他引:2  
1. The content of calpain II is 3.4 times more than that of calpain I when estimated by the elution profiles from a column of DEAE-cellulose. 2. Calpain I required 1 mM Ca2+ and calpain II required 5 mM Ca2+ to show the full activities. These data demonstrated that Ca2+-sensitivities of both calpains were lower than those of mammalian calpains, respectively. 3. The optimum caseinolytic activity was pH 7.2 for calpain I and pH 7.5 for calpain II. 4. The molecular weight of calpain I was estimated to be 110 k and that of calpain II to be 120 k by gel filtration. 5. Calpain I was much more heat-stable than calpain II around 50-60 degrees C. 6. Both calpains were sensitive to calpastatin, an endogenous inhibitor for calpain.  相似文献   

15.
A fibrillar protein complex, possessing ouabain-insensitive Ca2+-ATPase activity was isolated from human erythrocyte membranes by using a low ionic strength extraction procedure. Mg2+-ATPase activity was revealed upon addition of rabbit skeletal muscle actin, thus demonstrating the presence of a myosin-like protein in the crude extract of the erythrocyte membrane. Upon sodium dodecylsulfate gel electrophoresis, the extract showed mainly the doublet of subunit molecular weight bands of 230 000 and 210 000, and more than 10 faster moving bands. Gel filtration of the erythrocyte membrane extract on Sepharose 4B furnished 4 fractions. Fraction I, containing the doublet and 80 000, 60 000 and 46 000 subunit molecular weight bands was 5-fold purified with respect to Ca2+-ATPase activity, but was devoid of actin-activated Mg2+-ATPase activity. Fraction II, containing only the doublet, was devoid of Ca2+ and actin-activated Mg2+-ATPase activity. The 210 000 subunit molecular weight protein could be phosphorylated in the presence of Mg2+ in the crude extract and Fraction I but not in Fraction II.  相似文献   

16.
Protein kinase [EC 2.7.1.37] of human erythrocyte membranes was solubilized with 0.5 M NaCl in 5 mM phosphate buffer, pH 6.7 at 4 degrees C and purified on a CM-Sephadex C-50 column, followed by affinity chromatography on a histone-Sepharose 4B column. The purified protein kinase gave a single band (molecular weight; 41,000) on examination by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The optimum pH of the enzyme was 8.0 and a millimolar range of concentration of Mg2+ was required for its maximum activity. Histone and protamine were well phosphorylated by the protein kinase but casein and phosvitin were poor phosphate acceptors for the enzyme. The enzymic activity was not stimulated by cyclic AMP (cAMP). A cAMP-finding protein from human erythrocyte membranes inhibited the activity of the protein kinase, but the activity was restored with cAMP. A heat stable protein inhibitor from rabbit skeletal muscle also inhibited this enzyme. From these observations, this protein kinase seemed to be a catalytic subunit of the membrane bound cAMP-dependent protein kinase. This enzyme was strongly inhibited with Ca2+ in the presence of 1 mM MgCl2. Various sulfhydryl reagents and polyamines also had inhibitory activity on the protein kinase. Natural substrates of the enzyme were investigated using heat treated membranes and 0.5 M NaCl extracted membrane residues. Band 4.1, 4.2, and 4.5 proteins were phosphorylated but band 2 (spectrin) and band 3 proteins were poor substrates for this protein kinase.  相似文献   

17.
Homogeneous porcine calpain (Ca2+-dependent cysteine proteinase) was found to hydrolyze a variety of peptides and synthetic substrates. Leu-Trp-Met-Arg-Phe-Ala, eledoisin-related peptide, alpha-neoendorphin, angiotensin I, luteinizing hormone-releasing hormone, neurotensin, dynorphin, glucagon, and oxidized insulin B chain were cleaved with a general preference for a Tyr, Met, or Arg residue in the P1 position preceded by a Leu or Val residue in the P2 position. No great difference in specificity was found between low-Ca2+-requiring calpain I and high-Ca2+-requiring calpain II. 4-Methylcoumaryl-7-amide (MCA) derivatives having a Leu(or Val)-Met(or Tyr)-MCA or a Leu-Lys-MCA sequence were also cleaved by either calpain I or calpain II with preference for Leu over Val by a factor of 9 to 16. Calpains I and II showed similar but not identical kinetic behavior for individual substrates. The Km and kcat values ranged from 0.23 to 7.08 mM and 0.062 to 0.805 s-1 for the calpains, while kcat/Km values for the calpains were only 1/433 to 1/5 of those for papain with a given substrate. With succinyl-Leu-Met(or Tyr)-MCA, calpains I and II were half-maximally activated at 12 and 260 microM Ca2+, respectively, and competitively inhibited by leupeptin (Ki = 0.32 microM for I and 0.43 microM for II) or antipain (Ki = 1.41 microM for I and 1.45 microM for II). Thus, this is the first report describing the specificity and kinetics of calpains I and II.  相似文献   

18.
Two forms of calpastatin, differing in their specificity for the homologous calpain isozymes I and II, have been separated from rat skeletal muscle extracts and purified to homogeneity. Calpastatin I, the first form to elute in chromatography on DE32, is more effective against calpain I, while calpastatin II is more effective as an inhibitor of calpain II. Based on their molecular mass (approximately 105 kDa) both calpastatin forms belong to the high molecular mass class found in muscles of other animal species (Murachi, T., 1989, Biochem. Int. 18, 263-294). For calpain I, which is active with low (mu-M) concentrations of Ca2+, maximum inhibition with either calpastatin form was observed over a wide range of Ca2+ concentrations. With calpain II, which requires high (mM) concentrations of Ca2+ for activity, maximum inhibition required Ca2+ concentrations above 1 mM. Both calpastatin forms were found to be highly sensitive to degradation by calpain II, but almost completely resistant to degradation by calpain I. Degradation of calpastatin by calpain II is competitively inhibited by the addition of a calpain substrate. Isovaleryl carnitine (IVC), an intermediate product of L-leucine catabolism, previously demonstrated to be a potent and specific activator of rat skeletal muscle calpain II (Pontremoli, S., Melloni, E., Viotti, P. L., Michetti, M., Di Lisa, F., and Siliprandi, N., 1990. Biochem. Biophys. Res. Commun. 167, 373-380) greatly enhances the rate of degradation of calpastatins by calpain II. IVC, which decreases the Ca2+ requirement for maximal calpain II activity, also decreases the concentration of Ca2+ required for digestion of the inhibitor. For calpain II, regulation by either calpastatins may occur only in the presence of high [Ca2+].  相似文献   

19.
Monoclonal antibodies to the Mr 31,000 major integral membrane protein of the human erythrocyte band 7 region were used to identify the corresponding polypeptide chain and epitope-carrying fragments on immunoblots. Analysis of the erythrocyte membrane, membrane fractions, and cytosol revealed that the Mr 31,000 band 7 integral membrane protein is unique and not related to any of the other water-soluble or membrane-bound band 7 components. Cross-reacting proteins were identified in the membranes of other mammalian erythrocytes and in cell lines of epithelial and lymphoid origin. Proteolytic digestion of intact human erythrocytes or erythrocyte membranes demonstrated that the band 7 integral membrane protein has an intracellular domain larger than Mr 12,000; it does not have an extracellular one. One of the monoclonal antibodies was employed for the isolation of band 7 integral membrane protein by immunoaffinity chromatography; subsequent Edman degradation revealed a blocked N-terminus.  相似文献   

20.
In order to examine the existence of calpain I, a low (micromolar)-Ca2+-requiring form of calpain, in fish tissues, carp erythrocytes were chosen as the experimental material, since only calpain I is known to exist in mammalian erythrocytes. By DEAE-cellulose chromatography, calpain and calpastatin (specific inhibitor for calpain) were separated from carp erythrocyte hemolysate. Carp erythrocyte calpain is classified as calpain II, a high (millimolar)-Ca2+-requiring form of calpain, from the result of Ca2+-requirement for the activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号