首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Misfolded human islet amyloid polypeptide (hIAPP) in pancreatic islets is associated with the loss of insulin-secreting beta cells in type 2 diabetes. Insulin secretion impairment and cell apoptosis can be due to mitochondrial dysfunction in pancreatic beta cells. Currently, there is little information about the effect of hIAPP on mitochondrial function. In this study, we used INS-1E rat insulinoma beta cells as a model to investigate the role of mitochondria in hIAPP-induced apoptosis and the protective effects of phycocyanin (PC). We demonstrated that hIAPP induced apoptosis in INS-1E cells was associated with the disruption of mitochondrial function, as evidenced by ATP depletion, mitochondrial mass reduction, mitochondrial fragmentation and loss of mitochondrial membrane potential (ΔΨ(m)). Further molecular analysis showed that hIAPP induced changes in the expression of Bcl-2 family members, release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria into cytosol, activation of caspases and cleavage of poly (ADP-ribose) polymerase. Interestingly, the hIAPP-induced mitochondrial dysfunction in INS-1E cells was effectively restored by co-treatment of PC. Moreover, there was crosstalk between the extrinsic and intrinsic apoptotic pathways as demonstrated by cleavage of Bid by caspase-8 in the apoptotic process triggered by hIAPP. Taken together, we demonstrated for the first time the involvement of mitochondrial dysfunction in hIAPP-induced INS-1E cell apoptosis. Attenuation of mitochondrial dysfunction provides a mechanism for the protective effects of PC.  相似文献   

2.
In this work, we studied the apoptotic pathway in murine fibrosarcoma cells L929 exposed to tumor necrosis factor alpha (TNF-alpha). DNA fragmentation, activation of caspases, cytochrome c release and poly (ADP-ribose) polymerase cleavage were demonstrated. We showed that the proapoptotic proteins Bid and Bax as well as caspase 8 are involved in the initiation of this apoptotic pathway triggered by TNF-alpha. Indeed, inhibition of caspase 8 could prevent TNF-alpha-induced DNA fragmentation. Furthermore, Bid and Bax translocation into mitochondria were already evidenced after 6 h. In contrast, permeability transition pore inhibitors did not prevent the DNA fragmentation induced by TNF-alpha. In addition, these events were not associated with changes in the mitochondrial membrane potential nor with the loss of ATP, which only occurred after 16 h. Taken together, these results underline the fact that TNF-alpha is able to induce caspase-dependent apoptosis in L929 in the absence of permeability transition pore opening.  相似文献   

3.
Multiple apoptotic pathways release cytochrome c from the mitochondrial intermembrane space, resulting in the activation of downstream caspases. In vivo activation of Fas (CD95) resulted in increased permeability of the mitochondrial outer membrane and depletion of cytochrome c stores. Serial measurements of oxygen consumption, NADH redox state and membrane potential revealed a loss of respiratory state transitions. This tBID-induced respiratory failure did not require any caspase activity. At early time points, re-addition of exogenous cytochrome c markedly restored respiratory functions. Over time, however, mitochondria showed increasing irreversible respiratory dysfunction as well as diminished calcium buffering. Electron microscopy and tomographic reconstruction revealed asymmetric mitochondria with blebs of herniated matrix, distended inner membrane and partial loss of cristae structure. Thus, apoptogenic redistribution of cytochrome c is responsible for a distinct program of mitochondrial respiratory dysfunction, in addition to the activation of downstream caspases.  相似文献   

4.
Mitochondria play a critical role in cell death by releasing apoptogenic factors, such as cytochrome c and apoptosis-inducing factor (AIF), from the intermembrane space into the cytoplasm. Because mitochondrial dysfunction has been shown to be involved in several neurodegenerative diseases, mitochondrial toxins are largely used to model these disorders. These include 3-nitropropionic acid (3-NP), an irreversible inhibitor of succinate dehydrogenase, which has been used to model Huntington's disease and was previously reported by us to induce apoptotic cell death through caspase activation. In the present study, we evaluated the involvement of caspase-independent neuronal cell death induced by 3-NP (1 mM) and the effect of z-VDVAD-fmk, an inhibitor of caspase-2, using cortical neurons in culture. Our results highly suggest that 3-NP induces both caspase-dependent and -independent cell death. We showed that z-VDVAD-fmk prevented both caspase-2 and -3-like activities evoked by 3-NP, but only partly prevented chromatin fragmentation/condensation. However, z-VDVAD-fmk did not avoid 3-NP-induced release of cytochrome c or AIF from mitochondria nor did it affect the levels of mitochondrial Bax. Furthermore, 3-NP-mediated decrease in plasma membrane integrity was not affected by z-VDVAD-fmk. Under these conditions, the inhibitor prevented the caspase-dependent cell death.  相似文献   

5.
This study evaluated the hypothesis that the repertoire of cellular events that underlie circulatory fatality during endotoxemia may entail mitochondrial respiratory enzyme dysfunction, followed by the release of cytochrome c to the cytosol that triggers the activation of caspase cascades, leading to apoptotic cell death in the rostral ventrolateral medulla (RVLM) where sympathetic premotor neurons responsible for maintaining vasomotor tone are located. In adult Sprague-Dawley rats maintained under propofol anesthesia, nucleosomal DNA fragmentation was detected in the RVLM in a temporal profile that coincided positively with the progression of cardiovascular depression during experimental endotoxemia induced by Escherichia coli lipopolysaccharide (LPS). LPS also induced nitric oxide (NO) and superoxide (O(2)(-)) production, depressed mitochondrial Complex I and IV activity, promoted the release of cytochrome c from mitochondria to cytosol, upregulated the cytosolic expression of activated caspase-9 and -3, or increased caspase-3 enzyme activity in the RVLM. Microinjection bilaterally into the RVLM of an inducible nitric oxide synthase (iNOS) blocker, S-methylisothiourea, or a superoxide dismutase mimetic, Tempol, significantly blunted these apoptotic cellular events and antagonized the cardiovascular depression during endotoxemia. We conclude that caspase-dependent apoptotic cell death that results from NO- and O(2)(-)-associated mitochondrial signaling in the RVLM may underlie fatal cardiovascular depression during endotoxemia.  相似文献   

6.
Spinal cord injury (SCI) induces a series of endogenous biochemical changes that lead to secondary degeneration, including apoptosis. p53-mediated mitochondrial apoptosis is likely to be an important mechanism of cell death in spinal cord injury. However, the signaling cascades that are activated before DNA fragmentation have not yet been determined. DNA damage-induced, p53-activated neuronal cell death has already been identified in several neurodegenerative diseases. To determine DNA damage-induced, p53-mediated apoptosis in spinal cord injury, we performed RT-PCR microarray and analyzed 84 DNA damaging and apoptotic genes. Genes involved in DNA damage and apoptosis were upregulated whereas anti-apoptotic genes were downregulated in injured spinal cords. Western blot analysis showed the upregulation of DNA damage-inducing protein such as ATM, cell cycle checkpoint kinases, 8-hydroxy-2′-deoxyguanosine (8-OHdG), BRCA2 and H2AX in injured spinal cord tissues. Detection of phospho-H2AX in the nucleus and release of 8-OHdG in cytosol were demonstrated by immunohistochemistry. Expression of p53 was observed in the neurons, oligodendrocytes and astrocytes after spinal cord injury. Upregulation of phospho-p53, Bax and downregulation of Bcl2 were detected after spinal cord injury. Sub-cellular distribution of Bax and cytochrome c indicated mitochondrial-mediated apoptosis taking place after spinal cord injury. In addition, we carried out immunohistochemical analysis to confirm Bax translocation into the mitochondria and activated p53 at Ser392. Expression of APAF1, caspase 9 and caspase 3 activities confirmed the intrinsic apoptotic pathway after SCI. Activated p53 and Bax mitochondrial translocation were detected in injured spinal neurons. Taken together, the in vitro data strengthened the in vivo observations of DNA damage-induced p53-mediated mitochondrial apoptosis in the injured spinal cord.  相似文献   

7.
Mitochondrial outer membrane permeabilization and cytochrome c release promote caspase activation and execution of apoptosis through cleavage of specific caspase substrates in the cell. Among the first targets of activated caspases are the permeabilized mitochondria themselves, leading to disruption of electron transport, loss of mitochondrial transmembrane potential (DeltaPsim), decline in ATP levels, production of reactive oxygen species (ROS), and loss of mitochondrial structural integrity. Here, we identify NDUFS1, the 75 kDa subunit of respiratory complex I, as a critical caspase substrate in the mitochondria. Cells expressing a noncleavable mutant of p75 sustain DeltaPsim and ATP levels during apoptosis, and ROS production in response to apoptotic stimuli is dampened. While cytochrome c release and DNA fragmentation are unaffected by the noncleavable p75 mutant, mitochondrial morphology of dying cells is maintained, and loss of plasma membrane integrity is delayed. Therefore, caspase cleavage of NDUFS1 is required for several mitochondrial changes associated with apoptosis.  相似文献   

8.
Caspase-directed apoptosis usually fragments cells, releasing nonfunctional, prothrombogenic, membrane-bound apoptotic bodies marked for rapid engulfment by macrophages. Blood platelets are functional anucleate cells generated by specialized fragmentation of their progenitors, megakaryocytes (MKs), but committed to a constitutive caspase-independent death. Constitutive formation of the proplatelet-bearing MK was recently reported to be caspase-dependent, apparently involving mitochondrial release of cytochrome c, a known pro-apoptogenic factor. We extend those studies and report that activation of caspases in MKs, either constitutively or after Fas ligation, yields platelets that are functionally responsive and evade immediate phagocytic clearance, and retain mitochondrial transmembrane potential until constitutive platelet death ensues. Furthermore, the exclusion from the platelet progeny of caspase-9 present in the progenitor accounts for failure of mitochondrial release of cytochrome c to activate caspase-3 during platelet death. Thus, progenitor cell death by apoptosis can result in birth of multiple functional anucleate daughter cells.  相似文献   

9.
Mammalian cells respond to stress by accumulating or activating a set of highly conserved proteins known as heat-shock proteins (HSPs). Several of these proteins interfere negatively with apoptosis. We show that the small HSP known as Hsp27 inhibits cytochrome-c-mediated activation of caspases in the cytosol. Hsp27 does not interfere with granzyme-B-induced activation of caspases, nor with apoptosis-inducing factor-mediated, caspase-independent, nuclear changes. Hsp27 binds to cytochrome c released from the mitochondria to the cytosol and prevents cytochrome-c-mediated interaction of Apaf-1 with procaspase-9. Thus, Hsp27 interferes specifically with the mitochondrial pathway of caspase-dependent cell death.  相似文献   

10.
Photodynamic therapy: a mitochondrial inducer of apoptosis   总被引:18,自引:0,他引:18  
Photodamage to the mitochondria of murine leukemia P388 cells resulted in immediate loss of the mitochondrial membrane potential together with the release of cytochrome c into the cytosol. This was followed by a rapid activation of caspase 3-like proteases, as indicated by a marked rise in DEVDase activity. There was no significant effect on WEHDase or VEIDase activities, suggesting that only the late-stage caspases had been effected. The apoptotic response to mitochondrial photodamage was abolished by the broad-spectrum caspase inhibitor zVAD-fmk, but this did not prevent loss of viability after mitochondrial photodamage. These studies indicate that the release of cytochrome c from photodamaged mitochondria is sufficient to directly initiate a caspase-dependent apoptotic response.  相似文献   

11.
Release of apoptogenic factors into the cytosol including cytochrome c is triggering the execution phase of apoptosis through activation of cytoplasmic effector caspases. How loss of function of the electron transport chain can be reconciled with an adequate energy supply necessary for executing the apoptotic program was studied in granulosa cell (GC) sheets cultured up to 72 h without gonadotrophic support. Cytochrome c was localized ultrastructurally by oxidation of diaminobenzidine tetrahydrochloride both in living and fixed cells. In uncultured GC sheets all cells show staining over their entire mitochondrial population. In 72 h cultured sheets in the absence of FSH pre-apoptotic GC's display two subsets of mitochondria: normal sized stained mitochondria and small orthodox mitochondria without demonstrable cytochrome function. Apoptotic cells contain several mitochondria with preservation of respiratory function besides unstained orthodox mitochondria. The cytochrome c containing mitochondria typically display dilated intracristal spaces, a mitochondrial conformation related to increased ATP production. Cytochrome c release was confirmed by Western blotting. In 72 h cultures supplemented with FSH, GC's displayed staining over their entire mitochondrial population. In cultures lacking FSH, but partially protected from apoptosis through caspase inhibition, the cytochrome c release was not inhibited. Thus in the present studied model dysfunction of only a subset of mitochondria is instrumental to initiate the apoptotic program while a functional electron transport chain is maintained until the degradation phase in a subset of respiring mitochondria.  相似文献   

12.
Mortal human fibroblasts can be partially transformed by the bovine papillomavirus E5 oncoprotein through activation of the platelet-derived growth factor beta receptor. Here, we report that these cells undergo massive apoptosis 2 weeks after confluence. Although activation of caspase 3 was observed in the apoptotic cells, it was not required for apoptosis. The appearance of the mitochondrial proteins cytochrome c and apoptosis-inducing factor in cytosolic and nuclear compartments, respectively, provided a basis for mitochondrial dysfunction and a caspase-independent mechanism of apoptosis in these cells. Although an activating conformational change in Bax also was evident in the apoptotic cells, enforced overexpression of Bcl-2 was insufficient to prevent apoptosis. Finally, a small peptide present in the conditioned medium from dying transformed cells appeared responsible for inducing apoptosis through affecting a conformational change in Bax and eventual relocalization of apoptosis-inducing factor to the nucleus. Thus, an atypical apoptotic pathway is activated in mortal human fibroblasts in response to transformation induced by sustained receptor tyrosine kinase activation.  相似文献   

13.
Excitotoxicity mediated via the ( S )-α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) subtype of receptor for l -glutamate contributes to various neuropathologies involving acute brain injury and chronic degenerative disorders. In this study, AMPA-induced neuronal injury and staurosporine (STS)-mediated apoptosis were compared in primary neuronal cultures of murine cerebral cortex by analyzing indices up- and downstream of mitochondrial activation. AMPA-mediated apoptosis involved induction of Bax, loss of mitochondrial transmembrane potential (ΔΨm), early release of cytochrome c (cyt c ), and more delayed release of second mitochondrial activator of caspases (SMAC), Omi, and apoptosis-inducing factor (AIF) with early calpain and minor late activation of caspase 3. STS-induced apoptosis was characterized by a number of differences, a more rapid time course, non-involvement of ΔΨm, and relatively early recruitment of SMAC and caspase 3. The AMPA-induced rise in intracellular calcium appeared insufficient to evoke ΔΨm as release of cyt c preceded mitochondrial depolarization, which was followed by the cytosolic translocation of SMAC, Omi, and AIF. Bax translocation preceded cyt c release for both stimuli inferring its involvement in apoptotic induction. Inclusion of the broad spectrum caspase inhibitor zVAD-fmk reduced the AMPA-induced release of cyt c , SMAC, and AIF, while only affecting the redistribution of Omi and AIF in the STS-treated neurons. Only AIF release was affected by a calpain inhibitor (calpastatin) which exerted relatively minor effects on the progression of cellular injury. AMPA-mediated release of apoptogenic proteins was more hierarchical relative to STS with its calpain activation and caspase-dependent AIF redistribution arguing for a model with cross-talk between caspase-dependent/independent apoptosis.  相似文献   

14.
Mechanisms of cytochrome c release by proapoptotic BCL-2 family members   总被引:25,自引:0,他引:25  
A crucial amplificatory event in several apoptotic cascades is the nearly complete release of cytochrome c from mitochondria. Proteins of the BCL-2 family which include both anti- and proapoptotic members control this step. Here, we review the proposed mechanisms by which proapoptotic BCL-2 family members induce cytochrome c release. Data support a model in which the apoptotic pathway bifurcates following activation of a "BH3 only" family member. BH3 only molecules induce the activation of the multidomain proapoptotics BAX and BAK, resulting in the permeabilization of the outer mitochondrial membrane and the efflux of cytochrome c. This is coordinated with the activation of a distinct pathway characterized by profound changes of the inner mitochondrial membrane morphology and organization. This mitochondrial remodelling insures complete release of cytochrome c and the onset of mitochondrial dysfunction that is a typical feature of many apoptotic deaths.  相似文献   

15.
The cytokine hepatocyte growth factor/scatter factor (HGF/SF) has been found to protect a variety of epithelial and cancer cell types against cytotoxicity and apoptosis induced by DNA damage, but the specific apoptotic signaling events and the levels at which they are blocked by HGF/SF have not been identified. We found that treatment of MDA-MB-453 human breast cancer cells with adriamycin (also known as doxorubicin, a DNA topoisomerase IIalpha inhibitor) induced a series of time-dependent events, including the mitochondrial release of cytochrome c and apoptosis-inducing factor, mitochondrial membrane depolarization, activation of a set of caspases (caspase-9, -3, -7, -2, and -8), cleavage of poly(ADP-ribose) polymerase (PARP), and up-regulation of expression of the Fas ligand. All of these events were blocked by preincubation of the cells with HGF/SF. In contrast, the pan-caspase inhibitor benzyloxycarbonyl-VAD-fluoromethylketone blocked some of these events (e.g. caspase-3 activation and PARP cleavage) but did not block cytochrome c release or mitochondrial depolarization. These findings suggest that HGF/SF functions, in part, upstream of the mitochondria to block mitochondrial apoptosis signaling, prevent activation of multiple caspases, and protect breast cancer cells against apoptosis.  相似文献   

16.
Park IC  Park MJ  Woo SH  Lee KH  Lee SH  Rhee CH  Hong SI 《Cytokine》2001,15(3):166-170
We examined the role of caspases and serine protease(s) in cell death induced by tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). After incubation of adenocarcinoma cells with TRAIL, caspase-3, -8 were activated and the cleavage of Bid induced the release of cytochrome c, from the mitochondria to the cytosol. Tetrapeptide inhibitors of caspase-1, -2, -3, and -8 suppressed DNA fragmentation and attenuated the release of cytochrome c, whereas inhibitors of caspase-5 did not. Interestingly, the general serine protease(s) inhibitor 4-(2-aminoethyl)benzylsulfonyl fluoride (AEBSF) resulted in the arrest of apoptosis. However, the AEBSF did not prevent the release of mitochondrial cytochrome c during TRAIL-induced apoptosis. From these results, we postulate that serine protease(s) may be involved in post-mitochondrial apoptotic events, that lead to the activation of the initiator, caspase-9.  相似文献   

17.
线粒体途径是细胞凋亡的重要途径之一. 在特定的刺激下,例如高糖条件,可以通过caspase依赖性和非依赖性两种途径诱导多种细胞凋亡.但线粒体凋亡途径在高糖引起成骨细胞凋亡中所起的作用,目前尚不清楚.本研究证明,高糖可以通过线粒体凋亡途径诱导成骨细胞凋亡.Annexin V-FITC/PI流式细胞学检测显示,高糖可诱导MC3T3-E1细胞凋亡.Western印迹检测发现,不同浓度D-葡萄糖(11,22,33 mmol/L)可以引起线粒体中Bax蛋白表达的增加,使Bax蛋白由细胞质中易位到线粒体,激活了线粒体凋亡途径.JC-1荧光探针检测证实,高糖处理成骨细胞后,线粒体膜电位明显降低,表明线粒体途径被激活.而细胞质中的细胞色素c、凋亡诱导因子(AIF)表达增加,细胞色素c和AIF从线粒体中释放到细胞质中,释放到细胞质中的细胞色素c使caspase-3、caspase-9剪切活化,从而激活了caspase依赖性凋亡途径.因此,线粒体凋亡途径可能是高糖诱导成骨细胞凋亡过程中一个重要的途径.  相似文献   

18.
凋亡诱导因子与细胞凋亡   总被引:5,自引:1,他引:5  
凋亡诱导因子 (apoptosisinducefactor,AIF)是定位于线粒体膜间隙中的一种氧化还原酶 ,含有线粒体定位信号和核定位信号序列 ,具有很强的促凋亡活性 ,在类胚体成腔和胚胎早期分化过程中具有重要作用。在死亡信号或细胞胁迫的刺激下 ,线粒体通透性转变孔开放 ,释放AIF及细胞色素c至细胞质溶质中 ,具有核定位信号序列的AIF便进入细胞核内 ,引起染色质的初步凝集和DNA大规模断片化 (约 5 0kb) ,进而引发不依赖于胱冬肽酶的细胞凋亡途径 ;线粒体膜间隙释放出来的细胞色素c则可引起染色质的进一步凝集和DNA的寡核小体断片化 ,从而引发依赖于胱冬肽酶的细胞凋亡途径 ;与此同时 ,从线粒体膜间隙释放出来的AIF又可反馈放大线粒体通透性转变孔的渗透性 ,引起AIF与细胞色素c的进一步释放从而加快细胞死亡的进程。此外 ,细胞胁迫还可激活由多聚 (ADP 核糖 )聚合酶 1(PARP 1)所引发的细胞凋亡途径 ,通过AIF和细胞色素c引发细胞凋亡。最新研究结果表明 ,AIF同源线粒体关联死亡诱导者 (AIF homologousmitochondria associatedinducerofdeath ,AMID)与p5 3应答基因的编码产物 (p5 3 responsivegene 3,PRG3)均为AIF的同源蛋白质 ,可直接诱导人类细胞的凋亡。线虫的凋亡诱导因子WAH 1所诱导的细胞凋亡途径依赖于胱冬肽酶  相似文献   

19.
BACKGROUND: Antimycin A (AMA) inhibits mitochondrial electron transport, collapses the mitochondrial membrane potential, and causes the production of reactive oxygen species. Previous work by me and my colleagues has demonstrated that AMA causes an array of typical apoptotic phenomena in HL-60 cells. The hypothesis that AMA causes HL-60 apoptosis by the intrinsic apoptotic pathway has now been tested. METHODS: Z-LEHD-FMK and Z-IETD-FMK were used as specific inhibitors of the initiator caspases 9 and 8, respectively. Caspase 3 activation, DNA fragmentation, and cellular disintegration were measured by flow cytometry. Cytochrome c release, chromatin condensation, and nuclear fragmentation were measured by microscopy. RESULTS: AMA caused mitochondrial cytochrome c release and neither Z-LEHD-FMK nor Z-IETD-FMK inhibited that. In the absence of caspase inhibition there was a very close correlation between cytochrome c release and caspase 3 activation. Z-LEHD-FMK blocked caspase 3 activation but enhanced DNA fragmentation and failed to stop nuclear or cellular disintegration. Z-IETD-FMK also blocked caspase 3 activation but, in contrast to Z-LEHD-FMK, delayed DNA fragmentation and disintegration of the nucleus and the cell. CONCLUSIONS: The hypothesis to explain AMA-induced HL-60 apoptosis was clearly inadequate because: (a) caspase 9 inhibition did not prevent DNA fragmentation or cell death, (b) apoptosis proceeded in the absence of caspase-3 activation, (c) the main pathway leading to activation of the executioner caspases was by caspase-8 activation, but caspase 8 inhibition only delayed apoptosis, and (d) activation of caspases 8 and 9 may be necessary for caspase-3 activation. Thus, in this cell model, apoptosis triggered from within the mitochondria does not necessarily proceed by caspase 9, and caspase 3 is not critical to apoptosis. The results provide further evidence that, when parts of the apoptotic network are blocked, a cell is able to complete the program of cell death by alternate pathways.  相似文献   

20.
Photodynamic therapy (PDT) is a cancer treatment based on the interaction of a photosensitizer, light and oxygen. PDT with the endogenous photosensitizer, protoporphyrin IX (PpIX) induced by 5-aminolevulinic acid (ALA) or its derivatives is a modification of this treatment modality with successful application in dermatology. However, the mechanism of cell destruction by ALA-PDT has not been elucidated. In this study a human T-cell lymphoma Jurkat cell line was treated with PDT using hexaminolevulinate (HAL, hexylester of ALA). Four hours following treatment nearly 80% of the cells exhibited typical apoptotic features. Mitochondrial pro-apoptotic proteins were evaluated by Western blots in subcellular fractionated samples. PDT caused cytosolic translocation of cytochrome c and nuclear redistribution of apoptosis-inducing factor (AIF), but the release of mitochondrial Smac/DIABLO, Omi/HtrA2 and EndoG was not observed. The release of cytochrome c was followed by the cleavage of caspase-9 and caspase-3 as well as its downstream substrates, together with oligonucleosomal DNA fragmentation. The pan-caspases inhibitor, z-VAD.fmk, prevented oligonucleosomal DNA fragmentation, but failed to inhibit PDT-mediated apoptosis. The apoptotic induction by AIF-mediated caspase-independent pathway was also found after HAL-PDT with large-scale DNA fragmentation in the presence of z-VAD.fmk. These results demonstrate that cytochrome c-mediated caspase-dependent pathway and AIF-induced caspase-independent pathway are simultaneously involved in the apoptotic induction by PDT. When the cytochrome c-induced caspase-dependent pathway is blocked, the cells go into apoptosis via AIF-mediated pathway, clearly demonstrating that the cytochrome c-mediated caspase-dependent pathway is not required for such apoptotic induction. This finding may have an impact on improved PDT effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号