首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, a mathematical model of a prey-predator system is proposed to resolve the paradox of enrichment in ecosystems. The model is based on the natural strategy that a predator takes, i.e, it produces resting eggs in harsh environment. Our result gives a criterion for a functional response, which ensures that entering dormancy stabilizes the population dynamics. It is also shown that the hatching of resting eggs can stabilize the population dynamics when the switching between non-resting and resting eggs is sharp. Furthermore, the bifurcation structure of our model suggests the simultaneous existence of a stable equilibrium and a large amplitude cycle in natural enriched environments.   相似文献   

2.
O'Grady SP  Dearing MD 《Oecologia》2006,150(3):355-361
Nitrogen isotopes have been widely used to investigate trophic levels in ecological systems. Isotopic enrichment of 2–5‰ occurs with trophic level increases in food webs. Host–parasite relationships deviate from traditional food webs in that parasites are minimally enriched relative to their hosts. Although this host–parasite enrichment pattern has been shown in multiple systems, few studies have used isotopic relationships to examine other potential symbioses. We examined the relationship between two gut-nematodes and their lizard hosts. One species, Physaloptera retusa, is a documented parasite in the stomach, whereas the relationship of the other species, Parapharyngodon riojensis (pinworms), to the host is putatively commensalistic or mutualistic. Based on the established trophic enrichments, we predicted that, relative to host tissue, parasitic nematodes would be minimally enriched (0–1‰), whereas pinworms, either as commensals or mutualists, would be significantly enriched by 2–5‰. We measured the 15N values of food, digesta, gut tissue, and nematodes of eight lizard species in the family Liolaemidae. Parasitic worms were enriched 1±0.2‰ relative to host tissue, while the average enrichment value for pinworms relative to gut tissue was 6.7±0.2‰. The results support previous findings that isotopic fractionation in a host–parasite system is lower than traditional food webs. Additionally, the larger enrichment of pinworms relative to known parasites suggests that they are not parasitic and may be several trophic levels beyond the host.  相似文献   

3.
All organisms are composed of multiple chemical elements such as carbon, nitrogen and phosphorus. While energy flow and element cycling are two fundamental and unifying principles in ecosystem theory, population models usually ignore the latter. Such models implicitly assume chemical homogeneity of all trophic levels by concentrating on a single constituent, generally an equivalent of energy. In this paper, we examine ramifications of an explicit assumption that both producer and grazer are composed of two essential elements: carbon and phosphorous. Using stoichiometric principles, we construct a two-dimensional Lotka-Volterra type model that incorporates chemical heterogeneity of the first two trophic levels of a food chain. The analysis shows that indirect competition between two populations for phosphorus can shift predator—prey interactions from a (+, −) type to an unusual (−, −) class. This leads to complex dynamics with multiple positive equilibria, where bistability and deterministic extinction of the grazer are possible. We derive simple graphical tests for the local stability of all equilibria and show that system dynamics are confined to a bounded region. Numerical simulations supported by qualitative analysis reveal that Rosenzweig’s paradox of enrichment holds only in the part of the phase plane where the grazer is energy limited; a new phenomenon, the paradox of energy enrichment, arises in the other part, where the grazer is phosphorus limited. A bifurcation diagram shows that energy enrichment of producer—grazer systems differs radically from nutrient enrichment. Hence, expressing producer—grazer interactions in stoichiometrically realistic terms reveals qualitatively new dynamical behavior.  相似文献   

4.
We show that the paradox of enrichment can be theoretically resolved in a flexible predator–prey system in which the predator practices imperfect optimal foraging. A previous study showed that perfect optimal foraging can mitigate increases in the amplitude of population oscillations associated with enrichment, but it did not show a stabilization pattern. Our results show that imperfect optimal foraging can stabilize the system and resolve the paradox of enrichment under nonequilibrium dynamics. Furthermore, the degree of stabilization with enrichment was stronger when the imperfection of optimal foraging was larger.  相似文献   

5.
Classic consumer-resource models with hyperbolic functional responses predict that enrichment increases the average biomasses of the species, but eventually leads to species' extinction due to accelerated oscillations ("paradox of enrichment"). However, empirical studies have stressed the complexity of natural food webs and the dominance of sigmoid or predator-interference functional responses, which may dampen population oscillations due to enrichment. Using analytical and numerical methods, we study enrichment effects on simple consumer-resource pairs and complex food webs with hyperbolic Holling type II (hereafter: type II), sigmoid Holling type III (hereafter: type III) and Beddington-De Angelis predator-interference functional responses (hereafter: BDA). Consumer-resource systems with a type III or BDA functional response are highly robust against accelerated oscillations due to enrichment, and the "paradox of enrichment" is resolved under certain parameter combinations. Subsequently, we simulated complex food webs with empirically-corroborated body-size structures of consumers that are ten times larger than their average resource. Our analyses demonstrate positive connectance-stability relationships with BDA or type III functional responses. Moreover, increasing connectance of these food webs also increases the robustness against enrichment in models with a BDA functional response. These results suggest that the well-known destabilising effects of connectance and enrichment found in classic models with type II functional responses may be inverted into stabilising effects in more realistic food-web models that are based on empirically-corroborated body-size structures and BDA or type III functional responses.  相似文献   

6.
Long-term nutrients and chlorophyll-a dynamics during 1993–2000 were analyzed in a temperate reservoir influenced by the Asian monsoon. Nonparametric Mann–Kendall tests and seasonal trend analyses indicated that there were no long-term annual increasing or decreasing trends in major trophic parameters over 8 years, but the monsoon seasonality was evident. Seasonality in chlorophyll (CHL) and total phosphorus (TP) showed a mono-modal pattern, which was closely associated with the monsoon season of July–August, and the magnitude of the mono-modal peak was greater in the headwater zone than in the downlake zone. Such temporal patterns fluctuated interannually over the study period, and the magnitude of the variation was directly controlled by the intensity of the monsoon rain. Empirical models of annual mean CHL–TP were developed supporting the view that phytoplankton in lentic ecosystems responds to P enrichment and that annual mean TP may provide a reliable basis for predicting the average algal abundance. Ambient nutrient analyses, N:P ratios and in situ nutrient enrichment bioassay experiments (NEBs) in premonsoon and postmonsoon supported the P limitation for phytoplankton growth. Ambient nutrients and non-volatile suspended solid (NVSS) data on CHL in the intense monsoon year, however, showed the possibility of light limitation, even though the NEBs did not show the direct evidence. These findings were confirmed by two-dimensional graphic approaches of trophic state index deviations (TSIDs).  相似文献   

7.
The role of individual behavioral variation in community dynamics was studied. Behavioral variation in this study does not refer to differences in average responses (e.g., average response between presence and absence of antipredator behavior). Rather it refers to the variation around the average response that is not explained by trivial experimental treatments. First, the effect of behavioral variation was examined based on Jensen’s inequality. In cases of commonly used modeling framework with type II functional response, neglecting behavioral variation (a component of encounter rate) causes overestimation of predation effects. The effect of this bias on community processes was examined by incorporating the behavioral variation in a commonly used consumer-resource model (Rosenzweig–MacArthur model). How such a consideration affects a model prediction (paradox of enrichment) was examined. The inclusion of behavioral variation can both quantitatively and qualitatively alter the model characteristics. Behavioral variation can substantially increase the stability of the community with respect to enrichment.  相似文献   

8.
Overwintering population of Cercopagis is represented by resting eggs which hatch generally in May. Although representatives of the first parthenogenetic generation (the spring form individuals) differ morphologically from individuals of the subsequent generations (the summer form individuals) and could be keyed to a separate species – Cercopagis (Apagis) ossiani – our analysis confirm that there is only one Cercopagis species in the Gulf of Riga: Cercopagis pengoi. Notable seasonal dynamics was observed for the gamogenetic mode of reproduction, being strongly associated with the total population density. Gamogenetic females develop since the end of June and reach the maximum absolute abundance in July whereas their proportion is generally the highest in fall. The gamogenetic absolute fecundity drops to the lowest level late July but increased afterwards until the late August. One resting egg was, an average, found in 45.4%, two in 53.4% and three in 1.2% of females. Parthenogenetic fecundity was significantly higher in May–June compared to other months studied. Brood pouch of parthenogenetic females was found to contain 11.6 ± 1.0 and 10.2 ± 0.3 embryos in the spring and summer form individuals, respectively. Variation in the two modes of reproduction and fecundity is probably solely not controlled by temperature, but also by food availability and population density.  相似文献   

9.
Akihiko Mougi  Kinya Nishimura 《Oikos》2008,117(11):1732-1740
Destabilization of one predator–one prey systems with an increase in nutrient input has been viewed as a paradox. We report that enrichment can damp population cycles by a food‐web structure that balances inflexible and flexible interaction links (i.e. specialist and generalist predators). We modeled six predator–prey systems involving three or four species in which the predators practice optimal foraging based on prey profitability determined by handling time. In all models, the balance of interaction links simultaneously decreased the amplitude of population oscillations and increased the minimum density with increasing enrichment, leading to a potential theoretical resolution of the paradox of enrichment in non‐equilibrium dynamics. The stabilization mechanism was common to all of the models. Important previous studies on the stability of food webs have also demonstrated that a balance of interaction strengths stabilizes systems, suggesting a general rule of ecosystem stability.  相似文献   

10.
  1. A review of research on life-cycle events in field and laboratory populations of monogonont rotifers shows that there is great variation at multiple levels: (1) degree of sexual dimorphism; (2) occurrence and timing of sex; (3) propensity for sex during sexual periods; (4) factors controlling initiation of sex; and (5) timing and extent of emergence from diapause. There is no regular pattern where: (1) fertilised resting eggs hatch to start the growing season; (2) populations develop via female parthenogenesis during favourable conditions; and then (3) bisexual reproduction with resting-egg production occurs during later, unfavourable conditions.
  2. Sexual reproduction in natural populations can occur throughout much of the growing season, be restricted to some period(s) during the growing season, or be completely absent. During sexual reproduction in both natural and laboratory populations, only some fraction of females produces males or resting eggs. This bet-hedging strategy can prevent a population crash and permits future population growth via female parthenogenesis. Selection against sexual reproduction, and rapid loss of sex, can occur.
  3. Laboratory experiments with pond-dwelling species have identified specific environmental factors that induce sex in different species: (1) increasing population density; (2) dietary tocopherol (vitamin E) and (3) long photoperiods. These factors generally are associated with favourable conditions for population growth and production of energy-rich resting eggs: (1) large population size; (2) high probability of contacts between males and fertilisable females; and (3) nutritious diets. Endogenous factors can inhibit responses to these environmental inducers, and thus favour female parthenogenesis.
  4. The timing of resting-egg hatching depends on: (1) occurrence of specific environmental conditions; (2) the minimum duration of obligate diapause; and (3) the genotype and physiology of females producing resting eggs. Hatching may occur shortly after oviposition, after a long diapause before or at the start of a new growing season, or throughout the growing season. Hatching can be massive and contribute substantially to population growth and genetic diversity.
  5. Areas for future research include: (1) determining the timing and extent of sex and resting-egg hatching in more natural populations, especially those that are marine, benthic, sessile, and interstitial; and (2) identifying environmental and physiological factors controlling these events.
  相似文献   

11.
To examine how dormancy contributes to the establishment and persistence of Bythotrephes longimanus, we investigated resting egg production and hatching in relation to the demography of the planktonic stage and environmental conditions in Island Lake Reservoir (USA). During a 3-year study, the largest contribution to the egg bank occurred in autumn and most eggs hatched in spring, but we also detected some resting egg production and hatching in summer. The difference between summer and late autumn densities of eggs in sediments averaged 47% (range 0–98%) for 18 sites throughout the reservoir, which was similar to experimental estimates of in situ hatching fraction of 67% for eggs in the spring and summer following their production. Based on emergence traps, neonates hatch in the field during May and June. We estimated mortality rates of 64% for resting eggs and embryos, and 59% for newly emerged neonates. Although hatching fraction saturated at the same level, eggs incubated offshore hatched later than those nearshore where water temperature was warmer and light was detectable at the sediment surface. Low dissolved oxygen concentration did not significantly reduce hatching fraction but resulted in some eggs that initiated development but failed to hatch. Collectively, our results demonstrate substantial annual turnover in the resting egg bank of B. longimanus and high mortality of resting eggs during recruitment from the egg to the first molt of the planktonic stage. These patterns suggest that propagule pressure in the form of resting eggs requires large numbers for establishment, and that considerable post-establishment resting egg production is necessary for inter-annual persistence.  相似文献   

12.
Loehr VJ  Hofmeyr MD  Henen BT 《Oecologia》2007,153(2):479-488
Climate change models predict that the range of the world’s smallest tortoise, Homopus signatus signatus, will aridify and contract in the next decades. To evaluate the effects of annual variation in rainfall on the growth of H. s. signatus, we recorded annual growth rates of wild individuals from spring 2000 to spring 2004. Juveniles grew faster than did adults, and females grew faster than did males. Growth correlated strongly with the amount of rain that fell during the time just before and within the growth periods. Growth rates were lowest in 2002–2003, when almost no rain fell between September 2002 and August 2003. In this period, more than 54% of the tortoises had negative growth rates for their straight carapace length (SCL), shell height (SH), and shell volume (SV); maximum shrinking for SCL, SH, and SV was 4, 11, and 12%, respectively. The shell of H. s. signatus has some flexibility dorso-ventrally, so a reduction in internal matter due to starvation or dehydration may have caused SH to shrink. Because the length and width of the shell seem more rigid, reversible bone resorption may have contributed to shrinkage, particularly of the shell width and plastron length. Based on growth rates for all years, female H. s. signatus need 11–12 years to mature, approximately twice as long as would be expected allometrically for such a small species. However, if aridification lowers average growth rates to the level of 2002–2003, females would require 30 years to mature. Additionally, aridification would lower average and maximum female size, resulting in smaller eggs and hatchlings. These projected life history responses to aridification heighten the threat posed by the predicted range contraction of this red-listed species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Understanding ecosystem stability is one of the greatest challenges of ecology. Over several decades, it has been shown that allometric scaling of biological rates and feeding interactions provide stability to complex food web models. Moreover, introducing adaptive responses of organisms to environmental changes (e.g. like adaptive foraging that enables organisms to adapt their diets depending on resources abundance) improved species persistence in food webs. Here, we introduce the concept of metabolic adjustment, i.e. the ability of species to slow down their metabolic rates when facing starvation and to increase it in time of plenty. We study the reactions of such a model to nutrient enrichment and the adjustment speed of metabolic rates. We found that increasing nutrient enrichment leads to a paradox of enrichment (increase in biomasses and oscillation amplitudes and ultimately extinction of species) but metabolic adjustment stabilises the system by dampening the oscillations. Metabolic adjustment also increases the average biomass of the top predator in a tri‐trophic food chain. In complex food webs, metabolic adjustment has a stabilising effect as it promotes species survival by creating a large diversity of metabolic rates. However, this stabilising effect is mitigated in enriched ecosystems. Phenotypic plasticity of organisms must be considered in food web models to better understand the response of organisms to their environment. As metabolic rate is central in describing biological rates, we must pay attention to its variations to fully understand the population dynamics of natural communities.  相似文献   

14.
The dimensional specifications and morphology of the resting eggs of ten conchostracan species (Cyzicus tetracerus, Eocyzicus orientalis, Caenestheria davidi, C. perrieri, Leptestheria dahalacensis, Eoleptestheria ticinensis, Limnadia lenticularis, Imnadia yeyetta, Lynceus brachyurus, and L. dauricus) have been studied. The data are presented on the number of eggs produced by females. Unlike other crustaceans, no correlation between the eggs size and their quantity was found. Although the number of eggs can vary one to two times, their size is relatively stable (variation coefficient <5%). The wet (1.5–5.4 μg) and dry (0.41–0.93 μg) weights of eggs and the share of clutch (11.4–21.6%) in the female’s wet weight were determined for eight species. The polyfunctionality of the external envelope of the egg was considered under anhydrobiosis conditions.  相似文献   

15.
对采自青岛和芜湖两地的萼花臂尾轮虫在3种温度(20 ℃、25 ℃和30 ℃)和2种藻类食物浓度(1.0×106和5.0×106 cells·ml-1)下所产休眠卵的长径、短径和体积等形态特征进行了显微测量、计算和分析.结果表明,2种食物浓度下,培养温度以及培养温度和品系间的交互作用均对轮虫休眠卵的长径、短径和体积具有显著影响.当食物浓度分别为1.0×106和5.0×106 cells·ml-1时,轮虫在20 ℃下所产休眠卵的长径、短径和体积均最大;在25 ℃和30 ℃下所产休眠卵的短径和体积均最小.品系对轮虫休眠卵长径、短径和体积的影响也取决于食物浓度.当食物浓度为1.0×106 cells·ml-1时,芜湖品系轮虫的休眠卵长径、短径和体积(156.00 μm、99.95 μm和12 269.11 μm3)均显著大于青岛品系轮虫的休眠卵(145.13 μm、91.97 μm和10 498.19 μm3);而当食物浓度为5.0×106 cells·ml-1时,芜湖品系轮虫的休眠卵长径、短径和体积(155.68 μm、100.85 μm和12 348.59 μm3)均与青岛品系轮虫的休眠卵(156.63 μm、98.04 μm和12 054.20 μm3)之间无显著差异.两品系中,仅芜湖品系轮虫休眠卵的长径、短径和体积分别与温度呈曲线相关.同一温度下,两品系轮虫的休眠卵体积均随着食物浓度升高而增大;但30 ℃下芜湖品系轮虫所产休眠卵体积却随着食物浓度的升高而减小.  相似文献   

16.
1. Life‐table experiments with Brachionus calyciflorus test several hypotheses related to the idea that sexual reproduction in monogonont rotifers should occur when food resources are favourable. 2. The food concentration necessary for a fertilised mictic female to produce one phenotypically normal resting egg was higher than that for an amictic female to produce one daughter. At the lowest concentration of Cryptomonas erosa (1.25 × 103 cells mL?1), the lifetime fecundity of these two types of females was 0.9 and 1.4, respectively. 3. The lifetime fecundity of both fertilised mictic females and amictic females increased with food concentration to 3.4 resting eggs and 15.2 daughters female?1, respectively. The approach to maximal fecundity with increasing food concentration was more rapid for fertilised mictic females, such that their lifetime fecundity relative to that of amictic females gradually decreased from 0.64 (at 1.25 × 103 C. erosa mL?1) to 0.22 (at 2.5 × 104 C. erosa mL?1). 4. The probability of a fertilised mictic female producing one or more abnormal resting eggs during her lifetime was high (approximately 75%). The mean proportion of abnormal eggs produced per female varied among the different food‐concentration treatments (26–38%) but was not higher at the low food concentrations. 5. The proportion of normal resting eggs that hatched was high (51–71%); those produced at low food concentrations were no less likely to hatch than those produced at high food concentrations. No abnormal resting eggs hatched. 6. The probability of a fertilised mictic female producing an abnormal resting egg increased rapidly with her age at all food concentrations. The probability of a normal resting egg hatching declined with maternal age at the low food concentration in one of two experiments. 7. The results support the idea that induction of mictic females should occur when food resources are good. Coincidence of sexual reproduction with low food availability risks low production of resting eggs for several reasons. Population size may be small, with a low probability of encounters between young mictic females and males, and fertilised mictic females may be unable to mature and produce resting eggs.  相似文献   

17.
The effects of food availability and nest predation on several life history traits such as adult survival, dispersal, and reproductive performance were assessed in an Audouin's gull (Larus audouinii) colony during the period 1992–1997. The amounts of fish discarded from trawlers were used as a measure of food availability, and a trawling moratorium which partially overlapped with the breeding season of the gulls was taken into account. The effects of nest predation were assessed in 1994, when a terrestrial predator entered the colony and remained for the whole breeding season preying on both eggs and chicks. Using the moratorium and the predatory event as natural experiments, several hypotheses were tested: (a) food supply would affect breeding performance but not adult survival (independently of age and sex), since gulls are long-lived and adult survival is the most sensitive demographic parameter in their population dynamics; (b) the predator would trigger breeding dispersal (although gulls are mostly philopatric, they are known to abandon their natal colony after breeding failure instigated by events such as this). If breeding dispersal occurs, the rate is expected to be higher in females than in males, and higher in new breeders than in more experienced breeding birds, as is usually recorded in colonial seabirds. Probabilities of resighting and survival were estimated separately, using capture-recapture models. As expected, changes in food availability did not affect adult survival, whereas they influenced egg volume, clutch size, and breeding success. Local adult survival was estimated to be 0.908 (SD = 0.007) for males and females, and it did not change significantly with the age of individuals (range 3–8 years). The predator significantly decreased breeding success, and caused the dispersal of a number of adults probably to breed in another colony; this rate was estimated at an average of 0.10 (SD = 0.02). As expected, inexperienced breeders dispersed significantly more (14%) than more experienced breeders (8%) after the predator event, but dispersal was not sex biased. Recapture probabilities after the predator event suggest that birds that left the colony still had not returned. Results confirm that population dynamics of ground-nesting seabirds are sensitive to terrestrial predation, even when predation caused only a partial breeding failure. Received: 16 July 1998 / Accepted: 16 November 1998  相似文献   

18.
Eurytemora affinis egg mass size—a commonly used demographicparameter—was surveyed in the Gironde estuary. Its decreasebetween 1978 and 2003 contrasted with the stability of populationdensity during this long-term period. Different hypotheses weretested to explain this paradox. (i) Upstream shift of the population:Even though the population of E. affinis shifted upstream dueto a greater penetration of marine water, no relationship betweenthe population shift and demographic parameters was observed:the egg mass size exhibited the same evolution upstream. (ii)Water warming: No early egg production and no change of femalesize that could metabolically limit the egg mass size was observed.(iii) Food limitation: The change in food quality observed didnot result in any change in total copepod abundance. (iv) Fasterrenewal of egg masses: The paradox cannot be explained by thisfactor and the number of adults observed nowadays is higherthan the number of eggs produced by females, whereas fecundityrates strongly increased. The paradox is probably explainedby the expulsion of viable subitaneous eggs. This may representa recent behaviour adaptation of the copepod to environmentalchanges.  相似文献   

19.
Nutrient cycling is fundamental to ecosystem functioning. Despite recent major advances in the understanding of complex food web dynamics, food web models have so far generally ignored nutrient cycling. However, nutrient cycling is expected to strongly impact food web stability and functioning. To make up for this gap, we built an allometric and size structured food web model including nutrient cycling. By releasing mineral nutrients, recycling increases the availability of limiting resources for primary producers and links each trophic level to the bottom of food webs. We found that nutrient cycling can provide a significant part of the total nutrient supply of the food web, leading to a strong enrichment effect that promotes species persistence in nutrient poor ecosystems but leads to a paradox of enrichment at high nutrient inputs. The presence of recycling loops linking each trophic level to the basal resources weakly affects species biomass temporal variability in the food web. Recycling loops tend to slightly dampen the destabilising effect of nutrient enrichment on consumer temporal variability while they have opposite effects for primary producers. By considering nutrient cycling, this new model improves our understanding of the response of food webs to nutrient availability and opens perspectives to better link studies on food web dynamics and ecosystem functioning.  相似文献   

20.
Lubzens  E.  Wax  Y.  Minkoff  G.  Adler  F. 《Hydrobiologia》1993,255(1):127-138
The production of resting eggs by the rotifer Brachionus plicatilis was tested at four salinities (9, 18, 27 and 36\%) and six concentrations of the alga Chlorella stigmatophora (0.25, 0.5, 1.0, 2.0, 4.0 and 6.0 × 106 cells ml–1). The results indicated that resting eggs were produced only at two salinities (9\% and 18\%) and that their number was affected by the amount of food provided. A model consisting of two generalized linear sub-models was built to evaluate the contribution of each of the tested food concentrations at the two salinities. The sub-models were used to distinguish between two different components of resting egg production: one related to the presence or absence of resting egg production, and the other to the number of resting eggs produced, given that production had occurred. Besides indicating the best combination of salinity and food concentration for obtaining large numbers of resting eggs, they revealed the contribution of internal population factors that were not controlled in the course of the experiment. The model identified the positive contribution of the relative number of females to males, and the negative association between high rotifer densities and the production of resting eggs. The results of the present study help in defining the optimal conditions for mass production of resting eggs, which are of potential importance in aquaculture.Deceased, September 1991.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号