首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We used a spatial model of a riverine tsetse fly species Glossina palpalis gambiensis life cycle to investigate the interaction between their dispersal and three control methods and to document these interactions using sensitivity analyses. The model is currently limited to gallery forest habitat inhabited by Glossina palpalis gambiensis in the dry season in the sub-humid zone of West Africa. The control methods modelled were traps and targets (TT), insecticide-treated livestock (ITL), and the sterile insect technique (SIT). Both distance dispersed (up to 800 m) and percent of flies dispersing each day (up to 60 %) increased the efficiency of control by TT. Most of this increase occurred for low values of both distance dispersed and percent dispersing, but the increase continued up to the limits tried. The daily movement of cattle assisted the control program and when movement was considerable (up to 600 m daily) the effects were greater than the effects of tsetse dispersal. Random dispersal decreased aggregation and equilibrium population size, and thus also increased the efficiency of SIT. Dispersal that was mostly oriented towards clumps was of much less value for SIT but acted on TT and ITL similarly to random dispersal.  相似文献   

2.
When computing mean daily fertility in adult female tsetse, the common practice of taking the reciprocal of the interlarval period (called averaged fertility) was compared with the method of taking the sum of the products of daily fertility and adult survivorship divided by the sum of daily survivorships (called periodic fertility). The latter method yielded a consistently higher measure of fertility (approximately 10% for tsetse) than the former method. A conversion factor was calculated to convert averaged fertility to periodic fertility. A feasibility criterion was determined for the viability of a tsetse population. Fertility and survivorship data from tsetse populations on Antelope Is. and Redcliff Is., both in Zimbabwe, were used to illustrate the feasibility criterion, as well as the limitations imposed by survivorship and fertility on the viability of tsetse populations. The 10% difference in fertility between the two methods of calculation makes the computation of population feasibility with some parameter combinations sometimes result in a wrong answer. It also underestimates both sterile male release rates required to eradicate a pest population, as well as the speed of resurgence if an eradication attempt fails.  相似文献   

3.
The structure, and assumed parameter values, of a recent dynamic population model for tsetse (Diptera: Glossinidae) render it unable to fit published data on tsetse control programs using odor-baited targets, insecticide-treated cattle and the sterile insect technique (SIT). The underlying problem is a mismatch between the small size of the mapped cells (1 ha) and the long time-step, which allows flies to move only once every 5 days, and then only to an adjacent cell. Assumed rates of tsetse dispersal and killing by odor-baited targets are consequently at least an order of magnitude lower than observed in the field. Suggestions that Glossina pallidipes could be eradicated more rapidly with SIT, than using hundreds of targets per km2, is contradicted both by the field data and by three other independent modeling studies.  相似文献   

4.
An interactive programme, incorporating a deterministic model of tsetse (Diptera: Glossinidae) populations, was developed to predict the cost and effect of different control techniques applied singly or together. Its value was exemplified by using it to compare: (i) the sterile insect technique (SIT), involving weekly releases optimized at three sterile males for each wild male, and (ii) insecticide-treated cattle (ITC) at 3.5/km(2). The isolated pre-treatment population of adults was 2500 males and 5000 females/km(2); if the population was reduced by 90%, its growth potential was 8.4 times per year. However, the population expired naturally when it was reduced to 0.1 wild males/km(2), due to difficulties in finding mates, so that control measures then stopped. This took 187 days with ITC and 609 days with SIT. If ITC was used for 87 days to suppress the population by 99%, subsequent control by SIT alone took 406 days; the female population increased by 48% following the withdrawal of ITC and remained above the immediate post-suppression level for 155 days; the vectorial capacity initially increased seven times and remained above the immediate post-suppression level for 300 days. Combining SIT and ITC after suppression was a little faster than ITC alone, provided the population had not been suppressed by more than 99.7%. Even when SIT was applied under favourable conditions, the most optimistic cost estimate was 20-40 times greater than for ITC. Modelling non-isolated unsuppressed populations showed that tsetse invaded approximately 8 km into the ITC area compared to approximately 18 km for SIT. There was no material improvement by using a 3-km barrier of ITC to protect the SIT area. In general, tsetse control by increasing deaths is more appropriate than reducing births, and SIT is particularly inappropriate. User-friendly models can assist the understanding and planning of tsetse control. The model, freely available via http://www.tsetse.org, allows further exploration of control strategies with user-specified assumptions.  相似文献   

5.
Tsetse exhibit a U-shaped age-mortality curve, with high losses after eclosion and a well-marked ageing process, which is particularly dramatic in males. A three-parameter (k(1) -k(3) ) model for age-dependent adult instantaneous mortality rates was constructed using mark-recapture data for the tsetse fly Glossina morsitans morsitans Westwood (Diptera: Glossinidae). Mortality changed linearly with k(1) over all ages; k(2) affected only losses in roughly the first week of adult life, and k(3) controlled the ageing rate. Mortality pooled over age was twice as sensitive to changes in k(3) as in k(1) . Population growth rate was, however, similarly affected by these two parameters, reflecting the disproportionate effect of k(3) on mortality in the oldest flies that contribute least to the growth rate. Pooled-age mortality and growth rate were insensitive to changes in k(2) . The same model also provided good fits to data for laboratory colonies of female G. m. morsitans and Glossina austeni Newstead and should be applicable to all tsetse of both sexes. The new model for tsetse mortality should be incorporated into models of tsetse and trypanosome population dynamics; it will also inform the estimation of adult female mortality from ovarian dissection data.  相似文献   

6.
Several tephritid fruit flies have explosive population growth and a wide host range, resulting in some of the largest impacts on horticultural crops, reducing marketable produce, and limiting market access. For these pests, early detection and eradication are routinely implemented in vulnerable areas. However, social and consumer concerns can limit the types of population management tools available for fruit fly incursion responses. Deterministic population models were used to compare eradication tools used at typical densities alone and in combination against the Queensland fruit fly (‘Qfly’), Bactrocera tryoni. The models suggested that tools that prevent egg laying are likely to be most effective at reducing populations. Tools that induced mortality once Qfly was sexually mature only slowed population growth, as successful mating still occurred. Release of sterile Qfly when using the sterile insect technique (SIT) interferes with the successful mating of wild flies, and of the tools investigated here, SIT caused the greatest reduction in the population at the prescribed release rate. Used in tandem with SIT, protein baits slightly improved the rate of population reduction, but the male annihilation technique (MAT) almost nullified control by SIT due to the mortality induced on sterile flies. The model suggested that the most rapid decrease in population size would be achieved by SIT plus protein baits. However, the model predicted both the SIT and protein baits when used alone would result in population reduction. The MAT can be used prior to SIT release to increase overflooding ratios.  相似文献   

7.
Background

Tsetse flies (Diptera: Glossinidae) are the vectors of African trypanosomosis, the causal agent of sleeping sickness in humans and nagana in animals. Glossina fuscipes fuscipes is one of the most important tsetse vectors of sleeping sickness, particularly in Central Africa. Due to the development of resistance of the trypanosomes to the commonly used trypanocidal drugs and the lack of effective vaccines, vector control approaches remain the most effective strategies for sustainable management of those diseases. The Sterile Insect Technique (SIT) is an effective, environment-friendly method for the management of tsetse flies in the context of area-wide integrated pest management programs (AW-IPM). This technique relies on the mass-production of the target insect, its sterilization with ionizing radiation and the release of sterile males in the target area where they will mate with wild females and induce sterility in the native population. It has been shown that Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) infection causes a decrease in fecundity and fertility hampering the maintenance of colonies of the tsetse fly G. pallidipes. This virus has also been detected in different species of tsetse files. In this study, we evaluated the impact of GpSGHV on the performance of a colony of the heterologous host G. f. fuscipes, including the flies’ productivity, mortality, survival, flight propensity and mating ability and insemination rates.

Results

Even though GpSGHV infection did not induce SGH symptoms, it significantly reduced all examined parameters, except adult flight propensity and insemination rate.

Conclusion

These results emphasize the important role of GpSGHV management strategy in the maintenance of G. f. fuscipes colonies and the urgent need to implement measures to avoid virus infection, to ensure the optimal mass production of this tsetse species for use in AW-IPM programs with an SIT component.

  相似文献   

8.
The success of the sterile insect technique (SIT) for the control of the Mediterranean fruit fly or medfly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), depends largely on the ability of sterile flies to spread in the target area and compete with the wild males for wild females. Our objectives in the present study were three‐fold: (1) to evaluate the dispersal ability of sterile male medflies and compare their spatial dispersion patterns with that of wild males, (2) to evaluate how different release methods affect subsequent spatial dispersal, and (3) to determine whether manipulating the pre‐release diet of sterile males affects their dispersal. To achieve these objectives, we conducted three experiments in the field where we quantified and analyzed the spatial and temporal dispersal patterns of sterile medflies and the dispersion of resident wild males. Overall, ca. 5% of the released sterile flies were recaptured 100 m from the release point, and ca. 2% were recaptured 200 m from the release point. The released flies rarely survived longer than 5–7 days. We repeatedly found that the spatial dispersion patterns of sterile males significantly correlated with those of wild males. Release methods strongly affected subsequent fly dispersal in the field as significantly more flies were recaptured following a scattered release vs. a central one. Finally, we show that enriching sterile fly pre‐release diet with protein did not affect subsequent dispersal in the field. We conclude that sterile males are able to match the dispersion patterns of wild males, an outcome that is highly important for SIT success. Large releases from central points distant from each other may leave many areas uncovered. Accordingly, scattered releases, repeated twice a week, will provide better coverage of all available aggregations sites. The spatial performance of protein‐fed males suggests that pre‐release diet amendments may be used without detriment as a sexual stimulant in SIT programs.  相似文献   

9.
The sterile insect technique (SIT) is based on population and behavioral ecology and is widely used to suppress or eradicate target pest insect populations. The effectiveness of SIT depends on the ability of the released sterile males to mate with and inseminate wild females. The use of gamma‐radiation to induce sterility is, however, associated with negative impacts not only on reproductive cells but also on somatic cells. Consequently, irradiation for sterilization diminishes mating performance over time. In this study, we evaluated the balance between the irradiation dose and both fertility and mating propensity in Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae) for 22 days following irradiation. The mating propensity of males irradiated with a 150‐Gy dose, as currently used to induce complete sterility of E. postfasciatus in the SIT program in Okinawa Prefecture, was equal to that of non‐irradiated weevils for up to 6 days, and the mating propensity of males irradiated with a dose of 125 Gy was equal to that of non‐irradiated weevils for twice this period (12 days). The fertilization ability of weevils irradiated with a dose of 125 Gy was reduced by 4.6% in males and 0.6% in females, compared to the potential fertilization ability. We also discuss the possibility of the application of partially sterilized insects in eradication programs.  相似文献   

10.
Age-dependent mortality changes in haematophagous insects are difficult to measure but are important determinants of population dynamics and vectorial capacity. A Markov process was used to model age-dependent changes in wing fray in tsetse (Glossina spp), calibrated using published mark–recapture data for male G. m. morsitans in Tanzania. The model was applied to female G. m. morsitans, captured in Zimbabwe using a vehicle-mounted electric net and subjected to ovarian dissection and wing fray analysis. Rates of fray increased significantly with age in males but not females, where the rate was constant for ovarian categories 0–3. A jump in mean fray between ovarian categories 3 and 4 + 4n is consistent with the latter category including flies that have ovulated 4, 8, 12, 16 times and so on. The magnitude of the jump could, theoretically, facilitate improved mortality estimates. In practice, although knowledge of fly mortality was required for modelling wing fray, mortality estimates derived from ovarian dissection data are independent of patterns and rates of change in wing fray. Significantly better fits to ovarian age data resulted when age-specific mortality was modelled as the sum of two exponentials, with high mortality in young and old flies, than when mortality was constant at 2.3% per day.  相似文献   

11.
The use of the sterile insect technique (SIT) is being considered as an additional tool for the control of Aedes albopictus (Skuse) (Diptera: Culicidae), the vector of Chikungunya and Dengue viruses in Mauritius. The aim of this study was to assess the competitiveness value of sterile males of different age and under various release conditions. Three release ratios were tested with sterile males of either 1, 3, or 5 days old at release. The competition of sterile males against same age or a mixed age population of fertile males (which is more representative of the field situation) was also investigated. The participation in mating (observed through single female oviposition), the average-induced sterility, and the male competitiveness index indicated that 3-day-old sterile males have the best balance between survival and mating capacity, and should therefore be the favored age of release in the field. Reduction in the cage fertility was obtained at 5-to-1 release ratio; however, it is speculated that at least a 10-fold ratio of sterile-to-fertile males should be chosen to induce substantial sterility in the wild Ae. albopictus population in the SIT pilot release site in Mauritius. Interestingly, this study showed for the first time that the age of the fertile male population against which the sterile males compete is a very important parameter that can significantly affect the sexual performance of sterile males, leading to overestimation of their competitiveness values.  相似文献   

12.
For ensuring the effectiveness of sterile insect technique (SIT) programmes, maintaining the reproductive competitiveness and dispersal ability of mass‐reared sterile males is essential. Inadvertent selection is an important genetic process that frequently occurs during mass rearing to produce sterile males. We investigated the effect of mass‐rearing conditions on the responsiveness to sex pheromones and spontaneous flight activity of males of the sweetpotato weevil Cylas formicarius (Coleoptera: Brentidae). There were no significant differences in the responsiveness to sex pheromones and spontaneous flight activity between wild and mass‐reared strains. These results indicate that mass‐reared strains of C. formicarius might not cause serious problems for implementing SIT programmes.  相似文献   

13.
A stochastic branching process was used to derive equations for the mean and variance of the probability of, and time to, extinction in tsetse populations. If the remnant population is a single inseminated female, the extinction probability increases linearly with adult mortality and is always certain if this mortality >3.5% per day even for zero pupal mortality. If the latter mortality is 4% per day, certain extinction is only avoided if adult mortality <1.5% per day. For remnant female populations >1, the extinction probability increases in a non-linear manner with adult mortality. Extinction is still certain for adult mortality >3.5% per day but, when the remnant population is >16, extinction is highly unlikely for adult mortality <2.5% per day if all females are inseminated. Extinction probability increases with increasing probability of sterile mating in much the same way as it does with increasing adult mortality. Extinction is assured if the probability of insemination can be reduced to 0.1. The required reduction decreases with increasing adult mortality. For adult mortality = 6-8% per day, the time to extinction increases only by one generation per order of magnitude increase in the starting population. Time to extinction is less sensitive to changes in the pupal than in the adult mortality. Reductions in the probability of insemination only become important when adult mortality is small; if the adult mortality is 8% per day, reducing the insemination probability from 1 to 0.1 only reduces the expected time to extinction by two generations. Conversely, increases in adult mortality produce important reductions in the required time even when the probability of insemination is 0.1. The practical, economic implication for the sterile insect technique is that the low-tech methods used to suppress tsetse populations should not be halted when the release of sterile males is initiated. The sterile insect technique should only be contemplated when it has been demonstrated that the low-tech methods have failed to effect eradication. The theory is shown to be in good accord with the observed results of tsetse control campaigns involving the use of odour-baited targets in Zimbabwe and the sterile insect technique on Unguja Island, Zanzibar.  相似文献   

14.
The sterile insect technique (SIT), based on the principles of population and behavioral ecology, is widely used to suppress or eradicate target pest insect populations. The effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females; however, the use of gamma radiation to induce sterility negatively affects both somatic cells as well as reproductive cells. Consequently, sterilization by irradiation drastically diminishes mating performance over time. It is well known that fractionated‐dose irradiation, in which a sterilizing dose is delivered via a series of smaller irradiations, reduces radiation damage. In the present study, we evaluated the effect of fractionated‐dose irradiation on fertility, longevity, and mating propensity in Cylas formicarius (Summers) (Coleoptera: Brentidae) for 16 days after irradiation. Fractionated‐dose irradiation with 200 Gy induced full sterility regardless of the number of radiation doses. Although the mating propensity of males sterilized by a single 200 Gy dose (the current standard of the Okinawa Prefecture SIT program) was equal to that of non‐irradiated weevils for the first 6 days, the mating propensity of males sterilized by a series of three doses was maintained for at least the first 12 days. These results demonstrated that fractionated‐dose irradiation can be highly advantageous in C. formicarius eradication programs.  相似文献   

15.
Background

Tsetse flies (Diptera: Glossinidae) are the cyclical vectors of the causative agents of African Trypanosomosis, which has been identified as a neglected tropical disease in both humans and animals in many regions of sub-Saharan Africa. The sterile insect technique (SIT) has shown to be a powerful method to manage tsetse fly populations when used in the frame of an area-wide integrated pest management (AW-IPM) program. To date, the release of sterile males to manage tsetse fly populations has only been implemented in areas to reduce transmission of animal African Trypanosomosis (AAT). The implementation of the SIT in areas with Human African Trypanosomosis (HAT) would require additional measures to eliminate the potential risk associated with the release of sterile males that require blood meals to survive and hence, might contribute to disease transmission. Paratransgenesis offers the potential to develop tsetse flies that are refractory to trypanosome infection by modifying their associated bacteria (Sodalis glossinidius) here after referred to as Sodalis. Here we assessed the feasibility of combining the paratransgenesis approach with SIT by analyzing the impact of ionizing radiation on the copy number of Sodalis and the vectorial capacity of sterilized tsetse males.

Results

Adult Glossina morsitans morsitans that emerged from puparia irradiated on day 22 post larviposition did not show a significant decline in Sodalis copy number as compared with non-irradiated flies. Conversely, the Sodalis copy number was significantly reduced in adults that emerged from puparia irradiated on day 29 post larviposition and in adults irradiated on day 7 post emergence. Moreover, irradiating 22-day old puparia reduced the copy number of Wolbachia and Wigglesworthia in emerged adults as compared with non-irradiated controls, but the radiation treatment had no significant impact on the vectorial competence of the flies.

Conclusion

Although the radiation treatment significantly reduced the copy number of some tsetse fly symbionts, the copy number of Sodalis recovered with time in flies irradiated as 22-day old puparia. This recovery offers the opportunity to combine a paratransgenesis approach – using modified Sodalis to produce males refractory to trypanosome infection – with the release of sterile males to minimize the risk of disease transmission, especially in HAT endemic areas. Moreover, irradiation did not increase the vector competence of the flies for trypanosomes.

  相似文献   

16.
Selection for genetic adaptation might occur whenever an animal colony is maintained in the laboratory. The laboratory adaptation of behavior such as foraging, dispersal ability, and mating competitiveness often causes difficulties in the maintenance of biological control agents and other beneficial organisms used in procedures such as the sterile insect technique (SIT). Sweet potato weevil, Cylas formicarius (Summers) (Coleoptera: Brentidae), is an important pest in sub‐tropical and tropical regions. An eradication program targeting C. formicarius using SIT was initiated in Japan with weevils being mass‐reared for 95 generations to obtain sufficient sterile males. The mass‐reared strain of C. formicarius exhibits weaker female resistance to male mating attempts compared with the wild strain. This could affect the success of SIT programs because mating persistence of mass‐reared males might be expected to decrease in response to weak female resistance. We show that high success of sperm transfer to mass‐reared females was due to weak female resistance to male mating attempts. However, the mating behavior of mass‐reared males did not change. In C. formicarius, the trait of male persistence to mate was not correlated with the female resistance traits. Our results suggest that mass‐rearing conditions do not have negative effects on the mating ability of the sterile males of this species, and thus that the current mass‐rearing procedures are suitable for production of sterile males for the weevil eradication program.  相似文献   

17.
A deterministic model of the distribution of tsetse flies (Glossina spp) was used to assess the extent to which the efficacy of control operations would be affected by three different modes of density dependence in per capita adult dispersal: (i) density‐independent dispersal which has been commonly adopted in previous models, (ii) positive density‐dependent dispersal which has occasionally been discussed in the tsetse literature, (iii) negative density‐dependent dispersal (NDDD). The last has recently been suggested, from genetic studies, to change the dispersal rate of tsetse by up to 200‐fold, thereby posing a severe risk for the success of tsetse control operations. Modelling outputs showed that NDDD poses no such risk, provided the mean daily dispersal of tsetse is below about 1 km, which is greater than any rate actually recorded in the field or indicated by the genetic studies. NDDD can be problematic only if tsetse disperse at rates that appear highly unlikely, or even impossible, on energetic grounds. Under some circumstances these high rates would help rather than hinder the control officer. NDDD is not necessary to explain the results of control operations, and not sufficient to explain the results of successful control programmes.  相似文献   

18.
1 The sterile insect technique (SIT) involves the release of large numbers of sterile or partially‐sterile insects into a wild pest population to dilute the number of successful wild matings, with the eventual aim of eradication or area‐wide suppression. General population models, encompassing a wide range of SIT types, were used to derive principles for optimizing the success of SIT, with particular emphasis on the application of partial sterility leading to inherited sterility in the F1 population. 2 The models show that inherited sterility can only be guaranteed to be more effective than complete sterility if matings between irradiated‐lineage partners are unsuccessful. This is widely assumed but rarely examined experimentally. 3 The models allow the critical overflooding ratio, φc, to be calculated for a particular target species, suggesting the release rate required to prevent population increase. Successful eradication using SIT alone should aim for a substantially higher release rate than suggested by φc. 4 The models show that pest populations may continue to increase in the first few generations of SIT releases, regardless of release rate, as irradiated‐lineage individuals infiltrate the population. This does not necessarily imply that the SIT programme will be unsuccessful in the longer term. 5For pests with overlapping generations, the models suggest that frequent small releases may be more effective than less frequent large releases, particularly when the average release rate is close to the critical threshold for success.  相似文献   

19.
A stochastic dynamic population model for the complete life cycle of northern corn rootworm, Diabrotica barberi Smith & Lawrence, is described. Adult population dynamics from emergence to oviposition are based on a published single-season model for which temperature-dependent development and age-dependent advancement determine adult population dynamics and oviposition. Randomly generated daily temperatures make this model component stochastic. Stochastic hatch is 50+/-8%. A stochastic nonlinear density-dependent larval survival model is estimated using field data from artificial infestation experiments. A regional model of corn phenology is estimated to incorporate the effect of dispersal on adult mortality. Random daily weather is generated using parameters for Brookings, SD. Model performance is evaluated with deterministic simulations, which show that the population converges to zero unless adult mortality is reduced by the availability of corn pollen from the regional model of corn phenology. Stochastic model performance is evaluated with stochastic daily weather, egg hatch, and larval survival in various combinations. Sensitivity analysis is conducted to evaluate model responsiveness to each parameter. Model results are generally consistent with published data.  相似文献   

20.
MANY SPECIES OF TSETSE FLIES (DIPTERA: Glossinidae) are infected with a virus that causes salivary gland hypertrophy (SGH), and flies with SGH symptoms have a reduced fecundity and fertility. The prevalence of SGH in wild tsetse populations is usually very low (0.2%-5%), but higher prevalence rates (15.2%) have been observed occasionally. The successful eradication of a Glossina austeni population from Unguja Island (Zanzibar) using an area-wide integrated pest management approach with a sterile insect technique (SIT) component (1994-1997) encouraged several African countries, including Ethiopia, to incorporate the SIT in their national tsetse control programs. A large facility to produce tsetse flies for SIT application in Ethiopia was inaugurated in 2007. To support this project, a Glossina pallidipes colony originating from Ethiopia was successfully established in 1996, but later up to 85% of adult flies displayed symptoms of SGH. As a result, the colony declined and became extinct by 2002. The difficulties experienced with the rearing of G. pallidipes, epitomized by the collapse of the G. pallidipes colony originating from Ethiopia, prompted the urgent need to develop management strategies for the salivary gland hypertrophy virus (SGHV) for this species. As a first step to identify suitable management strategies, the virus isolated from G. pallidipes (GpSGHV) was recently sequenced and research was initiated on virus transmission and pathology. Different approaches to prevent virus replication and its horizontal transmission during blood feeding have been proposed. These include the use of antiviral drugs such as acyclovir and valacyclovir added to the blood for feeding or the use of antibodies against SGHV virion proteins. In addition, preliminary attempts to silence the expression of an essential viral protein using RNA interference will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号