首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background and Aims

Alpha-gliadin proteins are important for the industrial quality of bread wheat flour, but they also contain many epitopes that can trigger celiac (cœliac) disease (CD). The B-genome-encoded α-gliadin genes, however, contain very few epitopes. Controlling α-gliadin gene expression in wheat requires knowledge on the processes of expression and deposition of α-gliadin protein during wheat grain development.

Methods

A 592-bp fragment of the promotor of a B-genome-encoded α-gliadin gene driving the expression of a GUS reporter gene was transformed into wheat. A large number of transgenic lines were used for data collection. GUS staining was used to determine GUS expression during wheat kernel development, and immunogold labelling and tissue printing followed by staining with an α-gliadin-specific antibody was used to detect α-gliadin protein deposited in developing wheat kernels. The promoter sequence was screened for regulatory motifs and compared to other available α-gliadin promoter sequences.

Key Results

GUS expression was detected primarily in the cells of the starchy endosperm, notably in the subaleurone layer but also in the aleurone layer. The α-gliadin promoter was active from 11 days after anthesis (DAA) until maturity, with an expression similar to that of a 326-bp low molecular weight (LMW) subunit gene promoter reported previously. An α-gliadin-specific antibody detected α-gliadin protein in protein bodies in the starchy endosperm and in the subaleurone layer but, in contrast to the promoter activity, no α-gliadin was detected in the aleurone cell layer. Sequence comparison showed differences in regulatory elements between the promoters of α-gliadin genes originating from different genomes (A and B) of bread wheat both in the region used here and upstream.

Conclusions

The results suggest that additional regulator elements upstream of the promoter region used may specifically repress expression in the aleurone cell layer. Observed differences in expression regulator motifs between the α-gliadin genes on the different genomes (A and B) of bread wheat leads to a better understanding how α-gliadin expression can be controlled.Key words: Alpha-gliadin, promoter, expression, deposition, wheat, Triticum aestivum, grain development  相似文献   

2.
The role of fructan metabolism in the assimilate relations of the grain of wheat (Triticum aestivum L.) was investigated by determination of the dry matter and fructan content of grain components at short intervals during grain filling. During the initial phase of rapid expansion, most of the assimilates entering the grain were partitioned to the outer pericarp. A large fraction of these assimilates were used for the synthesis of fructan. Dry matter deposition and fructan synthesis in the outer pericarp ceased at about 5d after anthesis. At the same time, the endosperm and the inner pericarp and testa started to accumulate dry matter at a fast rate. This was also associated with significant fructan synthesis in the latter tissues. The outer pericarp lost about 45% of its former maximum dry weight between 9 and 19 d after anthesis. This loss was due almost entirely to the near complete disappearance of water-soluble carbohydrates, most of which was fructan. The inner pericarp and testa accumulated dry matter until about mid-grain filling. The fructan contents of the inner pericarp and testa and the endosperm decreased slowly towards the end of grain filling. Most of the fructans in the inner pericarp and testa and the endosperm had a low molecular weight, whereas higher molecular weight fructans predominated in the outer pericarp. The embryo did not contain fructan. The presence of low molecular weight fructans in the endosperm cavity at mid-grain filling was confirmed. It is suggested that fructan synthesis is closely linked to growth-related water deposition in the different tissues of the wheat grain and serves to sequester the surplus of imported sucrose.  相似文献   

3.
In hexaploid wheat, single-locus and two-locus quantitative trait loci (QTL) analyses for grain protein content (GPC) were conducted using two different mapping populations (PI and PII). Main effect QTLs (M-QTLs), epistatic QTLs (E-QTLs) and QTL x environment interactions (QE, QQE) were detected using two-locus analyses in both the populations. Only a few QTLs were common in both the analyses, and the QTLs and the interactions detected in the two populations differed, suggesting the superiority of two-locus analysis and the need for using several mapping populations for QTL analysis. A sizable proportion of genetic variation for GPC was due to interactions (28.59% and 54.03%), rather than to M-QTL effects (7.24% and 7.22%), which are the only genetic effects often detected in the majority of QTL studies. Even E-QTLs made a marginal contribution to genetic variation (2.68% and 6.04%), thus suggesting that the major part of genetic variation is due to changes in gene networks rather than the presence or absence of specific genes. This is in sharp contrast to the genetic dissection of pre-harvest sprouting tolerance conducted by us earlier, where interaction effects were not substantial, suggesting that the nature of genetic variation also depends on the nature of the trait.  相似文献   

4.
Signal transduction during wheat grain development   总被引:1,自引:0,他引:1  
Lingan Kong  Honghai Guo  Mingze Sun 《Planta》2015,241(4):789-801
  相似文献   

5.
Wheat is one of the most important global crops and selection for better performance has been ongoing since ancient times. As a quantitative trait controlled by the interplay of several genomic loci and under the strong influence of the environment, grain protein content (GPC) is of major interest in breeding programs. Here, we review the most recent contributions to the genetics underlying wheat GPC and grain protein deviation (GPD, representing the relationship between grain protein content and yield), together with the performance of genomic prediction models characterizing these traits. A total of 364 significant loci related to GPC and GPD are positioned on the hexaploid wheat genome, highlighting genomic regions where significant independent QTL overlap, with special focus on two regions located on chromosomes 3A and 5A. Some of the corresponding homoeologous sequences co-locate with significant independent QTL reported on the B and D subgenomes. Overlapping independent QTL from different studies are indicative of genomic regions exhibiting stability across environments and genotypes, with promising candidates for improving grain quality.  相似文献   

6.
The synthesis and distribution of histone subfractions (variants) were investigated during early grain development and in mature tissues of wheat (Tritium aestivum L.). Histones were extracted from purified chromatin and separated by two-dimensional polyacrylamide gel electrophoresis. There were no detectable differences in the patterns of histone variants from immature grain (3–16 days after fertilization), from mature embryos, from coleoptiles and roots of 4-day-old, etiolated seedlings and from leaves of 10-day-old, light-grown seedlings. Wheat H2 histones are composed of families of closely related variants. H2A consists of three major variants, and H2B consists of two major and four minor variants. The synthesis of these variants during early grain formation was determined by calculating the specific activities of the [3H]lysinelabeled proteins synthesized between 3 and 10 days after fertilization. The rate of synthesis of the nucleosomal histones closely parallels the declining rate of cell division in developing grains. Our results indicate that all the recognized wheat histone variants are present in developing wheat grains from the earliest time investigated (3 days after fertilization) and persist with no detectable changes in relative quantities throughout grain development and in several mature tissues.  相似文献   

7.
Wheat (Triticum aestivum cv. Aroona) was grown in siliceoussand with essential nutrients for unlimited growth except forthe following treatments: controls (sufficient Zn and Mn), lowMn (sufficient Zn) and low Zn (sufficient Mn) until anthesis.Replicate plants were harvested at anthesis; the remaining plantswere transferred to a chelate-buffered nutrient solution containingall essential nutrients except Zn and Mn to allow monitoringof the remobilization of existing Zn and Mn reserves withinthe plant. These plants were harvested 14 d post-anthesis andat grain maturity. At each harvest plants were separated intoindividual components. There were no growth differences between any of the treatmentsat the three harvests. Large amounts of Zn and Mn found in theroots and stems at anthesis were rapidly depleted during graindevelopment. The Zn content of the leaves increased from anthesisto 14 d post-anthesis, but then declined. The Mn content ofthe leaves increased throughout grain development in the controlswhilst remaining constant in the plants pre-grown at low Mn.The Zn and Mn content of the glumes, palea and lemma rose inthe controls from anthesis to 14 d post-anthesis; thereafterZn content declined but Mn content continued to increase. TheZn and Mn content of the grain rose sharply toward grain maturity.We conclude that Mn was not remobil-ized from the leaves ofwheat during grain development. Zinc was remobilized from theleaves, especially the flag leaf and from the leaves of thelow Zn plants. The post-anthesis accumulation of Zn and Mn withinthe glumes will be discussed in relation to the transport pathwaythat Zn and Mn use to enter the developing seed. Key words: Zinc, manganese, wheat, distribution, remobilization  相似文献   

8.
The availability of nitrogen and sulphur have major effects on thesynthesis of prolamin storage proteins in developing endosperms of wheat andbarley. A high level of available nitrogen results in an increased proportionofprolamin storage proteins. However, changes in the storage protein compositionoccur if additional sulphur is not also provided, with increased proportions ofsulphur-poor prolamins and HMW prolamins and decreased proportions ofsulphur-rich prolamins. In the case of wheat, this results in increasedresistance and decreased extensibility of dough for bread-making, withconsequences for the end-use quality. Further limitation in the availability ofsulphur results in decreased total prolamin synthesis and an increase in freeaspartic acid/asparagine in the grain. Recent studies of the structure andregulation of prolamin genes indicate the presence of regulatory elements inthepromoter regions of genes for S-rich and S-poor prolamins, which could respondto nitrogen levels, although the sensing and signal transduction mechanisms arenot understood. Such elements have not so far been identified in genes for HMWprolamins. Similarly, there is no information on how the availability ofsulphurcould modulate prolamin gene expression.  相似文献   

9.
G. A. Foxon  L. Catt  P. L. Keeling 《Planta》1990,181(1):104-108
The effect of light on the in-vivo rate of starch synthesis in the endosperm of developing wheat (Triticum aestivum cv. Mardler) grain was studied. Individual grains from spikelets grown on the same spike either in darkness or bright light showed no difference in their ability to accumulate radioactivity or to convert this to starch over a 14-h period. Similarly, there was no difference in final grain dry weight between spikes which had been kept in either darkness or normal light from 10 d post anthesis. In contrast, when half-grains (grain which had been bisected longitudinally along the crease region) were incubated by being submerged in culture solution (in vitro) the incorporation of [14C]sucrose into starch was stimulated by increased irradiance. Further experiments showed that the in-vitro dependence on light could be linked to the availability of oxygen. We suggest that in vitro the diffusion of oxygen into the endosperm cells combined with an increased rate of respiration of the tissue during the incubation causes this limitation. Thus the dependence of starch synthesis on light is an artefact of the in-vitro incubation system. The photosynthetic ability of the green pericarp tissue can be used to prevent the development of anoxia in the endosperm tissue of half-grains incubated in vitro. In conclusion, we propose that starch synthesis in vivo is not dependent on oxygen production by photosynthesis in the green layer of the pericarp.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - dpa days post anthesis - PCA perchloric acid  相似文献   

10.
Mode of high temperature injury to wheat during grain development   总被引:5,自引:0,他引:5  
High temperature stress adversely affects wheat growth in many important production regions, but the mode of injury is unclear. Wheat ( Triticum aestivum L. cv. Newton) was grown under controlled conditions to determine the relative magnitude and sequences of responses of source and sink processes to high temperature stress during grain development. Regimes of 25°C day/15°C night, 30°C day/20°C night, and 35°C day/25°C night from 5 days after anthesis to maturity differentially affected source and sink processes. High temperatures accelerated the normal decline in viable leaf blade area and photosynthetic activities per unit leaf area. Electron transport, as measured by Hill reaction activity, declined earlier and faster than other photosynthetic processes at the optimum temperature of 25/15 °C and at elevated temperatures. Changes in RUBP carboxylase activities were similar in direction but smaller in magnitude than changes in photosynthesic rate. Increased protease activity during senscence was markedly accentuated by high temperature stress. Specific protease activity increased 4-fold at 25/15 °C and 28-fold at 35/25 °C from 0 to 21 days after initiation of temperature treatments. Grain-filling rate decreased from the lowest to the highest temperature, but the change was smaller than the decrease in grain-filling duration at the same temperatures. We concluded that a major effect of high temperature is acceleration of senescence, including cessation of vegetative and reproductive growth, deterioration of photosynthetic activities, and degradation of proteinaceous constituents.  相似文献   

11.
Yu  Yi  Sun  Fangyao  Chen  Ning  Sun  Genlou  Wang  Cheng-Yu  Wu  De-Xiang 《Protoplasma》2021,258(1):103-113

Wheat contains the largest number of miR396 family with 17 miR396 in Poaceae. MiR396 regulatory network underlying wheat grain development has not comprehensively been explored. Our results showed that precursor miR396 family in Poaceae exhibited not only conservativeness but also diversification especially in wheat. Five haplotypes were detected in Poaceae species, while 4 haplotypes in wheat with Hap-4 (miR396a) and Hap-5 (miR396n) unique to wheat. GO enrichment analysis of target genes showed that the first 20 enrichment functions of miR396a and miR396n are completely different from each other, and also completely different from miR396(b–g), miR396(h–m), and miR396(o–q). Functional annotation on the 18 target genes shared by miR396(b–g), miR396(h–m), and miR396(o–q) found that 11 of the 18 target genes are growth-regulating factor (GRF) genes. Our results indicated that, during the grain filling stage of wheat, miR396 is involved in the development of grains by regulating the expression of GRF genes (GRF1, GRF6, and GRF9). Although the enrichment function of miR396(b–g), miR396(h–m), and miR396(o–q) is the same, the gene functional networks they formed differ greatly. Our results indicated that polyploidization enriches not only the diversity of miR396 family and its target genes but also gene functional networks in wheat. These results laid foundation for further elucidating function of miR396 gene family underlying wheat grain development.

  相似文献   

12.
It has been reported that ground-penetrating radar (GPR) is a nondestructive tool that can be used to detect coarse roots in forest soils. However, successful GPR application for root detection has been site-specific and numerous factors can interfere with the resolution of the roots. We evaluated the effects of root diameter, root volumetric water content, and vertical and horizontal intervals between roots on the root detection of Cryptomeria japonica in sand using 900-MHz GPR. We found that roots greater than 19 mm in diameter were clearly detected. Roots having high volumetric water content were easily detected, but roots with less than 20% water content were not detected. Two roots that were located closely together were not individually distinguished. These results confirm that root diameter, root water content, and intervals between roots are important factors when using GPR for root detection and that these factors lead to an underestimation of root biomass.  相似文献   

13.
In addition to the starchy endosperm, a specialized tissue accumulating storage material, the endosperm of wheat grain, comprises the aleurone layer and the transfer cells next to the crease. The transfer cells, located at the ventral region of the grain, are involved in nutrient transfer from the maternal tissues to the developing endosperm. Immunolabeling techniques, Raman spectroscopy, and synchrotron infrared micro-spectroscopy were used to study the chemistry of the transfer cell walls during wheat grain development. The kinetic depositions of the main cell wall polysaccharides of wheat grain endosperm, arabinoxylan, and (1–3)(1–4)-β-glucan in transfer cell walls were different from kinetics previously observed in the aleurone cell walls. While (1–3)(1–4)-β-glucan appeared first in the aleurone cell walls at 90°D, arabinoxylan predominated in the transfer cell walls from 90 to 445°D. Both aleurone and transfer cell walls were enriched in (1–3)(1–4)-β-glucan at the mature stage of wheat grain development. Arabinoxylan was more substituted in the transfer cell walls than in the aleurone walls. However, arabinoxylan was more feruloylated in the aleurone than in the transfer cell walls, whatever the stage of grain development. In the transfer cells, the ferulic acid was less abundant in the outer periclinal walls while para-coumarate was absent. Possible implications of such differences are discussed.  相似文献   

14.
The pattern of protein synthesis during development of Myxococcus xanthus was investigated. This gram-negative bacterium has a complex life cycle which involves a temporal sequence of cellular aggregation, mound formation, and myxosporulation. At various stages of development, cells were pulse-labeled with a 14C-labeled amino acid mixture. Synthesis of soluble and membrane proteins was then analyzed by SDS-polyacrylamide gel electrophoresis. Of the 30 major soluble proteins, at least 25% showed significant changes in their rates of production during development. Several significant changes were also found in the membrane proteins as analyzed by two-dimensional polyacrylamide gel electrophoresis. The major proteins synthesized during development were classified into four different types: accumulation proteins, peak proteins, late proteins, and constant proteins. The synthesis of protein S, an accumulation protein, increases dramatically during development to a maximum of 15% of total soluble protein synthesis. When methionine was added to the culture medium, cells did not form fruiting bodies. Under these conditions, almost all of the protein changes observed in the early and middle periods of development still occurred. However, the production of late proteins (e.g., protein U) was not observed, suggesting that methionine blocks a late stage of development. During glycerol induction, many of the changes in protein synthesis which normally occur during development were not observed (e.g., protein S did not accumulate). These results indicate that gene expression in M. xanthus is complex and subject to tight regulation.  相似文献   

15.
Trends in the time course, changes in the moisture, soluble amino acids, proline, abscisic acid contents and nitrate reductase activity determined byin vivo method in the developing seeds of wheat were studied. Maximum dry matter augmentation in the seed took place in the period between 10–30 days after anthesis. Per cent moisture and moisture content started declining 15 days and 25 days after anthesis, respectively. Levels of soluble amino acids, proline and nitrate reductase activity were higher during initial stages of seed development, but decreased with increasing magnitude of dehydration and accumulation of abscisic acid (ABA) in the maturing seeds.  相似文献   

16.
A model is presented for the formation of temporal and spatial patterns of cell types during the development of organisms. It is demonstrated that very simple random networks of interactions among genes that affect expression may lead to the autonomous development of patterns of cell types. It is required that the networks contain active feedback loops and that there is limited communication among cells. The only elements of the model, gene interactions, are specified by the DNA nucleotide sequences of the genes. Therefore, the model readily explains how the control of development is specified by the organism's DNA. In the context of this model, the formation of positional information and its interpretation becomes a single process.  相似文献   

17.
Dry wheat embryos contain large quantities of ribosomes, synthesized and assembled during embryogenesis. When messenger RNA isolated from dry embryos is translated, in vitro, a significant proportion of the total translation products (approx. 10%) is identifiable as ribosomal proteins, by electrophoresis in two distinct two-dimensional polyacrylamide gel electrophoretic systems. When germinating embryos are labelled with [35S]methionine, during the first 24 h of imbibition, the appearance of newly synthesized ribosomal proteins in the cytosolic fraction is barely detectable. However, this low level (< 1% of total cytosolic protein synthesis) of observed ribosomal protein synthesis is not correlated with a correspondingly low level of ribosomal protein mRNA. Ribosomal proteins constitute at least 10% of the products of translation, in vitro, of mRNA isolated from germinating wheat embryos. Ribosomal proteins are also conspicuous products of translation when polyribosomes isolated from imbibing embryos are used to direct protein synthesis in a cell-free ‘run-off’ system, and newly synthesized ribosomal proteins can be detected in the nuclei isolated from germinating embryos. It is proposed that their absence from the cytosolic fraction is a consequence of post-translational regulatory events.  相似文献   

18.
戴廷波  赵辉  荆奇  姜东  曹卫星 《生态学报》2006,26(11):3670-3676
灌浆期高温和水分逆境是影响小麦籽粒产量和品质的关键气候因子。以扬麦9号、徐州26和豫麦34三个小麦品种为材料,利用人工气候室模拟灌浆期高温和水分胁迫环境,研究了花后高温及温度和水分互作对小麦籽粒蛋白质和淀粉形成的影响。结果表明,高温显著提高了小麦籽粒蛋白质含量及清蛋白、球蛋白和醇溶蛋白含量,但降低了谷蛋白含量,导致麦谷蛋白/醇溶蛋白比值降低。高温显著降低了籽粒总淀粉和支链淀粉含量及支/直比。籽粒蛋白质和淀粉及其组分形成所需的适宜昼夜温差随小麦品质类型而异,但温度水平对籽粒蛋白质和淀粉的影响较温差大。在高温和水分逆境下,温度对籽粒蛋白质和淀粉含量的影响较水分逆境大,且存在显著的互作效应。小麦籽粒蛋白质含量均表现为干旱〉对照〉渍水,以高温干旱最高,适温渍水最低;淀粉含量为对照〉干旱〉渍水,以适温对照最高,而高温渍水最低。高温和水分逆境显著提高了籽粒醇溶蛋白含量而降低了谷蛋白含量及支链淀粉含量,使蛋白质谷/醇比和淀粉支/直比降低,以高温渍水对籽粒蛋白质和淀粉组分的影响最为显著。不同品种之间,高蛋白小麦籽粒蛋白质和组分的形成受高温和水分逆境的影响更大,而低蛋白品种籽粒淀粉形成显著受温度和水分逆境的调节。分析表明,在高温和水分逆境下籽粒蛋白质含量与清蛋白和醇溶蛋白显著正相关,籽粒淀粉含量与谷蛋白、支链淀粉含量及支/直比显著正相关。  相似文献   

19.
The aim of this study was to test whether the effect of nitrogen fertiliser on Hagberg falling number of winter wheat (Triticum aestivum) grain in the absence of sprouting is mediated by pre-maturity alpha-amylase activity and is related to grain drying rate. A field experiment with two cultivars (Avalon and Mercia) in 1990 and 1991 compared four application rates of nitrogen. Samples of grain were taken at intervals during development for moisture determination and alpha-amylase assay. Grains from plots given nitrogen dried faster in both years, but alpha-amylase activity and Hagberg falling number responded differently to nitrogen in the two years. In the warmer and drier year of 1990, alpha-amylase activity declined throughout development leading to very high Hagberg falling number at harvest, with little effect of nitrogen. In the cooler and wetter year of 1991, alpha-amylase activity declined until about 30% moisture. After this stage, alpha-amylase activity increased in the absence of sprouting in grain from plots receiving little or no nitrogen. This resulted in a linear increase in Hagberg falling number in response to nitrogen fertiliser. Electrophoresis of alpha-amylase isozymes indicated that the increase in Hagberg falling number in response to nitrogen was not mediated by a decrease in retained pericarp alpha-amylase activity, but by a reduction in pre-maturity alpha-amylase activity. These results support the hypothesis that slow grain drying enhances pre-maturity alpha-amylase formation, and also support the hypothesis that an additional environmental factor varying between seasons is involved in pre-maturity alpha-amylase formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号