首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Postnatal Development of Thiamine Metabolism in Rat Brain   总被引:1,自引:0,他引:1  
The activities of thiamine diphosphatase (TDPase), thiamine triphosphatase (TTPase), and thiamine pyrophosphokinase and the contents of thiamine and its phosphate esters were determined in rat brain cortex, cerebellum, and liver from birth to adulthood. Microsomal TTPase activity in the cerebral cortex and cerebellum increased from birth to 3 weeks, whereas that in the liver did not change during postnatal development. Microsomal TDPase activity in the cerebral cortex showed a transient increase at 1-2 weeks, but that in the cerebellum did not change during development. In contrast to the activity of the brain enzyme, that of liver microsomal TDPase increased stepwise after birth. Thiamine pyrophosphokinase activity in the cerebellum increased from birth to 3 weeks and then decreased, whereas that in the cerebral cortex and liver showed less change during development. TDP and thiamine monophosphate (TMP) levels increased after birth and plateaued at 3 weeks whereas TTP and thiamine levels showed little change during development in the cerebral cortex and cerebellum. The contents of thiamine and its phosphate esters in the liver showed more complicated changes during development. It is concluded that thiamine metabolism in the brain changes during postnatal development in a different way from that in the liver and that the development of thiamine metabolism differs among brain regions.  相似文献   

2.
Abstract— The effects of cholinergic drugs on thiamine diphosphatase (TDPase) in rat brain, liver and kidney were studied to clarify the role of the enzyme in the central nervous system.
Brain TDPase activity was markedly increased by intraperitoneal injection of a sub-lethal dose of physostigmine, ambenonium or pentetrazol. These drugs also increased the activity in the kidney, but not liver. Strychnine, atropine, and scopolamine did not affect the activity of brain TDPase, but decreased the enzyme activity of liver and kidney. Physostigmine also increased the activity of brain thiamine monophosphatase.
Brain TDPase activity reacheda maximum 30 minafterphysostigmine injection (1.0mg/kg). However, inhibition of brain acetylcholinesterase activity was greatest 45 min after physostigmine injection. The TDPase and AChE activities had both returned to normal values 60 min after the injection. The durations of these changes of TDPase and AChE activity corresponded to the duration of the tremor induced by physostigmine. The contents of total and phosphorylated thiamines in the brain but not in the liver or kidney were significantly reduced by physostigmine.
The relationship between ACh and activation of TDPase activity by cholinesterase inhibitors is discussed.  相似文献   

3.
Abstract— It is shown that transketolase activities in red blood cells and whole brain of normal and thiamine-deficient rats correlate well with heart frequencies.
The effect of thiamine depletion on the levels of acetylcoenzyme A (acetyl-CoA) and acetylcholine (ACh), and on the activities of pyruvate dehydrogenase, choline acetyl-transferase and acetylcholine esterase was studied in whole brains of thiamine-deficient, thiamine-supplemented ad libitum and pair-fed rats. The concentrations of acetyl-CoA and ACh decreased in thiamine-deficient brains by 42 and 35 per cent, respectively.
Total pyruvate dehydrogenase activity did not change during vitamin B1 deficiency. The 'resolved' enzyme, reconstituted with thiamine diphosphate, had an association constant of 5.4 × 10−6 m . Choline acetyltransferase and acetylcholine esterase activities remained unchanged in thiamine deficiency.
Possible mechanisms which could explain the reduced Ach levels in vitamin B1 deficiency are discussed.  相似文献   

4.
Abstract— The ethanolaminephosphotransferase (EC 2.7.8.1) of rat brain is found largely in the microsomal fraction and is active towards both diacyl glycerol and alkenyl acyl glycerol. Manganese ions were found to be more effective activators of the enzyme than magnesium ions at low concentrations. The Km for CDP-ethanolamine was found to be about 2.5 × 10−4 M in the presence of either lipid acceptor and the K m for the two lipid acceptors about 1.6 × 10−3 M. Under the most favourable conditions rates of 270 nmol phosphatidylethanolamine and 70 nmol ethanolamine plasmalogen/mg microsomal protein/h at 39°C were obtained. The effect of temperature on the reaction rate depended on whether diacyl glycerol or alkenyl acyl glycerol was the lipid acceptor. Although diacyl glycerol inhibited the formation of ethanolamine plasmalogen the inhibition was not a simple competitive one. In terms of microsomal protein the activity was maximal during the period of active myelination but at3 days and 150 days of ageitwasat least 50 percent of this maximal activity.  相似文献   

5.
Abstract— The Mg- and Ca-ATPase activities in a brain tubulin preparation have been measured. The activity of the microtubule protein (MTP) preparation was optimal, 3-4.5 nmol Pi/mg protein/min, at pH 8.0 in the presence of 1-2 m m -Mg2+ or Ca2+, with a half maximal stimulation at about 0.3 m m concentration of either of the divalent ions.
Phosphocellulose (PC) purified tubulin exhibited no or very low activity (0-2 nmol Pi/mg protein/min).
The majority of ATPase activity was found in the microtubule associated proteins (MAP) fraction. It was stimulated by Mg2+ and Ca2+, inhibited by NaF or high ionic strength but unaffected by vanadate at 10−4 m . In decreasing order of effectiveness ATP, GTP, UTP, CTP and ADP were hydrolyzed. p -Npp was a poor substrate. Vmax values for Mg- and Ca-ATPase activities were about 15 and 10 nmol Pi/mg protein/min, respectively with a Km value of about 25 μ m . However, double reciprocal plots disclosed more complicated kinetics, which were not fully resolved.
The activity was largely confined to 30-36S material (i.e.'rings'and 'spirals'). The protein responsible for the ATPase activity is possibly the smaller one of the two (or three) high molecular weight (HMW) proteins of mol wt over 200,000.
There are similarities between this enzyme and both flagellar dynein and myosin. However, the present ATPase differs from myosin in several important aspects (i.e. ionic requirements). Furthermore, no peptides of the myosin type were found upon electrophoretic analysis of the MAP fraction.  相似文献   

6.
IMIPRAMINE-INDUCED CHANGES OF BRAIN ADENOSINE TRIPHOSPHATASE ACTIVITY   总被引:4,自引:1,他引:3  
Abstract— Adenosine triphosphatase (ATPase) activities of brain microsomal and synaptosomal preparations are inhibited by imipramine [5-(3'-dimethylamino propyl)-10, 11-dihy-dro-5H-dibenz (b,f) azepine] in vitro , whereas microsomal ATPase activity is stimulated and synaptosomal ATPase activity remains unaltered under in vivo imipramine treatment. The inhibition of ATPase activity can to some extent be counteracted by spermine [N, N'-bis(3 aminopropyl)-1,4-butanediamine]. Determination of Km values from double reciprocal plots (activity-1 vs. ATP mM-1) under drug and spermine-treated conditions appear to indicate that spermine can to some extent imparta stabilizing effect mainly on the microsomal membrane ATPase, preventing inhibition in presence of imipramine in vitro , although spermine has no effect on the already destabilized membrane ATPase. Spermine exerts a stabilizing effect on membrane ATPase possibly by increasing the affinity of the enzyme for the substrate.  相似文献   

7.
Molecular cloning of aromatic degradative genes from Pseudomonas stutzeri   总被引:4,自引:0,他引:4  
Abstract Using dialysed cell-free extracts of the purple non-sulphur bacterium Rhodomicrobium vannielii protein kinase activities capable of transferring the gamma phosphate group from gamma [32P]ATP to a variety of polypeptides were detected. The optimum concentration of Mg2+ for protein kinase activity was about 20 mM and the phosphorylation of one polypeptide ( M r 47 kDa) was inhibited by chlorpromazine, a calmodulin antagonist, and also by Ca2+. The activity of at least one of the protein kinases (or a phosphatase) was regulated by ribulose 1,5-bisphosphate.  相似文献   

8.
The effects of various treatments, which affect membrane structure, on microsomal thiamine diphosphatase and thiamine triphosphatase activities of rat brain, were examined. The treatment of micorosomes at alkaline pH caused a 2-fold activation of the thiamine diphosphatase, this being related to a change in membrane structure which was evidenced by a decrease of the turbidity of the microsomal suspension. Repeated freezing and thawing after hypo-osmotic treatment also increased the activity of microsomal thiamine diphosphatase. In addition, the thiamine diphosphatase activity was enhanced by treatment of the microsomes with phospholipase C or acetone. This lipid depletion resulted in a marked reduction in the apparent Km value of the thiamine diphosphatase with a corresponding loss in heat stability of the enzyme. We found further that brain thiamine diphosphatase was solubilized by Triton X-100. This decreased the phospholipid content in the preparation, but did not affect the apparent Km value and heat stability of the enzyme. In contrast with thiamine diphosphatase, thiamine triphosphatase was inactivated by treatment at alkaline pH or with acetone. However, treatment with phospholipase C did not affect the activity of thiamine triphosphatase.  相似文献   

9.
ALANINE METABOLISM IN RAT CORTEX IN VITRO   总被引:1,自引:0,他引:1  
Abstract— (1) The metabolism of [U-14C]alanine was followed in slices of rat cerebral cortex and its interaction with glucose, pyruvate and the metabolic inhibitors fluoracetate and malonate was studied.
(2) Alanine did not stimulate respiration above endogenous levels or affect the rate of oxygen uptake with glucose or pyruvate as cosubstrate. Radioactivity found in CO2 from labelled alanine was only 6 per cent of that from labelled pyruvate. Lactate was not formed from alanine.
(3) After 2 h incubation with [U-14C]alanine the specific activities of glutamate, glutamine and GABA were 20–30 per cent that of alanine. All these specific activities except glutamate were lowered by addition of glucose, but with pyruvate as cosubstrate the specific activity of glutamate was increased by 87 per cent above the level with alanine alone.
(4) The effect of alanine as cosubstrate with [U-14C]pyruvate was to reduce the specific activity of GABA and of glutamine, but not glutamate or lactate; thus there was not an equal dilution of all the metabolites of pyruvate.
(5) Fluoracetate diminished respiration and the production of CO2 from [U-14C]-alanine only slightly; the addition of malonate as well practically abolished both. Fluoracetate lowered incorporation from alanine into all the amino acids, and radioactivity could not be detected in glutamine at all; addition of malonate lowered the specific activity of glutamate to 25 per cent but increased that into aspartate, GABA and glutamine.
(6) The interpretation of these data in terms of known pathways of alanine metabolism is discussed.  相似文献   

10.
The carboxanilide systemic fungicide 2-iodobenzanilide (2-IB) after 2 h pretreatment at 0.25 m M inhibited K+ and SO42- uptake by excised corn roots ( Zea mays L., cv. Dekalb 342) up to ca 70 and 40%, respectively. Proton extrusion from corn roots was also reduced by ca 50% after 1 h contact, and the microsomal K+-stimulated ATPase activity from corn roots and pea stems ( Pisum sativum L., cv. Alaska) inhibited by 50 and 72%, respectively. In contrast, the Mg2+-ATPase activities of microsomes and mitochondria at pH 6.0 and 8.7, respectively, were unaffected. After 2 h of preincubation with 0.25 m M 2-IB, O2 consumption by corn roots and pea stems was inhibited by 12 and 18%, respectively. ATP content of corn roots was not altered by 2-IB treatment. Therefore, energy availability "in vivo" was unaffected and the primary effect on corn roots is suggested to be at the plasmalemma ATPase which forms the proton gradient.
With isolated pea stem mitochondria, 0.25 m M 2-IB inhibited O2 consumption by ca 60% when NADH or malate plus pyruvate were added as substrates; when succinate was used O2 consumption was unaffected. The mode of action on isolated mitochondria was different from that shown for carboxin and also formerly attributed to the whole class of carboxanilide fungicides.  相似文献   

11.
Abstract: Cysteine sulfinate decarboxylase (CSD; EC 4.1.1.29) activity from porcine brain was resolved into three peaks by hydroxylapatite chromatography. The first two peaks (I and II) did not decarboxylate and were not inhibited by glutamate. The third peak (III) cochromatographed with glutamate decarboxylase (GAD; EC 4.1.1.15) activity. The Km values of cysteine sulfinate for peaks I, II, and III were 5.5 × 10−4 m , 1.3 × 10−4 m , and 4.5 × 10−3 m , respectively. The possibility that the same enzyme was responsible for peak III CSD and GAD activities was suggested by several findings: (1) Mutual competitive inhibition was observed between glutamate and cysteine sulfinate for these activities. (2) Similar first-order heat-inactivation curves were obtained for peak III CSD and GAD when incubated at 55xBOC. (3) Both activities were inhibited similarily by ATP and chloride ion. High concentrations of glutamate (0. l m ) inhibited peak III CSD activity more than 90% but had no effect on either peak I or II CSD activities. This difference in sensitivity of the isoenzymes to inhibition by glutamate was used to examine the relative regional distributions and the relative contributions to total activity of the glutamate-sensitive (peak III CSD, GAD) and glutamate-insensitive (peaks I and II CSD) isoenzymes. Glutamate-insensitive CSD activity contributed only part of the total activity in all brain regions tested (ranging from 23% in the superior colliculus to 64% in the pons). However, the specific activity of glutamate-insensitive CSD was more constant than the total or glutamate-sensitive specific activities among the brain regions tested. The results indicate that GAD is responsible for a significant proportion of the total CSD activity in porcine brain.  相似文献   

12.
Abstract— The enzymes for the biosynthesis of phosphatidic acid from acyl dihydroxyacetone phosphate were shown to be present in rat brain. These enzymes were mainly localized in the microsomal fraction of 12–14 day old rat brains. The brain microsomal acyl CoA: dihydroxyacetone phosphate acyl transferase (EC 2.3.1.42), exhibited a broad pH optimum between pH 5 and 9 with maximum activity at pH 5.4. K m for DHAP at pH 5.4 was 0.1 m m and V max was 0.86nmol/min/mg of microsomal protein. The corresponding microsomal enzyme for the glycerophosphate pathway (acyl CoA: sn -glycerol-3-phosphate acyl transferase EC 2.3.1.15) was shown to have a different pH optimum (pH 7.6). On the basis of the differences in pH optima, differential effects of sodium cholate in the enzymes and a common substrate competition study, these acyl transferases were postulated to be two different microsomal enzymes.
Acyl DHAP:NADPH oxidoreductase (EC 1.1.1.101) in brain microsomes was found to be quite specific for NADPH as cofactor, being able to utilize NADH only at very high concentrations. This enzyme exhibited a K m of 8.6 μ m with NADPH and V mx of 0.81 nmol/min/mg protein. The presence of these two enzymes and the known presence of l-acyl- sn -glycerol-3-phosphate: acyl CoA acyl transferase in brain (F leming & H ajra , 1977) demonstrated the biosynthesis of phosphatidic acid in brain via acyl dihydroxyacetone phosphate. Phosphatidic acid was shown to form when dihydroxyacetone phosphate, acyl CoA, NADPH and other cofactors were incubated together with brain microsomes. Further properties of the enzymes and the probable importance of the presence of this pathway in brain were discussed.  相似文献   

13.
The effect of the nitrogen source on carbohydrate and protein contents and on several enzymatic activities involved in the carbon and nitrogen metabolism was studied in Anabaena variabilis ATCC 29413 cells grown under a constant supply of either N, NO3 or NH+4 at different concentrations. An enhancement of protein content accompanied by a parallel decrease of carbohydrates was observed with increasing NO3 or NH+4 concentrations in the medium. In cultures containing 0.1 m M NO3 or 0.1 m M NH+4 nitrogenase (EC 1.18.6.1) activity was 74 and 66%, respectively, of that found in N2-grown cells. This activity was still present with 1 m M NO3 or 1 m M NH+4 in the medium and even with 10 m M NO3, but it was completely inhibited by 5 m M NH+4. Ferredoxin-nitrate reductase (EC 1.7.7.2) activity was detected only in NO3 grown cells and simultaneously with nitrogenase activity. Increasing concentrations of combined nitrogen in the medium, especially NH+4, promoted a concomitant decline of glutamine synthetase (EC 6.3.1.2), NADP+-isocitrate dehydrogenase (EC 1.1.1.42), and NAD+-malate dehydrogenase (EC 1.1.1.37) activities, suggesting that these enzymes play an important role in the regulation of carbon-nitrogen metabolism in cyanobacteria.  相似文献   

14.
PROPERTIES OF RAT BRAIN NAD-KINASE   总被引:1,自引:1,他引:0  
Abstract— NAD-kinase was purified from rat brain acetone powder according to the method of W ang and K aplan (1954). The acetate buffer supernatant showed only very low specific activity but was largely free of the factors that interfere with the enzyme assay. The Michaelis constants for both substrates were determined, the values were 0·5 m m for NAD and 4·0 m m for ATP. The optimal pH was 7·4 in tris-HCl buffer and the highest NAD-kinase activity was observed in the hyaloplasm fraction. NADH2 inhibited the enzyme whereas NADPH2 did not. Finally, the reversible inhibition of SH-binding compounds is described and the observed properties of rat brain NAD-kinase compared with the properties of NADP synthesizing enzymes from pigeon liver and rat liver.  相似文献   

15.
Abstract— Animals receiving hexachlorophene (HCP) in their diet develop cerebral edema with vacuolation of the myelin sheath. When carbonic anhydrase activities were measured in homogenates of brains from HCP-fed and control rats, the HCP-fed rats showed small decreases in the enzyme activity, but these changes were not statistically significant. HCP did inhibit the enzyme in vitro but at higher concentrations (10−5-10−4 m ) than have been reported for HCP levels in brains of experimental animals. Carbonic anhydrase activity was present in myelin preparations obtained by gradient centrifugation and osmotic shock or by subcellular fractionation. When the latter procedure was used, myelin carbonic anhydrase had a specific activity which was higher than that of the mitochondrial fraction. The myelin enzyme was inhibited by 10−910−8 m -acetazolamide and, like the homogenates and the commercial enzyme, was inhibited by HCP. The mechanism for HCP toxicity remains unknown, but this study does suggest that carbonic anhydrase is an intrinsic component of the myelin sheath.  相似文献   

16.
The influence of light and darkness incubation on in vivo ethylene forming enzyme (EFE) activity in citrus ( Citrus sinensis L. Osbeck cv. Salustiana) mature leaf discs was studied. Leaf discs incubated in light produced higher amounts of ethylene than in darkness. Transfer of discs from light to the dark resulted in a marked inhibition of EFE activity, whereas transfer of discs from the dark to light enhanced ethylene forming activity considerably. Light did not affect 1-aminocyclopropane-l-carboxylie acid (ACC) uptake. Incubation in a CO2-eniiched atmosphere enhanced EFE activity both in light and in darkness, but light stimulation of EFE activity was apparently not affected by CO2. Effects of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU, inhibitor of photosynthetic electron flow) and KCN (inhibitor of cytochrome oxidase) were studied. DCMU at 0.2 m M inhibited EFE activity in light, whereas no effect was detected in the dark. On the other hand 1 m M KCN stimulated EFE activity in the light, and no significant effect was observed in the dark. CoCl2 at 1 m M inhibited ACC-dependent ethylene production, suggesting that ethylene production from ACC is mediated by EFE in citrus leaf discs both in light and in the dark. Cycloheximide also inhibited EFE activity in the light and no effects were detected in the dark. Therefore protein synthesis in light (perhaps EFE synthesis) could be required for the light stimulation of the in vivo EFE activity.  相似文献   

17.
The effects of sodium fluoride (0.3, 5 and 10 m M NaF) on root hydraulic conductivity, and gas exchange processes were examined in aspen ( Populus tremuloides Michx.) seedlings grown in solution culture. A long-term exposure of roots to NaF significantly decreased root hydraulic conductivity ( L p) and stomatal conductance ( g s). Root absorbed NaF significantly affected electrolyte leakage in leaf tissues and substantially restricted leaf expansion. NaF did not significantly affect leaf chlorophyll contents but decreased net photosynthesis ( P n). A short-term exposure of excised roots to 5 m M NaF and KF significantly decreased root water flow ( Q v) with a concomitant decline in root respiration and reduced g s when applied through intact roots or excised stems. The same molar concentration of NaCl also decreased Q v and g s in intact seedlings, but to a lesser extent than NaF or KF, and did not significantly affect root respiration. The results suggest that fluoride metabolically inhibited Q v or L p, probably by affecting water channel activity. We suggest that the metabolic inhibition of L p by root-absorbed fluoride affected gas exchange and leaf expansion in aspen seedlings.  相似文献   

18.
Lung contains both Mg2+-dependent and Mg2+-independent phosphatidate phosphohydrolase activities. Addition of Triton X-100 (0.5%) or chlorpromazine (1 mM) leads to a marked increase in the total phosphatidate phosphohydrolase activity in rat lung microsomes (microsomal fractions), but a decrease in the Mg2+-dependent activity. These observations suggest that the Mg2+-independent activity is stimulated, whereas the Mg2+-dependent activity is inhibited. However, the possibility exists that Triton X-100 could stimulate the Mg2+-dependent enzymic activity in an Mg2+-independent manner. In addition, the positively charged amphiphilic drug could be replacing the enzyme's requirement for Mg2+. These two possibilities were examined by using subcellular fractions in which the Mg2+-dependent phosphatidate phosphohydrolase had been abolished by heat treatment at 55 degrees C for 15 min. Heat treatment does not affect the microsomal Mg2+-independent phosphohydrolase to any great extent. Since the 6-8-fold stimulations due to Triton X-100 and chlorpromazine are retained after heat treatment of this fraction, the Mg2+-independent activity must be involved. Addition of Triton X-100 and chlorpromazine to cytosol virtually abolishes the Mg2+-dependent phosphatidate phosphohydrolase activity and decreases the Mg2+-independent activity by half. Heat treatment also abolishes the Mg2+-dependent activity and decreases the Mg2+-independent activity by over half. The Mg2+-independent phosphatidate phosphohydrolase activity remaining after heat treatment was not affected by Triton X-100 or chlorpromazine. These studies demonstrate that Triton X-100 and chlorpromazine specifically stimulate the heat-stable Mg2+-independent phosphatidate phosphohydrolase activity in rat lung microsomes. In contrast, the heat-labile Mg2+-independent phosphatidate phosphohydrolase activities in cytosol are inhibited by these reagents. Triton X-100 and chlorpromazine inhibit the Mg2+-dependent phosphatidate phosphohydrolase activities in both rat lung microsomes and cytosol. These results are consistent with the view that a single Mg2+-dependent phosphatidate phosphohydrolase present in both microsomes and cytosol is specifically involved in glycerolipid metabolism.  相似文献   

19.
Abstract. The effects of acute and subacute thiamine deficiency on jejunal and ileal epithelial cells were studied in rats, using crypt and villus cell population, crypt cell production per crypt (CCPC), crypt growth fraction (Ip) and crypt cell cycle time (Tc) as parameters. In acute thiamine deficiency there was marked jejunal hypoplasia of the crypt and villus, but in the ileum there was hypoplasia only of the crypt. the jejunal epithelium of the subacute thiamine deficiency (STD) group showed no morphometric changes. In contrast, in the ileal epithelium of STD rats there was decreased crypt depth and villus cell population. Thiamine deficiency had no significant effect on CCPC, Ip and Tc.  相似文献   

20.
Abstract— Of seven amino acids studied, glutamic acid and phenylalanine were incorporated in highest amounts into the hot-TCA-insoluble material of the 100,000 g supernatant fraction of rat brain homogenate. The system for incorporation of phenylalanine was RNase-insensitive and required ATP (apparent Km = 0.64 m m ), KC1 (apparent Km = 14 m m ) and MgCl2 (optimal concentration range 4-15 m m ). The apparent Km for phenylalanine was 2.9 m m . [14C]Phenylalanine did not undergo modification before incorporation. Tyrosine and phenylalanine inhibited the incorporation, respectively, of [14C]phenylalanine and [14C]tyrosine when incubated simultaneously or successively. The Km and Kt (3.3 m m ) values for phenylalanine in the incorporation reaction and as inhibitor of the incorporation of [14C]tyrosine were similar. We suggest that both the enzyme and the acceptor for the incorporation of these two amino acids are the same. [14C]Phenylalanine and [14C]tyrosine entered into COOH-terminal positions in the reactions described. Brain exhibited a 25- to 100-fold higher capacity to incorporate phenylalanine than that of liver, kidney or thyroid. The acceptor capacity in rat brain rapidly decreased from day 5 to day 15 of postnatal age and then slowly until age 150 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号