首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Mutations in the myelin proteolipid protein (PLP) gene, such as that found in the jimpy mouse, result in an abnormal structure of the myelin, severe dysmyelination, and a reduction in the number of mature oligodendrocytes. To examine the functions of the two alternatively spliced isoforms of proteolipid protein, transgenic mice were generated that express either PLP or DM20 cDNAs placed under control of the PLP upstream regulatory region. The transgenes were bred into jimpy mice, and the effect of the transgenes on the dysmyelinating phenotype was analyzed. Neither the PLP transgene nor the DM20 transgene alone had an effect on myelination in the jimpy mice. Combining the two transgenes substantially increased the number of myelinated axons, suggesting that the two alternatively spliced products of the PLP locus perform distinct functions in oligodendrocytes. The enhanced myelination was not sufficient, however, for completely correcting the dysmyelinating phenotype of the jimpy mice, nor was it accompanied by the restoration of normal levels of myelin gene expression. The inability to rescue the jimpy phenotype is most likely attributable to a dominant negative action of the abnormal proteolipid proteins present in jimpy mice. These results demonstrate the complexity of proteolipid protein function in myelination.  相似文献   

2.
3.
Brain and spinal cord of female mice heterozygous for the jimpy gene were analyzed during development for activity of ceramide galactosyl transferase (CGT) and for levels of myelin basic protein (MBP). CGT activity was low at 13-14 days in brains of heterozygous jimpy females but showed normal levels by 31-36 days, in agreement with our earlier study of this enzyme. In cord, CGT activity was normal or slightly above normal at all ages studied, from 13-14 days into adulthood. In both brain and cord, decreased levels of MBP were observed at 13 days; by 100 days, amounts of MBP approached normal levels. Proven female carriers of the jimpy gene also showed normal levels of CGT activity, MBP, and isolated myelin at 200-250 days of age in both brain and cord. These biochemical findings agree with previous morphologic measurements in cord demonstrating deficits in myelin at early ages but compensation by 100 days. Our results show that compensation occurs earlier in cord than in brain and that levels of MBP show a closer correlation than CGT activity with amounts of myelin, as measured by either morphometric analysis or direct isolation.  相似文献   

4.
Myelin Proteolipid Protein Gene Expression in Jimpy and Jimpymsd Mice   总被引:2,自引:1,他引:1  
Proteolipid protein (PLP) gene expression was studied in the dysmyelinating mouse mutant jimpy(msd) (jpmsd; myelin synthesis deficient) and compared with that in wild-type mice and the allelic mutant, jimpy (jp). Southern analyses of genomic DNA from jpmsd mice revealed no major rearrangements of the PLP gene relative to the wild-type mouse PLP gene. PLP-specific mRNA levels were significantly reduced in these mutant mice, although both the 3.2- and 2.4-kilobase PLP-specific mRNAs were seen. Also, no size differences in either PLP or DM20 mRNAs were found by S1 nuclease assays of brain RNA from either jpmsd or wild-type mice. Both PLP and DM20 protein were detectable at low levels in jpmsd brain homogenates, and these proteins comigrated with PLP and DM20 protein from normal mice. Western analyses showed an altered PLP:DM20 ratio in jpmsd mice relative to wild-type mice; DM20 levels exceeded PLP levels. It is surprising that a similar pattern of expression was seen in normal mice at less than 10 days of age: DM20 protein expression preceding PLP expression. Thus, jpmsd mice are capable of synthesizing normal PLP and DM20 protein; however, the PLP gene defect has affected the normal developmental pattern of expression for these two proteins.  相似文献   

5.
Expression of myelin proteins was studied in the brains of 21-day-old normal mice and three dysmyelinating mutants-jimpy, quaking, and shiverer. Total brain polyribosomes and poly(A)+ mRNA were translated in two cell-free systems and the levels of synthesis of the myelin basic proteins (MBPs) and proteolipid protein (PLP) were determined. Synthesis of the MBPs in quaking homozygotes was at or above normal levels but PLP synthesis was significantly reduced to approximately 15% of control values, indicating independent effects on the expression of these proteins in this mutant. Immunoblot analysis of 21-day-old quaking brain homogenates showed a reduction in the steady-state levels of MBPs and PLP, suggesting a failure of newly synthesized MBPs to be incorporated into a stable membrane structure such as myelin. In the shiverer mutant very little synthesis of MBPs was observed, whereas greater synthesis of PLP occurred (approximately 50% of control). Almost no MBP, and low levels of PLP, were detected in the immunoblots, suggesting the possibility of a partial failure of PLP to be assembled into myelin in shiverer. In the jimpy mutant, low levels of MBP synthesis were observed in vitro (approximately 26% of controls) and very little synthesis of PLP was evident. The immunoblots of 21-day jimpy brain homogenates revealed no appreciable steady-state levels of PLP or MBP, again indicating that most newly synthesized MBPs were not incorporated into a stable membrane structure in this mutant. In sum, the data show that in the three cases examined, the mutation appears to affect the expression of the MBPs and PLP independently. Furthermore, regardless of their absolute levels of synthesis these proteins may or may not be assembled into myelin.  相似文献   

6.
An ontogenetic survey of the basic protein of myelin, common to both central and peripheral nervous systems, was carried out on normal C57Bl and five dysmyelinating mutant mice. Myelin basic protein (MBP) was quantified by radioimmunoassay in the optic and sciatic nerves of mice from birth to adult stages, giving special attention to the premyelinating and early myelination periods. In the optic nerves of normal mice, MBP was already detectable at birth but the active period of myelin deposition was shown to occur after day 10 postnatal. The timing and rate of accumulation of MBP were normal in Trembler. In contrast, they were abnormal in the other mutants. In the quaking mouse, the active period of MBP deposition was delayed, and its final concentration represented no more than 12% of normal in the adult. No active period of MBP deposition was observed in the other mutants. In the jimpy mouse, a slow accumulation of MBP resulted in a final concentration reaching 2% of the normal value at 25 days. In mild and shiverer mice, the MBP was hardly detectable. In the sciatic nerves of normal mice, the active period of MBP deposition occurred between days 3 and 12 postnatal. No substantial changes occurred in the period of 2 months--2 years.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Northern blot and "dot" blot analyses using a myelin basic protein (MBP) specific cDNA probe and in vitro translation techniques were utilized to estimate the relative levels of myelin basic protein messenger RNA (mRNA) in the brains of C57BL/6J control mice, three dysmyelinating mutants (qk/qk, jp/Y, and shi/shi), and three heterozygote controls (qk/+, jp/+, and shi+) during early postnatal development. In general, the MBP mRNA levels measured directly by Northern blot and "dot" blot analyses correlated well with the indirect in vitro translation measurements. The Northern blots indicated that the size of MBP mRNAs in quaking and jimpy brain polysomes appeared to be similar to controls. Very low levels of MBP mRNAs were observed in shi/shi brain polyribosomes throughout early postnatal development. Compared to C57BL/6J controls, accumulation of MBP mRNAs in qk/qk and qk/+ brain polyribosomes was delayed by several days. That is, whereas MBP mRNA levels were below normal between 12 and 18 days, normal levels of message had accumulated in both qk/qk and qk/+ brain polyribosomes by 21 days. Furthermore, normal levels of MBP mRNAs were observed to be maintained until at least 27 days. MBP mRNA levels remained well below control levels in jp/Y brain polyribosomes throughout early postnatal development. The levels did, however, fluctuate slightly and peaked at 15 days in both jp/Y and jp/+ brains, 3 days earlier than in normal mice. Thus, it appears that jimpy and quaking mice exhibit developmental patterns of MBP expression different from each other and from C57BL/6J control mice.  相似文献   

8.
Abstract: 5'Nucleotidase and Na+,K+-ATPase are very probably myelin-associated enzymes, although not specific for this membrane. Thus, it is important to determine their activity in dysmyelinating mutants in either CNS (quaking, jimpy, shiverer, and mld) or PNS (Trembler). CNS: The activity of 5'nucleotidase was lower in mouse than in rat (10.5 and 28.0 nmol/min/mg protein in brain, respectively). In mouse myelin, the activity was 30 nmol/min/mg protein (and 72 in rat myelin). In mutants, the brain activity was very close to normal. In contrast, ATPase, the activity of which was higher in myelin as compared with forebrain homogenate, presented a reduced activity in various 21-day-old and adult mutants, except Trembler. It was normal in 8-day-old quaking and in cerebella from mutants. PNS: ATPase was lower than in brain and reduced in most mutants, this being expected for Trembler and quaking but not for shiverer and mld. 5'-Nucleotidase activity was higher compared with that in brain homogenate (relatively stable between 10-day postnatal and adult). It was affected in the mutants; in Trembler it was nearly normal in young animals but increased during development. Thus in Trembler, two different myelin-related enzymes and a myelin-specific enzyme (CNPase) presented different developmental patterns: ATPase was always reduced, 5'-nucleotidase was normal, and CNPase was slightly below normal in young (68% of the control value); CNPase activity declined during development but 5'-nucleotidase increased (42% and 190% of the control in 60-day-old animals). It is necessary to consider these results in parallel with alterations in the PNS because of Schwann cell abnormalities. Thus, determination of these two enzymes will provide a useful tool to study myelination and myelin assembly under both normal and pathological conditions.  相似文献   

9.
The levels of myelin basic protein, proteolipid protein, and 2',3'-cyclic nucleotide 3'-phosphohydrolase (EC 3.1.4.37) in cerebral hemispheres of wild-type, heterozygous jp/+, and hemizygous jp/Y mice of different ages were determined by radioimmunoassay and immunoblotting. In jp/Y brain the level of myelin basic protein was 8% that of wild-type at all ages. All forms of the protein were reduced although the 21.5K Mr form was relatively spared at early ages compared to the 18.5K, 17K, and 14K Mr forms. The level of 2',3'-cyclic nucleotide 3'-phosphohydrolase was 8% that of wild-type at all ages, and proteolipid protein was undetectable at any age. These results are consistent with the hypothesis that the jimpy mutation blocks myelin morphogenesis subsequent to incorporation of 21.5K Mr myelin basic protein but prior to incorporation of proteolipid protein. In jp/+ brain the levels of the three proteins were reduced commensurately to 60-70% those of wild-type. The deficit was apparent as early as 10 days after birth and remained proportionately constant throughout development. These results suggest that in jp/+ mice, X-chromosome inactivation produces a mosaic population of functionally wild-type and functionally jimpy oligodendrocytes. The former elaborate normal amounts of myelin but do not completely compensate for the myelin deficit due to the latter.  相似文献   

10.
Abstract— —Brains of jimpy and quaking mice are known to be deficient in myelin and alkenylacyl-glycero-phosphorylethanolamines (alkenylacyl-GPE, ethanolamine plasmalogens). Ethanolamine plasmalogen synthetic activity appeared to be normal and ethanolamine phosphotransferase (EC 2.7.8.1) activities are higher in the brain microsomes from jimpy and quaking mice than in their littermate controls when the activities are assayed with alkylacylglycerols and CDP[14C]ethanolamine. When endogenous diradylglycerols were the substrate, the rate of synthesis of diacyl-GPE was normal but the rate of synthesis of the ether lipids, alkenylacyl-GPE and alkylacyl-GPE, was 33% and 8% below control levels for jimpy brain microsomes and quaking brain microsomes respectively. This difference is probably due to a normal content of diacylglycerols and a deficient content of alkylacylglycerols in the mutant brain microsomes. The apparent alkylacylglycerol deficiencies in the microsomes correspond with the ethanolamine plasmalogen deficiencies in the brains of these mutant mice.  相似文献   

11.
The jimpy mouse, an X-linked recessive dysmyelinating and demyelinating mutant, has been shown to contain abnormal myelin proteolipid protein (PLP) mRNA. To understand the molecular basis of the mutation, we analyzed the structure of PLP mRNA by an RNase-mapping procedure, using the probes specific to each exon of the mouse PLP gene. We found that the fifth exon of the PLP gene is not utilized in the jimpy.  相似文献   

12.
Alpha Hydroxylation of lignoceric acid (n-tetracosanoic acid) to cerebronic acid (2-hydroxylignoceric acid) by postnuclear preparations of brains from developing rat, mouse, and several neurological mouse mutants was studied. The preparations of brains from jimpy and myelin synthesis deficiency (msd) mice were found to synthesize cerebronic acid at less than 10 percent of their control rates, and those from quaking and dilute-lethal approximately 30 and 50 percent, respectively. The apparent low rate of in vitro hydroxylation by brains of the mutant mice appeared to be due to decreased synthesis rather than increased oxidation of cerebronic acid. Mixing experiments eliminated the possibility of an inhibitor in the mutant or an activator in normal animals. The preparations of brains from wabbler-lethal, ducky, and weaver mice showed normal activity. The developmental pattern of the hydroxylase activity was examined in quaking, jimpy, and their control mice. In normal brains the hydroxylase activity was low in the immediate postnatal period, increased sharply between 10 and 20 days after birth, and fell to a low level following maturation of the brain. The hydroxylase activity in quaking mice changed similarly during brain development but at a much reduced level. The brains of jimpy mice had barely detectable hydroxylase activity which changed little with age and reached a peak at about 15 days postpartum. The subnormal hydroxylase activity in brains of quaking mice and the near absence in brains of jimpy and msd mice correlate with the observations that myelin deficiency is more severe in jimpy and msd than in quaking. These results suggest a close association of the synthesis of cerebronic acid with the synthesis of the characteristic myelin lipid that is cerebroside (N-acyl sphingosine beta-D-galactoside).  相似文献   

13.
Abstract— A developmental study of proteolipids from brains of normal mice and two myelin deficient mutants, jimpy and quaking, was performed. The proteolipids were obtained by diethyl ether precipitation of washed total lipid extracts from whole brains and were analysed on polyacrylamide gels containing sodium dodecyl sulphate. The amount of ether precipitable material extractable from normal brains increased almost six-fold between 12 and 21 days posr partum. This increase was not observed with the mutant mice. Polyacrylamide gel electrophoretic analysis of the proteolipid fraction showed it to be heterogeneous, with eight major protein bands. Two of these proteins increased rapidly in quantity in normal mice between 13 and 21 days. These two proteins were present, in severely reduced quantities in the brains of jimpy and quaking mice at all ages examined. One of these proteolipids was the major species present in proteolipid extracts from the brains of normal mature mice. This protein coelectrophoresed with proteolipid isolated from purified myelin and has been tentatively identified as the myelin proteolipid. The other proteolipid which was deficient in jimpy and quaking brains was not characterized, but it appeared to be of extra-myelin origin, and suggests that parts of the brain other than the myelin sheath may be involved in the jimpy and quaking disorders.  相似文献   

14.
Expression of myelin protein genes in the developing brain   总被引:1,自引:0,他引:1  
The major myelin proteins fall into two classes, the basic proteins and the proteolipid proteins. In mice, five forms of the myelin basic protein (MBP) have been identified with apparent molecular masses of 21.5 kD, 18.5 kD, 17 kD and 14 kD. The 17 kD MBP variant consists of two molecular forms with similar molecular masses but different amino acid sequences. Cell-free translation studies and analyses of MBP cDNAs have shown that each of the MBP variants is encoded by a separate mRNA of approximately 2 000 bp. The five mouse MBP mRNAs appear to be derived by alternative splicing of exons 2, 5, and 6 of the MBP gene. cDNAs encoding four forms of MBP have been isolated from a human fetal spinal cord library. The mRNAs corresponding to these cDNAs are probably derived by alternative splicing of exons 2 and 5 of the human MBP gene. Proteolipid protein (PLP) cDNAs have been isolated from several species and used to establish that the size of the major PLP mRNA is approximately 3 kb. Multiple size classes of the PLP mRNAs exist in mice and rats whereas the 3 kb mRNA is the predominant form in the developing human spinal cord. In normal mice, maximal expression of the PLP gene lags behind that of the MBP gene by several days. Studies on dysmyelinating mutants have determined some of the molecular defects with respect to these two classes of myelin proteins. For example, there is a deletion of a portion of the MBP gene in the shiverer mutant. In the quaking mutant, the expression of both classes of myelin proteins is significantly reduced prior to 3 weeks. However, after 3 weeks, MBP expression approaches normal levels but the newly synthesized protein fails to be incorporated into myelin. In the jimpy mutant, although the expression of both classes of proteins is reduced, PLP expression is most severely affected.  相似文献   

15.
Recovery of Proteolipid Protein in Mice Heterozygous for the Jimpy Gene   总被引:1,自引:1,他引:0  
We have measured levels and synthesis of proteolipid protein (PLP) and its transport into myelin in female mice heterozygous for the jimpy gene and in their normal female littermates. In both cord and cerebrum, jimpy carriers show deficits in PLP during development followed by compensation in adulthood. Recovery of PLP occurs earlier in cord than in brain. At 13 days levels of PLP in carriers compared to controls are reduced to 0.60 and 0.44, respectively, in cord and cerebrum. By 100 days, normal levels of PLP are attained in cord (1.13) whereas levels of PLP in cerebrum are only 0.78 of control. By 200 days full recovery occurs in cerebrum, with a ratio of 1.21, suggesting a possible over-compensation. The yield of myelin from cerebrum was reduced to 0.78 in carriers compared to controls at 17 days. In brain slices, incorporation of [3H]leucine into homogenate PLP from carriers is the same as in controls, whereas [3H]leucine incorporation into myelin PLP is reduced to 0.68 of control. These results indicate that synthesis of PLP in the carriers is normal at 17 days, but transport of PLP into myelin is reduced. Similarly, acylation of homogenate PLP is normal, whereas acylation of myelin PLP is reduced, as measured by incorporation of [3H]palmitic acid. Transport of PLP into myelin was compared to transport of MBP; transport of both proteins was equally decreased as indicated by the similar ratio of labeled PLP to MBP in myelin from carriers compared to noncarriers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The objective of this study was to determine whether the conversion of free, very long chain fatty acids (C22–C26) to their CoA-esters are involved in cerebroside synthesis, since cerebrosides are uniquely rich in very long chain fatty acids including lignoceric acid (C24:0). We have studied lignoceroyl-CoA synthetase activity in the microsomes isolated from normal and jimpy mouse brain. The jimpy mouse lacks the ability to make myelin and is deficient in enzyme activities involved in the synthesis of myelin components, including cerebrosides. Unexpectedly, the lignoceroyl-CoA synthetase activity in jimpy brain microsomes was slightly higher than that in control microsomes. The palmitoyl (C16:0)-CoA synthetase activity in jimpy brain was not different from the control. The level of cerebrosides in microsomes was grossly lower in jimpy brain. The implication of these findings and the involvement of lignoceric acid activation in cerebroside synthesis is discussed.  相似文献   

17.
18.
Myelin basic proteins (MBPs) from 6-day-old, 10-day-old, 20-day-old and adult normal mouse brain were compared with those from 20-day-old jimpy (dysmyelinating mutant) mouse brain to determine the effect of reduced levels of proteolipid protein (PLP) on MBPs. Alkaline-urea-gel electrophoresis showed that 6-day-old and 10-day-old normal and jimpy MBPs lacked charge microheterogeneity, since C8 (the least cationic of the components; not be confused with complement component C8) was the only charge isomer present. In contrast, MBPs from 20-day-old and adult normal mouse brain displayed extensive charge microheterogeneity, having at least eight components. A 32 kDa MBP was the major isoform observed on immunoblots of acid-soluble protein from 6-day-old and 10-day-old normal and 20-day-old jimpy mouse brain. There were eight bands present in 20-day-old and adult normal mouse brain. Purified human MBP charge heteromers C1, C2, C3 and C4 reacted strongly with rat 14 kDa MBP antiserum, whereas the reaction with human C8 was weak. This suggested that MBPs from early-myelinating and jimpy mice did not react to MBP antisera because C8 was the major charge isomer in these animals. Purification of MBPs from normal and jimpy brain by alkaline-gel electrophoresis showed that both normal and jimpy MBPs have size heterogeneity when subjected to SDS/PAGE. However, the size isoforms in normal mouse brain (32, 21, 18.5, 17 and 14 kDa) differed from those in jimpy brain (32, 21, 20, 17, 15 and 14 kDa) in both size and relative amounts. Amino acid analyses of MBPs from jimpy brain showed an increase in glutamic acid, alanine and ornithine, and a decrease in histidine, arginine and proline. The changes in glutamic acid, ornithine and arginine are characteristic of the differences observed in human C8 when compared with C1.  相似文献   

19.
The myelin proteolipid protein gene was characterized in jimpy mice to identify the specific mutation that produces dysmyelination, oligodendrocyte cell death, and death of the animal by 30 days of age. Exon 5 and flanking intron segments were isolated from jimpy proteolipid protein genomic clones and sequenced. A single nucleotide difference was noted between the normal and jimpy proteolipid protein genes: the conversion of an AG/GT to a GG/GT in the splice acceptor signal preceding exon 5, which apparently destroys the splice signal. Thus, exon 5 of the mouse myelin proteolipid protein gene is skipped during the processing of mRNA, producing a shortened proteolipid protein mRNA.  相似文献   

20.
Expression of the myelin proteolipid protein (PLP) was examined in the nuclei and polysomes of 12-27-day-old quaking, jimpy, and shiverer mouse brains and in 2-27-day-old normal brains and compared with expression of the myelin basic proteins (MBPs). Northern blots showed the presence of multiple mouse PLP RNAs, the developmental expression of which coincided with myelination. Two major mouse PLP RNAs, 3.5 and 2.6 kilobases in length, were observed in both cytoplasmic polyribosomes and nuclei, and, in addition, a larger 4.6-kilobase PLP RNA was observed in nuclei. Quantitative measurements with slot blot analyses showed that the levels of PLP and MBP RNAs peaked simultaneously at 18 days in nuclei but that maximal levels of PLP RNA lagged behind MBP RNA by several days in the polysomes. The developmental expression of both major classes of myelin protein mRNAs was affected in all three mutants. In shiverer brains, the levels of PLP mRNA in polysomes and nuclei were only 30-55% of control levels after 15 days. Thus, the deletion of a portion of the MBP gene appeared to have a major effect on the expression of the PLP gene in this mutant. In jimpy mice, where the mutation has been shown to involve the PLP gene, expression of MBP mRNA was also severely reduced, to less than 25% of control values. In quaking brains, the expression of each gene followed its own developmental course, different from each other and different from the normal mouse. The extent to which the expression of PLP and MBP was affected by the quaking mutation depended on the age at which it was examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号