首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitogen-activated protein (MAP) kinases comprise an evolutionarily conserved family of proteins that includes at least three vertebrate protein kinases (p42, p44, and p55 MAPK) and five yeast protein kinases (SPK1, MPK1, HOG1, FUS3, and KSS1). Members of this family are activated by a variety of extracellular agents that influence cellular proliferation and differentiation. In Saccharomyces cerevisiae, there are multiple physiologically distinct MAP kinase activation pathways composed of structurally related kinases. The recently cloned vertebrate MAP kinase activators are structurally related to MAP kinase activators in these yeast pathways. These similarities suggest that homologous kinase cascades are utilized for signal transduction in many, if not all, eukaryotes. We have identified additional members of the MAP kinase activator family in Xenopus laevis by a polymerase chain reaction-based analysis of embryonic cDNAs. One of the clones identified (XMEK2) encodes a unique predicted protein kinase that is similar to the previously reported activator (MAPKK) in X. laevis. XMEK2, a highly expressed maternal mRNA, is developmentally regulated during embryogenesis and expressed in brain and muscle. Expression of XMEK2 in yeast cells suppressed the growth defect associated with loss of the yeast MAP kinase activator homologs, MKK1 and MKK2. Partial sequence of a second cDNA clone (XMEK3) identified yet another potential MAP kinase activator. The pattern of expression of XMEK3 is distinct from that of p42 MAPK and XMEK2. The high degree of amino acid sequence similarity of XMEK2, XMEK3, and MAPKK suggests that these three are related members of an amphibian family of protein kinases involved in the activation of MAP kinase. Discovery of this family suggests that multiple MAP kinase activation pathways similar to those in yeast cells exist in vertebrates.  相似文献   

2.
Common mechanisms plants use to translate the external stimuli into cellular responses are the activation of mitogen-activated protein kinase (MAPK) cascade. These MAPK cascades are highly conserved in eukaryotes and consist of three subsequently acting protein kinases, MAP kinase kinase kinase (MAPKKK), MAP kinase kinase (MAPKK) and MAP kinase (MAPK) which are linked in various ways with upstream receptors and downstream targets. Plant MAPK cascades regulate numerous processes, including various environmental stresses, hormones, cell division and developmental processes. The number of MAPKKs in Arabidopsis and rice is almost half the number of MAPKs pointing important role of MAPKKs in integrating signals from several MAPKKKs and transducing signals to various MAPKs. The cross talks between different signal transduction pathways are concentrated at the level of MAPKK in the MAPK cascade. Here we discussed the insights into MAPKK mediated response to environmental stresses and in plant growth and development.  相似文献   

3.
Signaling through MAP kinase networks in plants   总被引:13,自引:0,他引:13  
Protein phosphorylation is the most important mechanism for controlling many fundamental cellular processes in all living organisms including plants. A specific class of serine/threonine protein kinases, the mitogen-activated protein kinases (MAP kinases) play a central role in the transduction of various extra- and intracellular signals and are conserved throughout eukaryotes. These generally function via a cascade of networks, where MAP kinase (MAPK) is phosphorylated and activated by MAPK kinase (MAPKK), which itself is activated by MAPKK kinase (MAPKKK). Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as response to various stresses. In plants, MAP kinases are represented by multigene families and are organized into a complex network for efficient transmission of specific stimuli. Putative plant MAP kinase cascades have been postulated based on experimental analysis of in vitro interactions between specific MAP kinase components. These cascades have been tested in planta following expression of epitope-tagged kinases in protoplasts. It is known that signaling for cell division and stress responses in plants are mediated through MAP kinases and even auxin, ABA and possibly ethylene and cytokinin also utilize a MAP kinase pathway. Most of the biotic (pathogens and pathogen-derived elicitors) including wounding and abiotic stresses (salinity, cold, drought, and oxidative) can induce defense responses in plants through MAP kinase pathways. In this article we have covered the historical background, biochemical assay, activation/inactivation, and targets of MAP kinases with emphasis on plant MAP kinases and the responses regulated by them. The cross-talk between plant MAP kinases is also discussed to bring out the complexity within this three-component module.  相似文献   

4.
Mitogen-activated protein (MAP) kinase cascades were originally identified as protein phosphorylation systems that control the division and the growth of yeast and animal cells. Such cascades consist of MAP kinases, MAP-kinase kinases, and MAP-kinase-kinase kinases. In addition, these organisms have been also shown to have structurally related but functionally different MAP kinase cascades, which are involved in various cellular processes such as a response to osmotic stress and apoptosis. Plants also have been shown to have a number of members of each kinase family. Although physiological and genetic functions of most plant members have yet to be established, some of members have been shown to be responsible for the cellular transmission of signals generated by wounding or a mechanical stress, which predicts that MAP kinase cascades may function in a variety of physiological processes in the plant cells. In the present review, we summarize recent progresses of researches on plant members of each kinase family as well as those of analyses of the cascades in other organisms.  相似文献   

5.
Roles of MAP kinase cascades in Caenorhabditis elegans   总被引:1,自引:0,他引:1  
Mitogen-activated protein kinases (MAPKs) are serine/threonine protein kinases that are activated by diverse stimuli such as growth factors, cytokines, neurotransmitters and various cellular stresses. MAPK cascades are generally present as three-component modules, consisting of MAPKKK, MAPKK and MAPK. The precise molecular mechanisms by which these MAPK cascades transmit signals is an area of intense research, and our evolving understanding of these signal cascades has been facilitated in great part by genetic analyses in model organisms. One organism that has been commonly used for genetic manipulation and physiological characterization is the nematode Caenorhabditis elegans. Genes sequenced in the C. elegans genome project have furthered the identification of components involved in several MAPK pathways. Genetic and biochemical studies on these components have shed light on the physiological roles of MAPK cascades in the control of cell fate decision, neuronal function and immunity in C. elegans.  相似文献   

6.
真核生物的MAPK级联信号传递途径   总被引:15,自引:0,他引:15  
MAPK级联途径在真核生物细胞的信号传递过程中起着重要的作用.MAPK级联途径由MAPK、MAPKK和MAPKKK三类酶蛋白组成.这三类蛋白质的结构非常保守,通过磷酸化作用传递各种信号.在酵母和动、植物细胞中已经发现了一系列的MAPK级联途径成员,使真核生物的信号传递途径逐渐得到阐明.  相似文献   

7.
促细胞分裂剂激活性蛋白激酶(MAPK)是一类存在于各种真核生物体中的丝氨酸/苏氨酸型蛋白激酶。它被上游激活因子MAPKK磷酸化而激活,并通过将底物蛋白上的丝氨酸和苏氨酸残基磷酸化而传递信号。它与其他一些信号分子组成MAPK级联信号通路,接受外界刺激信号,将信号转入细胞内,影响特定基因的表达,它的作用受到不同因子的调节。本文介绍了植物体中的MAPK的结构特点、作用机理、生物功能以及MAPK级联信号通路的调节。  相似文献   

8.
Summry— Numerous studies have been published these last few years on the involvement of MAP kinases in signal transduction reflecting their importance in cell cycle and cell growth controls. The identification and the characterization of their direct upstream activator has considerably enlarged our understanding of the phosphorylation network. The MAP kinase kinases (MAPKKs) are dual-specificity protein kinases which phosphorylate and activate MAP kinases. To date, MAPKK homologues have been found in yeast, invertebrates, amphibians, and mammals. Moreover, the MAPKK/MAPK phosphorylation switch constitutes a basic module activated in distinct pathways in yeast and in vertebrates. MAPKK regulation studies have led to the discovery of at least four MAPKK convergent pathways in higher organisms. One of these is similar to the yeast pheromone response pathway which includes the ste11 protein kinase. Two other pathways require the activation of either one or both of the serine/threonine kinase-encoded oncogenes c-Raf-I and c-Mos. Additionally, recent studies suggest a possible effect of the cell cycle control regulatory cyclin-dependent kinase 1 (cdc2) on MAPKK activity. Finally, MAPKKs seem to be essential transducers through which signals must pass before reaching the nucleus.  相似文献   

9.
丝裂原活化蛋白激酶(MAPK)是酵母、动物和植物等真核生物中普遍存在和高度保守的一类信号转导通路,由MAPKKK、MAPKK和MAPK等3部分组成,在应对生物非生物胁迫、激素、细胞分裂调控及植物生长发育等过程中发挥重要作用。该文对近年来国内外有关MAPK级联通路的组成、在植株体内的生物学功能以及MAPK通路的失活进行了概述,旨在为今后MAPK通路介导的信号转导机制的研究提供参考依据。  相似文献   

10.
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in plants. Linking upstream MAPK kinase kinase (MAPKKK) to downstream MAPK, MAPK kinase (MAPKK) plays a crucial role in MAPK cascade. MAPKK6 is one member of the MAPKK family. In this study, we have found that plant MAPKK6 genes are widely distributed in different plant species, including moss, seedless vascular plants, gymnosperms, and angiosperms. However, no MAPKK6 can be found in genomes of algae. Analysis of exon–intron organization and intron phase showed that plant MAPKK6s are highly conserved genes during plant evolution. In Physcomitrella patens, Selaginella moellendorffii, and Picea glauca, MAPKK6s exist as multicopy genes. In most high plants, however, MAPKK6s exist as single-copy. Phylogenetic analysis indicated that the occurrence of single-copy of MAPKK6s in high plants is likely because of genomic copy-number loss.  相似文献   

11.
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules that play essential roles in plant growth, development and stress response. MAPK kinases (MAPKKs), which link MAPKs and MAPKK kinases (MAPKKKs), are integral in mediating various stress responses in plants. However, to date few data about the roles of poplar MAPKKs in stress signal transduction are available. In this study, we performed a systemic analysis of poplar MAPKK gene family expression profiles in response to several abiotic stresses and stress-associated hormones. Furthermore, Populus trichocarpa MAPKK4 (PtMKK4) was chosen for functional characterization. Transgenic analysis showed that overexpression of the PtMKK4 gene remarkably enhanced drought stress tolerance in the transgenic poplar plants. The PtMKK4-overexpressing plants also exhibited much lower levels of H2O2 and higher antioxidant enzyme activity after exposure to drought stress compared to the wide type lines. Besides, some drought marker genes including PtP5CS, PtSUS3, PtLTP3 and PtDREB8 exhibited higher expression levels in the transgenic lines than in the wide type under drought conditions. This study provided valuable information for understanding the putative functions of poplar MAPKKs involved in important signaling pathways under different stress conditions.  相似文献   

12.
MAPK级联途径参与ABA信号转导调节的植物生长发育过程   总被引:2,自引:0,他引:2  
植物激素ABA参与调控植物生长发育和生理代谢以及多种胁迫应答过程,促分裂原活化蛋白激酶(MAPK)级联途径应答于多种生物和非生物胁迫,广泛参与调控植物的生长发育。MAPK级联途径与ABA信号转导协同作用参与调控植物种子萌发、气孔运动和生长发育,本文主要归纳了植物中受ABA调控激活的MAPK级联途径成员,阐述了它们参与ABA信号转导调控植物生理反应和生长发育的过程,并对MAPK级联途径与ABA信号转导的研究方向作出了展望,指出对MAPK下游底物的筛选是完善MAPK级联途径的重要组成部分。  相似文献   

13.
Mitogen-activated protein kinase (MAPK) cascades are involved in various processes, including plant growth and development as well as biotic and abiotic stress responses. MAPK kinases (MKKs), which link MPKs and MAPKK kinases (MKKKs), are crucial in MAPK cascades because these kinases mediate various stress responses in plants. However, only few MKKs in Brassica campestris (rape) have been functionally characterized. In this study, a novel gene, MKK4 that belongs to a C MKK group, was isolated and characterized from rape. Bioinformatics analysis revealed that the length of cDNA was 1,317 bp with an open reading frame of 993 bp, which encodes a polypeptide containing 330 amino acids, including a putative signal peptide with 27 amino acid residues and a mature protein with 303 amino acids. The obtained MKK4 exhibited a predicted molecular mass of 36.5 kDa and an isoelectric point of 9.01. Quantitative real-time polymerase chain reaction analysis revealed that MKK4 expression could be induced by cold and salt. We also found that the MKK4 protein is localized in the nucleus. In addition, a 999 bp promoter fragment of MKK4 was cloned. Sequence analysis revealed that several putative regulatory elements were found in the MKK4 promoter. Transient expression assay showed that the MKK4 promoter fragments exhibited promoter activity and stimulated GFP expression. The effects of GFP gene expression at different temperatures and in different onion epidermis culture patterns were compared. Results showed that the MKK4 promoter could respond to low temperature and salt stress. These results suggested that MKK4 is possibly important for the regulation of cold- and salt-stress responses in plants.  相似文献   

14.
Two members of the mitogen-activated protein kinase (MAPK) family have been previously characterized in Plasmodium falciparum, but in vitro attempts at identifying MAP kinase kinase (MAPKK) homologues have failed. Here we report the characterization of a novel plasmodial protein kinase, PfPK7, whose top scores in blastp analysis belong to the MAPKK3/6 subgroup of MAPKKs. However, homology to MAPKKs is restricted to regions of the C-terminal lobe of the kinase domain, whereas the N-terminal region is closer to fungal protein kinase A enzymes (PKA, members of the AGC group of protein kinases). Hence, PfPK7 is a 'composite' enzyme displaying regions of similarity to more than one protein kinase family, similar to a few other plasmodial protein kinases. PfPK7 is expressed in several developmental stages of the parasite, both in the mosquito vector and in the human host. Recombinant PfPK7 displayed kinase activity towards a variety of substrates, but was unable to phosphorylate the two P. falciparum MAPK homologues in vitro, and was insensitive to PKA and MEK inhibitors. Together with the absence of a typical MAPKK activation site in its T-loop, this suggests that PfPK7 is not a MAPKK orthologue, despite the fact that this enzyme is the most 'MAPKK-like' enzyme encoded in the P. falciparum genome. This is consistent with recent observations that the plasmodial MAPKs are not true orthologues of the ERK1/2, p38 or JNK MAPKs, and strengthens the evidence that classical three-component module-dependent MAPK signalling pathways do not operate in malaria parasites, a feature that has not been described in any other eukaryote.  相似文献   

15.
Mitogen activated protein kinases (MAPK) are important mediators in signal transmission, connecting the perception of external stimuli to cellular responses. MAPK cascades are involved in signalling various biotic and abiotic stresses, like wounding and pathogen infection, temperature stress or drought, but also some plant hormones, such as ethylene and auxin. Moreover, MAPKs have been implicated in cell cycle and developmental processes. In Arabidopsis mutant screens and in vivo assays several components of plant MAPK cascades have been identified. This review compares results obtained from functional analyses of MAPK cascades in plants with recent data obtained from searching the complete Arabidopsis genome. This analysis reveals that plants have an overall of 24 MAPK pathways of which only a small subset has been studied so far.  相似文献   

16.
Mitogen-activated protein kinase (MAPK) cascades consist ofmembers of three families of protein kinases: the MAPK family,the MAPK kinase family, and the MAPK kinase kinase (MAPKKK)family. Some of these cascades have been shown to play centralroles in the transmission of signals that control various cellularprocesses including cell proliferation. Protein kinase NPK1is a structural and functional tobacco homologue of MAPKKK,but its physiological function is yet unknown. In the presentstudy, we have investigated sites of expression of the NPK1gene in a tobacco plant and developmental and physiologicalcontrols of this expression. After germination, expression ofNPK1 was first detected in tips of a radicle and cotyledons,then in shoot and root apical meristems, surrounding tissuesof the apical meristems, primordia of lateral roots, and youngdeveloping organs. No expression was, however, observed in matureorgans. Incubation of discs from mature leaves of tobacco withboth auxin and cytokinin induced NPK1 expression before thedivision of cells. It was also induced at early stages of thedevelopment of primordia of lateral roots and adventitious roots.Thus, NPK1 expression appears to be tightly correlated withcell division or division competence. Even when an inhibitorof DNA synthesis was added during the germination or the inductionof lateral roots by auxin, NPK1 expression was detected. Theseresults showed that the NPK1 expression precedes DNA replication.We propose that NPK1 participates in a process involving thedivision of plant cells. (Received January 26, 1998; Accepted April 9, 1998)  相似文献   

17.
Mitogen-activated protein kinase cascade is evolutionarily conserved signal transduction module involved in transducing extracellular signals to the nucleus for appropriate cellular adjustment. This cascade consists essentially of three components, a MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK) and a MAPK connected to each other by the event of phosphorylation. These kinases play various roles in intra- and extra-cellular signaling in plants by transferring the information from sensors to responses. Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as responses to various stresses. MAPK signaling has also been associated with hormonal responses. In plants, MAP kinases are represented by multigene families and are involved in efficient transmission of specific stimuli and also involved in the regulation of the antioxidant defense system in response to stress signaling. In the current review we summarize and investigate the participation of MAPKs as possible mediators of various abiotic stresses in plants.Key words: abiotic stress, cross talk, mitogen-activated protein kinases, heat map, MAPK signaling, signal transduction, stress signaling  相似文献   

18.
19.
In common with other eukaryotes, plants utilize mitogen-activated protein kinase (MAPK) cascades to mediate responses to a wide variety of stimuli. In contrast to other eukaryotes, plants have an unusually large number of MAPK components, such as more than 20 MAPKs, 10 MAPK kinases (MAPKKs), and 60 MAPKK kinases (MAPKKKs) in Arabidopsis (MAPK Group (2002) Trends Plant Sci. 7, 301-308). Presently it is mostly unknown how MAPK signaling specificity is generated in plants. Here we have isolated OMTK1 (oxidative stress-activated MAP triple-kinase 1), a novel MAPKKK from alfalfa (Medicago sativa). In plant protoplasts, OMTK1 showed basal kinase activity and was found to induce cell death. Among a panel of hormones and stresses tested, only H(2)O(2) was found to activate OMTK1. Out of four MAPKs, OMTK1 specifically activated MMK3 resulting in an increased cell death rate. Pull-down analysis between recombinant proteins indicated that OMTK1 directly interacts with MMK3 and that OMTK1 and MMK3 are part of a protein complex in vivo. These results indicate that OMTK1 plays a MAPK scaffolding role and functions in activation of H(2)O(2) -induced cell death in plants.  相似文献   

20.
植物中的MAPK及其在信号传导中的作用   总被引:7,自引:0,他引:7  
促分裂原活化蛋白激酶(MAPKs)是一类存在于真核生物中的丝氨酸/苏氨酸蛋白激酶。同动物和酵母中MAPKs类似,植物中的MAPK级联途径也是由MAPKs、MAPKKs、MAPKKKs三种类型的激酶组成。植物细胞内受体接受外界刺激信号,然后依次磷酸化激活MAPKKKs、MAPKKs和MAPKs,并影响相关基因表达。目前已经从植物中分离到一些MAPKs、MAPKKs和MAPKKKs,它们参与了植物激素、生物胁迫及非生物胁迫等过程的信号传导。介绍了植物响应外界环境胁迫过程中,不同机制和因子对MAPKs级联途径的调控。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号