首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Nicotiana tabacum is believed to have arisen after hybridization of Nicotiana sylvestris with a species in the Tomentosae section of the genus Nicotiana. Recent biochemical experiments have confirmed the conclusions from previous cytogenetic studies that N. sylvestris was the maternal parent and have indicated that Nicotiana tomentosiformis was the paternal parent. However, these studies did not take into account the possibility that a new species of Nicotiana, called K-12, discovered in South America in 1968, could also have been one of the parents. Fraction I proteins were purified from N. tabacum and its putative progenitors, and separated into large and small subunits. Chymotryptic peptides of each subunit were analyzed by ion exchange column chromatography with a gradient elution system. Among 38 resolved peaks of the large subunits, 2 peaks were found to be different among the putative species. Since only N. sylvestris showed an identical chromatogram with N. tabacum, N. sylvestris was concluded to be the maternal progenitor, as the genetic information for the large subunit of Fraction I protein was known to be inherited by the cytoplasmic mode. On the other hand, the small subunit of Fraction I protein is inherited by the Mendelian mode and therefore N. tabacum, an allopolyploid, could be expected to contain two types of small subunits, one derived from N. sylvestris and the other from a paternal progenitor. N. sylvestris lacks two of the 25 chymotryptic peptides of the small subunit of N. tabacum. Among 3 putative paternal progenitors, these two peaks appeared only in N. tomentosiformis, but not in Nicotiana otophora or K-12. Thus, N. tomentosiformis was concluded to be a paternal progenitor of N. tabacum. The conclusion was verified by comparing chymotryptic peptides of small subunits from three amphidiploids of N. sylvestris crossed with N. tomentosiformis, N. sylvestris crossed with N. otophora snd N. sylvestris crossed with K-12. The analytical results showed that only the progeny of N. sylvestris crossed with N. tomentosiformis contained the same small subunits as N. tabacium.  相似文献   

2.
The putrescine N-methyltransferase (PMT) cDNA clone previously isolated from tobacco encodes a spermidine synthase-like protein with an 11 amino acid element repeated four times in tandem at the amino terminus. Genomic Southern blot analyses indicated that this N-terminal repeat array is found in tobacco PMTs but absent in Hyoscyamus and Atropa PMTs. A truncated tobacco PMT in which this repeat array was entirely removed still retained full enzymatic activity when expressed in Escherichia coli. Three PMT genes (NsPMT1, NsPMT2, NsPMT3) isolated from Nicotiana sylvestris encode two, five, and nine tandem repeats, respectively, in the first exon, but otherwise encode highly conserved proteins. Analysis of PCR fragments amplified from the genomes of N. tabacum and its two probable progenitors shows that one of the nine repeat elements in NsPMT3 was precisely deleted in the corresponding N. tabacum gene. These results indicate that direct tandem repeats of a 33 bp sequence that encodes 11 amino acids of no obvious function were added to the ancestral Nicotiana PMT gene, and that the tandem repetition was genetically very unstable, contracting or expanding during evolution of the Nicotiana species.  相似文献   

3.
4.
5.
We used next generation sequencing to characterize and compare the genomes of the recently derived allotetraploid, Nicotiana tabacum (<200,000 years old), with its diploid progenitors, Nicotiana sylvestris (maternal, S-genome donor), and Nicotiana tomentosiformis (paternal, T-genome donor). Analysis of 14,634 repetitive DNA sequences in the genomes of the progenitor species and N. tabacum reveal all major types of retroelements found in angiosperms (genome proportions range between 17-22.5% and 2.3-3.5% for Ty3-gypsy elements and Ty1-copia elements, respectively). The diploid N. sylvestris genome exhibits evidence of recent bursts of sequence amplification and/or homogenization, whereas the genome of N. tomentosiformis lacks this signature and has considerably fewer homogenous repeats. In the derived allotetraploid N. tabacum, there is evidence of genome downsizing and sequences loss across most repeat types. This is particularly evident amongst the Ty3-gypsy retroelements in which all families identified are underrepresented in N. tabacum, as is 35S ribosomal DNA. Analysis of all repetitive DNA sequences indicates the T-genome of N. tabacum has experienced greater sequence loss than the S-genome, revealing preferential loss of paternally derived repetitive DNAs at a genome-wide level. Thus, the three genomes of N. sylvestris, N. tomentosiformis, and N. tabacum have experienced different evolutionary trajectories, with genomes that are dynamic, stable, and downsized, respectively.  相似文献   

6.
N Ren  M P Timko 《Génome》2001,44(4):559-571
Amplified fragment length polymorphism (AFLP) analysis was used to determine the degree of intra- and inter-specific genetic variation in the genus Nicotiana. Forty-six lines of cultivated tobacco (Nicotiana tabacum L.) and seven wild Nicotiana species, including N. sylvestris, N. tomentosiformis, N. otophora, N. glutinosa, N. suaveolens, N. rustica, and N. longiflora, were analyzed, using at least eight different oligonucleotide primer combinations capable of detecting a minimum of 50 polymorphic bands per primer pair. The amount of genetic polymorphism present among cultivated tobacco lines (N. tabacum) was limited, as evidenced by the high degree of similarity in the AFLP profiles of cultivars collected worldwide. Six major clusters were found within cultivated tobacco that were primarily based upon geographic origin and manufacturing quality traits. A greater amount of genetic polymorphism exists among wild species of Nicotiana than among cultivated forms. Pairwise comparisons of the AFLP profiles of wild and cultivated Nicotiana species show that polymorphic bands present in N. tabacum can be found in at least one of three proposed wild progenitor species (i.e., N. sylvestris, N. tomentosiformis, and N. otophora). This observation provides additional support for these species contributing to the origin of N. tabacum.  相似文献   

7.
S B Hua  S K Dube  S D Kung 《Génome》1993,36(3):483-488
Photosystem II psbP protein of the oxygen-evolving complex is involved in the photosynthetic oxygen evolution in plants. Four psbP polypeptides were detected in Nicotiana tabacum on a two-dimensional gel by immunostaining the proteins with antiserum against the pea psbP Comparison of the protein patterns of psbP from N. tabacum and its ancestral parents, N. sylvestris and N. tomentosiformis, indicated that each of the ancestral parents has contributed a pair of psbP proteins. This was supported by Southern hybridization results, which suggested that psbP in Nicotiana is encoded by a gene family consisting of four members in N. tabacum and two members each in N. glauca, N. langsdorffii, N. sylvestris, and N. tomentosiformis. A scheme of molecular evolution of the psbP genes in Nicotiana is also proposed.  相似文献   

8.
Nicotiana tabacum chloroplast DNA contains two copies each of 16S and 23S rRNA genes. These genes are located in an inverted order as determined from restriction fragment mapping and Southern hybridization to restriction fragments. The position of these genes on the N. tabacum chloroplast DNA molecule has been established relative to a complete map of SalI and SMaI restriction enzyme cleavage sites.  相似文献   

9.
We review and extend data showing concerted evolution of parental 18–5.8–26S nuclear ribosomal DNA (18–26S rDNA) gene families in three natural Nicotiana allotetraploids ( N. tabacum , N. rustica and N. arentsii , each 2 n  = 4 x  = 48) and one synthetic N. tabacum line (Th37, ♀ N. sylvestris (2 n  = 24) × ♂ N. tomentosiformis (2 n  = 24)). The origin of the gene families was analysed by sequence polymorphisms in the intergenic spacer (IGS) region and the number of chromosomal loci by fluorescence in situ hybridization (FISH). FISH revealed that the number and locations of 18–26S rDNA in the natural allopolyploids was the sum of those found in the diploid progenitors. However, the rDNA restriction patterns showed polymorphisms in the IGS that were not additive, suggesting that parental rDNA clusters were partially ( N. tabacum, N. rustica ) or completely ( N. arentsii ) overwritten by hybrid-specific units. Thus the Nicotiana allotetraploids show evidence of concerted evolution, including both intralocus and interlocus gene conversion. A feral N. tabacum collected in Bolivia had a higher proportion of unconverted parental rDNA units than cultivated tobacco varieties, suggesting either that rDNA homogenization is accelerated by inbreeding or multiple origins of tobacco. There is no evidence for the elimination of N. sylvestris- derived rDNA units in the synthetic Th37 tobacco line as occurred in natural tobacco, although several novel rDNA unit variants were found in most but not all the hybrid plants. Factors that may control the occurrence and extent of rDNA homogenization are discussed for allopolyploids in Nicotiana and other taxa.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 615–625.  相似文献   

10.
A combined approach was used to derive a detailed physical map of Nicotiana tabacum chloroplast DNA for the restriction enzymes SalI, SmaI, KpnI, and BamHI. Complete maps for the restriction enzymes SalI, SmaI, and KpnI were derived by using two-dimensional agarose gel analysis of fragments obtained by reciprocal double digestion of chloroplast DNA. We have characterized a complete cloned library of N. tabacum chloroplast DNA which contains overlapping restriction fragments resulting from partial digestion by BamHI. With these clones and existing data, we used a novel computer-aided analysis to derive a detailed map for the enzyme BamHI. A comparison and compilation of all published N. tabacum chloroplast DNA restriction maps is presented. Differences between ours and a previously published SmaI and BamHI restriction map are discussed.  相似文献   

11.
Endogenous pararetroviruses (EPRVs) represent a new class of dispersed repetitive DNA in plants. The genomes of many Nicotiana species and other solanaceous plants are rich in EPRVs. Distinct EPRV families are present in N. sylvestris ( Ns ) and in N. tomentosiformis ( Nto ), the two diploid progenitors of allotetraploid N. tabacum . Nicotiana EPRVs represent an interesting type of repetitive sequence to analyse in polyploids because of their potential impact on plant fitness and the epigenetic architecture of plant genomes. The Ns EPRV family appears identical in N. sylvestris and N. tabacum , indicating little change has occurred in either species since polyploid formation. By contrast, the Nto EPRV family is larger in N. tomentosiformis than in N. tabacum , suggesting either preferential elimination from the polyploid genome or specific accumulation in the diploid genome following polyploidization. The lability of Nto EPRVs might be enhanced by a frequent association with gypsy retrotransposons. Although some EPRVs are probably benign, others are potentially pathogenic or, conversely, determinants of virus resistance. Normally quiescent EPRVs can be reactivated and cause symptoms of infection in hybrids of species that differ in their EPRV content. EPRVs that furnish immunity to the free virus exemplify the selective value of so-called 'junk' DNA. Variation in the abundance and distribution of EPRVs among related species can be useful in taxonomic and evolutionary studies.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 627–638.  相似文献   

12.
13.
14.
Origin and rearrangement of ribosomal DNA repeats in natural allotetraploid Nicotiana tabacum are described. Comparative sequence analysis of the intergenic spacer (IGS) regions of Nicotiana tomentosiformis (the paternal diploid progenitor) and Nicotiana sylvestris (the maternal diploid progenitor) showed species-specific molecular features. These markers allowed us to trace the molecular evolution of parental rDNA in the allopolyploid genome of N. tabacum; at least the majority of tobacco rDNA repeats originated from N. tomentosiformis, which endured reconstruction of subrepeated regions in the IGS. We infer that after hybridization of the parental diploid species, rDNA with a longer IGS, donated by N. tomentosiformis, dominated over the rDNA with a shorter IGS from N. sylvestris; the latter was then eliminated from the allopolyploid genome. Thus, repeated sequences in allopolyploid genomes are targets for molecular rearrangement, demonstrating the dynamic nature of allopolyploid genomes.  相似文献   

15.
16.
Cytoplasmic hybrids (cybrids) between the two sexually incompatible species Nicotiana tabacum and Petunia hybrida were constructed. Three green plants were obtained after fusion of leaf protoplasts from a cytoplasmic chlorophyll deficient mutant of tobacco, with iodoacetamide inactivated protoplasts of P. hybrida. All regenerated plants were phenotypically similar to tobacco, but male and female sterile. Chromosome and isoenzyme analyses of the nuclear genome, and restriction and blot hybridization analyses of the organelle composition revealed that the regenerated cybrids possessed nuclear genome of N. tabacum, chloroplasts from P. hybrida and recombinant chondriomes. In vitro culture of ovules from one cybrid plant pollinated by N. tabacum resulted in the regeneration of cytoplasmic male sterile progeny plants. Cross-section of anthers from these CMS plants showed that male sterility was due to a failure of tapetum development. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Here, we analyze long-term evolution in Nicotiana allopolyploid section Repandae (the closest living diploids are N. sylvestris, the maternal parent, and N. obtusifolia, the paternal parent). We compare data with other more recently formed Nicotiana allopolyploids. We investigated 35S and 5S nuclear ribosomal DNA (rDNA) chromosomal location and unit divergence. A molecular clock was applied to the Nicotiana phylogenetic tree to determine allopolyploid ages. N. tabacum and species of Repandae were c. 0.2 and 4.5 Myr old, respectively. In all Repandae species, the numbers of both 35S and 5S rDNA loci were less than the sum of those of the diploid progenitors. Trees based on 5S rDNA spacer sequences indicated units of only the paternal parent. In recent Nicotiana allopolyploids, the numbers of rDNA loci equal the sum of those of their progenitors. In the Repandae genomes, diploidization is associated with locus loss. Sequence analysis indicates that 35S and 5S units most closely resemble maternal and paternal progenitors, respectively. In Nicotiana, 4.5 Myr of allopolyploid evolution renders genomic in situ hybridization (GISH) unsuitable for the complete resolution of parental genomes.  相似文献   

18.
A distinct endogenous pararetrovirus (EPRV) family corresponding to a previously unknown virus has been identified in the genome of Nicotiana tomentosiformis, a diploid ancestor of allotetraploid tobacco (Nicotiana tabacum). The putative virus giving rise to N. tomentosiformis EPRVs (NtoEPRVs) is most similar to tobacco vein clearing virus, an episomal form of a normally silent EPRV family in Nicotiana glutinosa; it is also related to a putative virus giving rise to the NsEPRV family in Nicotiana sylvestris (the second diploid progenitor of tobacco) and in the N. sylvestris fraction of the tobacco genome. The copy number of NtoEPRVs is significantly higher in N. tomentosiformis than in tobacco. This suggests that after the polyploidization event, many copies were lost from the polyploid genome or were accumulated specifically in the diploid genome. By contrast, the copy number of NsEPRVs has remained constant in N. sylvestris and tobacco, indicating that changes have occurred preferentially in the NtoEPRV family during evolution of the three Nicotiana species. NtoEPRVs are often flanked by Gypsy retrotransposon-containing plant DNA. Although the mechanisms of NtoEPRV integration, accumulation, and/or elimination are unknown, these processes are possibly linked to retrotransposon activity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号