首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Juvenile Nile tilapia (Oreochromis niloticus) are omnivorous, and the question asked in this study is how they affect on their environment? Do they mainly act as predators on the cladoceran zooplankton or do they compete with the cladocerans for phytoplankton? This problem was studied in three ponds with and three ponds without small tilapia (3–5 cm). The fish growth rate, the succession of plankton species and the changes in abiotic conditions, were monitored over a period of 67 days. The fish biomass was kept low and the mean was approximately constant (12.6 g m?2) during the experiment. Phosphate was added to avoid phytoplankton nutrient limitation. Although the diet of Nile tilapia contained both phytoplankton and zooplankton, the fish affected the ecosystem in a similar way as zooplanktivorous fish. The fish ponds got more phytoplankton due to increase of Chlorophyta. Effects on the other phytoplankton groups Euglenophyta, Bacillariophyta, Cryptophyta and Cyanophyta could not be registered. The ponds without fish had higher densities of Daphnia lumholtzi and D. barbata. The other Cladocerans seemed less influenced by fish presence. The relative fish growth rate was most positively correlated with the density of Daphnia lumholtzi, Diaphanosmoa excisum and Bosmina longirostris. Tilapia seemes to have two feeding modes: (1) preying on large zooplankton and (2) unselective filtration of small planktonic organisms such as phytoplankton. In our experiment the first feeding mode affected the ecosystem more than the second.  相似文献   

2.
Synopsis The relationships between food availability, consumption and growth were analyzed from the onset of feeding to an age of 90 days in three cyprinid species. Fish were held at 20 ± 0.5° C and given two (three) constant rations of approximately 30, (40) or 100% dry body weight (dbw) ind-1 day-1. Food consisted of living zooplankton, the size of which correlated with fish size. At high food densities consumption rates decreased rapidly with fish size in all three species. At reduced rations, fish consumed most of the food offered until they were larger than 10 mg dbw. In all species and at each feeding level daily rations consumed increased allometrically with body size. Respiration rate, expressed as routine metabolic rate differed insignificantly between the three species. At high ration levels, growth rates of small bleak, Alburnus alburnus, were distinctly lower than those of roach, Rutilus rutilus, and blue bream, Abramis ballerus. At low food supply all three species grew at similar rates. Assimilation efficiency at low food conditions was approximately twice that of the well-fed groups. If the caloric equivalents of oxygen consumption as measured in well-fed fish are applied to fish fed at low rations their energy budgets do not balance. This indicates the limitations of fish larvae in the partitioning of energy for growth or activity at such conditions.  相似文献   

3.
Synopsis Growth and survival of white sucker and pumpkinseed larvae were examined in the laboratory in relation to prey density. Mortality of both species was greatest during the transition from endogenous to exogenous nutrition. Mortality prior to yolk absorption was substantial for white suckers and was not related to prey density whereas, pumpkinseed mortality during the same period was low. After yolk absorption, however, pumpkinseed suffered considerably higher mortality rates than white sucker larvae and, in both species, mortality and growth were directly related to prey density. The minimum prey density supporting 10% survival of pumpkinseed larvae was estimated at 0.16 plankters ml-1 whereas, for white suckers it was 0.15 plankters ml-1. Significant growth of both white sucker and pumpkinseed larvae, however, occurred only at prey densities higher than 0.25 plankters ml-1. We suggest that since egg size and yolk reserve are greater in sucker larvae, suckers are better adapted to survive short term declines in prey abundance during the transition to exogenous feeding than pumpkinseed larvae. The reproductive strategies of each species seems to reflect this, with suckers spawning over a short time interval, but producing young with large yolk. Pumpkinseed, in contrast, spawn intermittently over an extended period but produce young with relatively small volk reserves.  相似文献   

4.
P. E. Ross  M. Munawar 《Hydrobiologia》1988,163(1):173-177
On three research cruises in 1981, zooplankton community filtration rates were measured at 4 stations: Saginaw Bay, mid-Lake Huron, Georgian Bay and North Channel. For all four stations, the highest rates were observed during the late-September cruise. The maximum observed rate was 137 000 ml d–1 m–3, while the lowest rate was 7200 ml d–1 m–3. The grazing experiments were performed on three size classes of radioactively labelled algal food (0.45–5 µm, 5–20 µm and 20–64 µm). In 11 of 12 experiments, the smallest size class of food yielded the highest filtration rate. For the late-May cruise we used published data on phytoplankton biomass for the Georgian Bay and North Channel stations to calculate community feeding rates of 0.09 and 0.015 mg C mg C m–3 d–1, respectively, and percent cropping rates of 0.74 and 0.35 per day, respectively. A comparison of our feeding rates to literature values for zooplankton biomass suggests that algal food alone may not be sufficient to sustain zooplankton growth at those stations.  相似文献   

5.
The objectives of this work were (1) to assess the influence of zooplankton biomass on activity and consumption rates of young-of-the-year brook trout ( Salvelinus fontinalis ) and (2) to validate an in situ enclosure approach to quantify energy allocation patterns in fish. These objectives were attained by directly estimating fish growth, consumption and activity rates on 10 occasions characterized by different levels of zooplankton biomass (0.005 to 0.100 mg dry weight 1−1). One enclosure was used to estimate growth and activity rates and five additional enclosures were used to estimate consumption rates. Among-experiment variations of activity rates (sum for five trout = 2.4 to 33.5 calories day−1) were proportionally more important than variations of consumption rates (sum for five trout = 59.5 to 112.7 calories day−1). The results support the existence of a significant positive relationship between fish activity rates and zooplankton biomass. No significant relationship was found between consumption rates and prey biomass. Final size of fish inside the enclosure was within 7.6% of the value estimated using experimentally derived activity and consumption rates. This situation, together with the stability of among-enclosure activity and feeding schedules, suggested that the experimental design was appropriate to estimate fish energy allocation patterns. Combination of our observations with those of a previously published work indicated that small variations of fish size or zooplankton biomass can cause a two-fold variation of fish activity costs.  相似文献   

6.
7.
Synopsis We examined the feeding behaviors and selectives of two common planktivorous fishes, pumpkinseeds Lepomis gibbosa and fathead minnows Pimephales promelas in the laboratory. Ingestion rates for both pumpkinseeds and fathead minnows feeding on zooplankton increased as a function of fish length. Pumpkinseeds fed on zooplankton strictly as particulate feeders, with preferences increasing as a function of zooplankton body size regardless of taxonomic identity. Preferences were highest for large Daphnia, intermediate for intermediate-sized copepods, and lowest for small Ceriodaphnia. Fathead minnows displayed the ability to use both particulate-feeding and filter-feeding behaviors. Differential preferences tended to reflect both zooplankton size and taxon, being highest for large, slow-swimming Daphnia, intermediate for small Ceriodaphnia, and lowest for faster-swimming copepods. These differences in prey capture behaviors and preferences of the two fishes are reflected in the zooplankton taxonomic composition of small ponds containing each fish type. The crustacean zooplankton assemblages in ponds containing both pumpkinseeds and fathead minnows were dominated by copepods. Cladocerans were rare. In ponds containing pumpkinseeds, but no fathead minnows, cladocerans were abundant, generally accounting for up to 80% of total crustacean zooplankton biomass. These results suggest that the type of planktivore, and not simply the presence or abundance of planktivores in a system, can determine zooplankton community structure.  相似文献   

8.
Quantitative and qualitative changes in the feeding spectra and growth patterns are studied in the larvae and juveniles of perch in artificial water ecosystems (mesocosms) in the presence of a filter-feeding zebra mussel. At a stocking density of 0.75 kg/m2, the presence of a zebra mussel leads to a change in the feeding conditions of zooplankton, to a decrease in its abundance in regards to critical values for fish feeding, to an increase in the abundance of organisms of macrobenthos in the food, and to the rapid transition of the fish to feeding on chironomids. As a result of these changes, the growth rate of perch larvae decreases, their development at step D 1 is delayed, the differentiation of the juveniles by size is accelerated, their size and weight variability increases, and individual predators (cannibals) appear.  相似文献   

9.
10.
Gulati  R. D.  Ejsmont-Karabin  J.  Rooth  J.  Siewertsen  K. 《Hydrobiologia》1989,(1):347-354
Phosphorus (PO4-P) and nitrogen (NH4-N) excretion rates of Euchlanis dilatata lucksiana, a rotifer, isolated from Lake Loosdrecht (The Netherlands) and cultured in the lake water at 18–19 °C, were measured in the laboratory.In a series of experiments, the effects of experiment duration on the P and N excretion rates were examined. The rates measured in the first half-hour were about 2 times higher for P and 2–4 times for N than the rates in the subsequent three successive hours which were quite comparable.Eight experiments were carried out in triplicate, 4 each for P and N excretion measurements, using animals of two size ranges: 60–125 µm and > 125 µm. The specific excretion rates varied from 0.06 to 0.18 µg P.mg–1 DW.h–1 and 0.21 to 0.76 µg N.mg–1 DW.h–1. Generally an inverse relationship was observed between the specific excretion rates and the mean individual weight. The excretion rates of Euchlanis measured by us are lower than those reported for several other rotifer species, most of which are much smaller than Euchlanis.Extrapolating the excretion rates of Euchlanis to the other rotifer species in Lake Loosdrecht, and accounting for their density, size and temperature, rotifer excretion appears to be a significant, potential nutrient (N,P) source for phytoplankton growth in the lake. The excretion rates for the rotifers appear to be about two thirds of the total zooplankton excretion, even though the computed rotifer mean biomass is about one-third of the total zooplankton biomass.  相似文献   

11.
The fish community in the Loosdrecht lakes is dominated by bream, pikeperch and smelt and is characteristic of shallow eutrophic lakes in The Netherlands. The biomasses of the respective fish species amount to ca. 250, 25 and 10 kg ha–1 and correspond to those in Tjeukemeer, another lake in The Netherlands. The average size of bream, however, is much smaller in the Loosdrecht lakes as a consequence of poorer feeding conditions. The zooplankton community in the Loosdrecht lakes is predominantly composed of relatively small species such as Daphnia cucullata, Bosmina coregoni and cyclopoid copepods, whereas in Tjeukemeer, Daphnia hyalina is permanently present in relatively high densities and the other species show a larger mean length. In the Loosdrecht lakes, the absence of D. hyalina and the smaller sizes of the other zooplankton species could be the consequence of a higher predation pressure, in combination with unfavourable feeding conditions for the zooplankton including the low density of green algae and the high density of filamentous cyanobacteria. A biomanipulation experiment in Lake Breukeleveen, one of the Loosdrecht lakes, indicated that feeding conditions were too unfavourable for large zooplankton to develop in spring, when the reduced fish biomass was not yet supplemented by natural recruitment and immigration.  相似文献   

12.
1. High biomass of macrophytes is considered important in the maintenance of a clear‐water state in shallow eutrophic lakes. Therefore, rehabilitation and protection of aquatic vegetation is crucial to the management of shallow lakes. 2. We conducted field mesocosm experiments in 1998 and 1999 to study community responses in the plant‐dominated littoral zone of a lake to nutrient enrichment at different fish densities. We aimed to find the threshold fish biomass for the different nutrient enrichment levels below which large herbivorous zooplankton escapes control by fish. The experiments took place in the littoral of Lake Vesijärvi in southern Finland and were part of a series of parallel studies carried out jointly at six sites across Europe. 3. In 1998, when macrophyte growth was poor, a clear‐water state with low phytoplankton biomass occurred only in unenriched mesocosms without fish or with low fish biomass (4 g fresh mass m?2). Both nutrient enrichment and high fish biomass (20 g fresh mass m?2) provoked a turbid water state with high planktonic and periphytic algal biomass. The zooplankton community was dominated by rotifers and failed to control the biomass of algae in nutrient enriched mesocosms. The littoral community thus had low buffer capacity against nutrient enrichment. 4. In 1999, macrophytes, especially free‐floating Lemna trisulca L., grew well and the zooplankton community was dominated by filter‐feeding cladocerans. The buffer capacity of the littoral community against nutrient enrichment was high; a clear‐water state with low phytoplankton biomass prevailed even under the highest nutrient enrichment. High grazing rates by cladocerans, together with reduced light penetration into the water caused by L. trisulca, were apparently the main mechanisms behind the low algal biomass. 5. Effects of fish manipulations were less pronounced than effects of nutrient enrichment. In 1999, clearance rates of cladocerans were similar in fish‐free and low‐fish treatments but decreased in the high‐fish treatment. This suggests that the threshold fish biomass was between the low‐ and high‐fish treatments. In 1998, such a threshold was found only between fish‐free and low‐fish treatments. 6. The pronounced difference in the observed responses to nutrient enrichment and fish additions in two successive years suggests that under similar nutrient conditions and fish feeding pressure either clear or turbid water may result depending on the initial community structure and on weather.  相似文献   

13.
Nutrient regeneration and respiration rates of natural zooplankton from a tropical reservoir were experimentally measured. Excretion rates of ammonia (Ea), orthophosphate (Ep) and community respiration rates (R) were estimated considering the variations in the concentrations of ammonia, orthophosphate and dissolved oxygen between control and experimental units. The ranges obtained for these rates from the 2 h assays were Ea = 1.95–4.95 μg N-NH4 · mg · DW−1 · h−1; Ep = 0.12–0.76 μg P-PO4 mg DW−1 · h−1. Respiratory rates were quite constant (R = 0.01–0.02 mg O2 · mg DW−1 · h−1). The uptake of nutrients due to bacteria can affect the experimental determination of excretion rates of zooplankton. Orthophosphate release increased from 0.28 to 0.82 μg P-PO4 · mg DW−1 · h−1 when bacterial activity was depleted by antibiotic addition in experimental vessels (Exp IV). This demonstrates that free living bacteria are able to consume promptly most phosphorus excreted by zooplankton. Ammonia excretion rates were lower in experimental units containing antibiotics. Lower excretion rates were also obtained with longer exposure times and higher biomass levels in the experimental units. Finally, this study also showed that zooplankton excretion can affect significantly turn over rates of total phosphorus in Pampulha Reservoir. In some periods, specially during the dry season when zooplankton biomass was very high, phosphorus release by zooplankton, during one single day, can be as high as 40% of the total phosphorus content in lake water (Turn over time = 2.5 days).  相似文献   

14.
1. A 2‐year study was carried out on the roles of nutrients and fish in determining the plankton communities of a shallow lake in north‐west Spain. Outcomes were different each year depending on the initial conditions, especially of macrophyte biomass. In 1998 estimated initial ‘per cent water volume inhabited’ (PVI) by submerged macrophytes was about 35%. Phytoplankton biomass estimated as chlorophyll a was strongly controlled by fish, whereas effects of nutrient enrichment were not significant. In 1999 estimated PVI was 80%, no fish effect was observed on phytoplankton biomass, but nutrients had significant effects. Water temperatures were higher in 1998 than in 1999. 2. In the 1998 experiment, cladoceran populations were controlled by fish and cyanobacteria were the dominant phytoplankton group. There were no differences between effects of low (4 g fresh mass m?2) and high (20 g fresh mass m?2) fish density on total zooplankton biomass, but zooplankton biomass was higher in the absence of fish. With the high plant density in 1999, fish failed to control any group of the zooplankton community. 3. Total biovolume of phytoplankton strongly decreased with increased nutrient concentrations in 1998, although chlorophyll a concentrations did not significantly change. At higher nutrient concentrations, flagellate algae became more abundant with likely growth rates that could have overcompensated cladoceran feeding rates. This change in phytoplankton community composition may have been because of increases in the DIN : SRP ratio. Both chlorophyll a concentration and total phytoplankton biovolume increased significantly with nutrients in the 1999 experiment. 4. A strong decline of submerged macrophytes was observed in both years as nutrients increased, resulting in shading by periphyton. This shading effect could account for the plant decline despite lower water turbidity at the very high nutrient levels in 1998.  相似文献   

15.
Predator-induced bottom-up effects in oligotrophic systems   总被引:1,自引:1,他引:0  
Five treatments (replication n=2) were applied to mesocosms in an oligotrophic lake (TP=6–10 µg 1-1) to assess the effects of fish on planktonic communities. The treatments were: (1) high fish (30 kg ha–1 Lepomis auritus, Linnaeus), (2) low fish (10 kg ha–1), (3) high removal of zooplankton, (4) low removal of zooplankton and (5) control. Total phosphorus, chlorophyll a, zooplankton biomass, and species richness decreased from high fish > low fish > control > low removal > high removal treatments. The fish treatments were dominated by crustacean zooplankton, while rotifers outnumbered the other zooplankters in the removal treatments. Calculations of zooplankton grazing rates suggested that clearance rates seldom exceeded 2% of the enclosure volume d–1 and were unlikely to have had much influence on phytoplankton biomass. Calculations from a phosphorus bioenergetics model revealed that when fish were present, their excretion rates were higher than the rates ascribed to zooplankton. Diet analysis showed that the fish derived most of their energy from the benthos and periphyton, and that fish excretion and egestion made significant contributions to the very oligotrophic pelagic phosphorus pool. In the absence of fish, zooplankton excretion was highest in the control treatments and lowest in the zooplankton removal treatments. Our results suggest that in oligotrophic systems, planktivorous fish can be significant sources of phosphorus and that fish and zooplankton induced nutrient cycling have significant impacts on planktonic community structure.  相似文献   

16.
A series of experiments were carried out to construct an energy budget for juvenile thick lipped mullet, Crenimugil labrosus Risso. A partial factorial experimental design was used to examine the effects of temperature, fish size and meal size on growth. The maximum ration that the fish were able to ingest completely per day was found to be 0·8, 1·4 and 2·3% wet body weight (b.w.) at 13,18 and 23°C, respectively. Ingested maintenance requirements (M.R.) were estimated to be 137, 205 and 288 cal fish-1 day-1 at 13, 18 and 23°C, respectively. At 18deg; C, M.R. varied as 25 W1.04 cal day-1, where W= fish weight (g). Growth rate increased with increasing temperature. Maximal conversion efficiency was 21–24% and was achieved closer to the maximum ingested ration with increasing temperature. The relationship between respiration rate and W at 18deg; C for 3-20 g fish is described by: respiration rate (ml O2 h-1) = 0·128 W0.976 The energy cost of apparent specific dynamic action at 18deg; C was found to vary between 5·1% and 23·6% of the calorific value of the ingested meal (1% wet b.w.) , mean (± S.E.)=10·2 ± 2·0%. Post mortem analyses of groups of fish fed 0·2, 0·8 and 1·5% wet b.w. meals showed a significant increase in total lipid and a significant decrease in water content with increasing ratio size. A negative correlation was found between body water content and total lipid (and calories). The mean assimilation efficiency (±s.e.) for 5–10 g mullet at 18deg; C was 73·9 ± 3·6%. The observations reported in this study were brought together to construct an energy budget for juvenile C. labrosus which was found to give a reliable prediction (within 10%) of energy demand and growth under the prevailing experimental conditions. Both gross (K1) and net (K2) growth efficiencies, based on energy values, increased with increasing ratio size up to satiation and were independent of temperature. The maximum values of K1 and K2 observed were 0·33 and 0·46, respectively. The third order efficiency (K3) appeared to be independent of temperature and ration size; mean values ranged between 0·66 and 0·84.  相似文献   

17.
The inland silverside, Menidia beryllina (Cope), is an annual zooplanktivore that occurs in estuarine and freshwater habitats along the Atlantic and Gulf of Mexico coasts and drainages of the United States. Experiments were conducted at 25 ± 1°C to quantify the relationship between mean dry weight (WD) and rates of energy gain from food consumption (C), and energy losses as a result of respiration (R) and ammonia excretion (E) during routine activity and feeding by groups of fish. The absorption efficiency of ingested food energy (A) was also quantified. Rates of C, E, and R increased with WD by factors (b in the equation y = aWDb) equal to 0.462, 0.667, and 0.784, respectively. Mean (±SE) rates of energy loss during feeding were 1.6 ± 0.1 (R) and 3.4 ± 0.6 (E) times greater than those for unfed fish. Absorption efficiency was independent of WD and estimated to be 89% of C. From these measurements, the surplus energy available for growth and activity (G) and growth efficiency (K1) were estimated. Over the range in sizes of juveniles and adults (5–500 mg WD), predicted G and K1 values decreased from 7.42 to 0.20 J mg fish?1 day?1 and 63 to 21%, respectively. Measured and predicted bioenergetic parameters are discussed within an ecological context for a northern population of this species.  相似文献   

18.
Daily and annual production rates of eight cladoceran and two rotifer species, and their seasonal variation and trophic role in the large, turbid, tropical Lake Tana, Ethiopia, were assessed in 2003–2005. Laboratory cultures were used to infer cladoceran development times, and secondary production was estimated using the growth increment summation and recruitment methods. Production for both taxa was highest in October–November, after the rainy season, and lowest in January–April during the dry season. Cladocerans and rotifers comprised 24% of the metazoan zooplankton biomass of 45.1 mg DW m?3, but comprised 53% of its production. Daily production for cladocerans and rotifers, respectively, was 1.23 and 0.94 mg DW m?3 d?1, and annual production was 447.9 and 353.5 mg DW m?3 y?1. Energy transfer efficiency from producers to zooplankton was 1.3% and 4.4% from zooplankton to planktivores. Herbivores consumed 3.4% of primary production and planktivores 36% of zooplankton production. High biomass turnover rates of cladocerans and rotifers sustain planktivores and, after a month's delay, decomposed Microcystis provides their main food source during the pre- and post-rainy months in Lake Tana.  相似文献   

19.
This study describes the growth of juvenile clownfish, Amphiprion percula Lacépède 1802, fed with an artificial diet at six ration sizes of 2, 4, 6, 8, 10 and 12% of body mass per day (BM day?1) each at a feeding frequency of once, twice and three times per day. The effect of ration size on growth depended on the feeding frequency. In fish fed once a day growth did not improve above a ration size of 8% BM day?1. At two feedings per day fish required a ration size of at least 6% BM day?1 to achieve good growth, and fish fed three times per day grew at similar rates above a ration size of 4% BM day?1. A model to estimate the combined effect of ration size and feeding frequency is presented. The results lead to the suggestion of a simple length‐based feeding regimen that could be tested in future studies on this species or adapted for use in other species.  相似文献   

20.
Mechanisms of selectivity in a nocturnal fish: a lack of active prey choice   总被引:1,自引:0,他引:1  
Holzman R  Genin A 《Oecologia》2005,146(2):329-336
Fish that feed on individual zooplankton usually exhibit strong selectivity for large prey. Such selectivity can result from the predator’s active choice of larger prey or from differential encounter rate due to lower detectability of small prey, or both. In diurnal fishes, selectivity is thought to be determined mostly by active choice. In spite of a lack of direct observations, active choice is also considered the prevailing mechanism of prey selectivity in nocturnal fishes. Our objective was to resolve this mechanism in the highly selective, nocturnal zooplanktivorous fish Apogon annularis. Laboratory experiments indicated that the fish’s encounter rate with small prey was lower than that with large prey and that its selectivity became stronger with decreasing light intensity. Feeding efficiency, defined as the ratio between feeding and encounter rates, ranged 41–89% and was positively correlated with prey size. When feeding on a mixture of prey sizes, the fish fed on each size group at a rate similar to that of its feeding on the respective size alone, indicating that selectivity in A. annularis was due to size-dependent encounter rate and differential feeding efficiency. A low visual acuity in A. annularis, as inferred from its inability to detect small prey (<0.9 mm in length), together with the low abundance of large zooplankton in situ, can explain the dominance of differential encounter over active choice in this nocturnal coral-reef fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号