首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The CFTR chloride channel is regulated by phosphorylation by protein kinases, especially PKA, and by nucleotides interacting with the two nucleotide binding domains, NBD-A and NBD-B. Giant excised inside-out membrane patches from Xenopus oocytes expressing human epithelial cystic fibrosis transmembrane conductance regulator (CFTR) were tested for their chloride conductance in response to the application of PKA and nucleotides. Rapid changes in the concentration of ATP, its nonhydrolyzable analogue adenylylimidodiphosphate (AMP-PNP), its photolabile derivative ATP-P3-[1-(2-nitrophenyl)ethyl]ester, or ADP led to changes in chloride conductance with characteristic time constants, which reflected interaction of CFTR with these nucleotides. The conductance changes of strongly phosphorylated channels were slower than those of partially phosphorylated CFTR. AMP-PNP decelerated relaxations of conductance increase and decay, whereas ATP-P3-[1-(2-nitrophenyl)ethyl]ester only decelerated the conductance increase upon ATP addition. ADP decelerated the conductance increase upon ATP addition and accelerated the conductance decay upon ATP withdrawal. The results present the first direct evidence that AMP-PNP binds to two sites on the CFTR. The effects of ADP also suggest two different binding sites because of the two different modes of inhibition observed: it competes with ATP for binding (to NBD-A) on the closed channel, but it also binds to channels opened by ATP, which might either reflect binding to NBD-A (i.e., product inhibition in the hydrolysis cycle) or allosteric binding to NBD-B, which accelerates the hydrolysis cycle at NBD-A.  相似文献   

2.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel situated on the apical membrane of epithelial cells. Our recent studies of purified, reconstituted CFTR revealed that it also functions as an ATPase and that there may be coupling between ATP hydrolysis and channel gating. Both the ATP turnover rate and channel gating are slow, in the range of 0.2 to 1 s–1, and both activities are suppressed in a disease-causing mutation situated in a putative nucleotide binding motif. Our future studies using purified protein will be directed toward understanding the structural basis and mechanism for coupling between hydrolysis and channel function.  相似文献   

3.
The function of the human cystic fibrosis transmembrane conductance regulator (CFTR) protein as a chloride channel or transport regulator involves cellular ATP binding and cleavage. Here we describe that human CFTR expressed in insect (Sf9) cell membranes shows specific, Mg2+-dependent nucleotide occlusion, detected by covalent labeling with 8-azido-[alpha-32P]ATP. Nucleotide occlusion in CFTR requires incubation at 37 degrees C, and the occluded nucleotide can not be removed by repeated washings of the membranes with cold MgATP-containing medium. By using limited tryptic digestion of the labeled CFTR protein we found that the adenine nucleotide occlusion preferentially occurred in the N-terminal nucleotide binding domain (NBD). Addition of the ATPase inhibitor vanadate, which stabilizes an open state of the CFTR chloride channel, produced an increased nucleotide occlusion and resulted in the labeling of both the N-terminal and C-terminal NBDs. Protein modification with N-ethylmaleimide prevented both vanadate-dependent and -independent nucleotide occlusion in CFTR. The pattern of nucleotide occlusion indicates significant differences in the ATP hydrolyzing activities of the two NBDs, which may explain their different roles in the CFTR channel regulation.  相似文献   

4.
Mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis, a hereditary lethal disease. CFTR is a chloride channel expressed in the apical membrane of epithelia. It is activated by cAMP dependent phosphorylation and gated by the binding of ATP. The impaired chloride transport of some types of cystic fibrosis mutations could be pharmacologically solved by the use of chemical compounds called potentiators. Here it is undertaken the construction of a model of the CFTR activation pathways, and the possible modification produced by a potentiator application. The model yields a novel mechanism for the potentiator action, describing the activatory and inhibitory activities on two different positions in the CFTR activation pathway.  相似文献   

5.
The CFTR [CF (cystic fibrosis) transmembrane conductance regulator] chloride channel is activated by cyclic nucleotide-dependent phosphorylation and ATP binding, but also by non-phosphorylation-dependent mechanisms. Other CFTR functions such as regulation of exocytotic protein secretion are also activated by cyclic nucleotide elevating agents. A soluble protein comprising the first NBD (nucleotide-binding domain) and R-domain of CFTR (NBD1-R) was synthesized to determine directly whether CFTR binds cAMP. An equilibrium radioligand-binding assay was developed, firstly to show that, as for full-length CFTR, the NBD1-R protein bound ATP. Half-maximal displacement of [3H]ATP by non-radioactive ATP at 3.5 microM and 3.1 mM was demonstrated. [3H]cAMP bound to the protein with different affinities from ATP (half-maximal displacement by cAMP at 2.6 and 167 microM). Introduction of a mutation (T421A) in a motif predicted to be important for cyclic nucleotide binding decreased the higher affinity binding of cAMP to 9.2 microM. The anti-CFTR antibody (MPNB) that inhibits CFTR-mediated protein secretion also inhibited cAMP binding. Thus binding of cAMP to CFTR is consistent with a role in activation of protein secretion, a process defective in CF gland cells. Furthermore, the binding site may be important in the mechanism by which drugs activate mutant CFTR and correct defective DeltaF508-CFTR trafficking.  相似文献   

6.
CF (cystic fibrosis) is caused by mutations in CFTR (CF transmembrane conductance regulator), which cause its mistrafficking and/or dysfunction as a regulated chloride channel on the apical surface of epithelia. CFTR is a member of the ABC (ATP-binding-cassette) superfamily of membrane proteins and a disease-causing missense mutation within the ABC signature sequence; G551D-CFTR exhibits defective phosphorylation and ATP-dependent channel gating. Studies of the purified and reconstituted G551D-CFTR protein revealed that faulty gating is associated with defective ATP binding and ATPase activity, reflecting the key role of G551 in these functions. Recently, high-throughput screens of chemical libraries led to identification of modulators that enhance channel activity of G551D-CFTR. However, the molecular target(s) for these modulators and their mechanism of action remain unclear. In the present study, we evaluated the mechanism of action of one small-molecule modulator, VRT-532, identified as a specific modulator of CF-causing mutants. First, we confirmed that VRT-532 causes a significant increase in channel activity of G551D-CFTR using a novel assay of CFTR function in inside-out membrane vesicles. Biochemical studies of purified and reconstituted G551D-CFTR revealed that potentiation of the ATPase activity of VRT-532 is mediated by enhancing the affinity of the mutant for ATP. Interestingly, VRT-532 did not affect the ATPase activity of the Wt (wild-type) CFTR, supporting the idea that this compound corrects the specific molecular defect in this mutant. To summarize, these studies provide direct evidence that this compound binds to G551D-CFTR to rescue its specific defect in ATP binding and hydrolysis.  相似文献   

7.
Cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels are essential mediators of salt transport across epithelia. Channel opening normally requires ATP binding to both nucleotide-binding domains (NBDs), probable dimerization of the two NBDs, and phosphorylation of the R domain. How phosphorylation controls channel gating is unknown. Loss-of-function mutations in the CFTR gene cause cystic fibrosis; thus, there is considerable interest in compounds that improve mutant CFTR function. Here we investigated the mechanism by which CFTR is activated by curcumin, a natural compound found in turmeric. Curcumin opened CFTR channels by a novel mechanism that required neither ATP nor the second nucleotide-binding domain (NBD2). Consequently, this compound potently activated CF mutant channels that are defective for the normal ATP-dependent mode of gating (e.g. G551D and W1282X), including channels that lack NBD2. The stimulation of NBD2 deletion mutants by curcumin was strongly inhibited by ATP binding to NBD1, which implicates NBD1 as a plausible activation site. Curcumin activation became irreversible during prolonged exposure to this compound following which persistently activated channels gated dynamically in the absence of any agonist. Although CFTR activation by curcumin required neither ATP binding nor heterodimerization of the two NBDs, it was strongly dependent on prior channel phosphorylation by protein kinase A. Curcumin is a useful functional probe of CFTR gating that opens mutant channels by circumventing the normal requirements for ATP binding and NBD heterodimerization. The phosphorylation dependence of curcumin activation indicates that the R domain can modulate channel opening without affecting ATP binding to the NBDs or their heterodimerization.  相似文献   

8.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized at apical cell membranes and exists in macromolecular complexes with a variety of signaling and transporter molecules. Here, we report that the multidrug resistance protein 4 (MRP4), a cAMP transporter, functionally and physically associates with CFTR. Adenosine-stimulated CFTR-mediated chloride currents are potentiated by MRP4 inhibition, and this potentiation is directly coupled to attenuated cAMP efflux through the apical cAMP transporter. CFTR single-channel recordings and FRET-based intracellular cAMP dynamics suggest that a compartmentalized coupling of cAMP transporter and CFTR occurs via the PDZ scaffolding protein, PDZK1, forming a macromolecular complex at apical surfaces of gut epithelia. Disrupting this complex abrogates the functional coupling of cAMP transporter activity to CFTR function. Mrp4 knockout mice are more prone to CFTR-mediated secretory diarrhea. Our findings have important implications for disorders such as inflammatory bowel disease and secretory diarrhea.  相似文献   

9.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is defective in cystic fibrosis, and has also been closely associated with ATP permeability in cells. Using a Xenopus oocyte cRNA expression system, we have evaluated the molecular mechanisms that control CFTR-modulated ATP release. CFTR-modulated ATP release was dependent on both cAMP activation and a gradient change in the extracellular chloride concentration. Activation of ATP release occurred within a narrow concentration range of external Cl that was similar to that reported in airway surface fluid. Mutagenesis of CFTR demonstrated that Cl conductance and ATP release regulatory properties could be dissociated to different regions of the CFTR protein. Despite the lack of a need for Cl conductance through CFTR to modulate ATP release, alterations in channel pore residues R347 and R334 caused changes in the relative ability of different halides to activate ATP efflux (wtCFTR, Cl >> Br; R347P, Cl >> Br; R347E, Br >> Cl; R334W, Cl = Br). We hypothesize that residues R347 and R334 may contribute a Cl binding site within the CFTR channel pore that is necessary for activation of ATP efflux in response to increases of extracellular Cl. In summary, these findings suggest a novel chloride sensor mechanism by which CFTR is capable of responding to changes in the extracellular chloride concentration by modulating the activity of an unidentified ATP efflux pathway. This pathway may play an important role in maintaining fluid and electrolyte balance in the airway through purinergic regulation of epithelial cells. Insight into these molecular mechanisms enhances our understanding of pathogenesis in the cystic fibrosis lung.  相似文献   

10.
M Sugita  Y Yue    J K Foskett 《The EMBO journal》1998,17(4):898-908
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is regulated by phosphorylation of the R domain and ATP hydrolysis at two nucleotide-binding domains (NBDs). It is controversial whether CFTR conducts ATP or whether CFTR might be closely associated with a separate ATP conductance. To characterize ATP channels associated with CFTR, we analyzed Cl- and ATP single channel-currents in excised inside-out membrane patches from MDCK epithelial cells transiently expressing CFTR. With 100 mM ATP in the pipette and 140 mM Cl- in the bath, ATP channels were associated with CFTR Cl- channels in two-thirds of patches that included CFTR. CFTR Cl- channels and CFTR-associated ATP channels had slope conductances of 7.4 pS and 5.2 pS, respectively, and had distinct reversal potentials and sensitivities to channel blockers. CFTR-associated ATP channels exhibited slow gating kinetics that depended on the presence of protein kinase A and cytoplasmic ATP, similar to CFTR Cl- channels. Gating kinetics of the ATP channels as well as the CFTR Cl- channels were similarly affected by non-hydrolyzable ATP analogues and mutations in the CFTR R domain and NBDs. Our results indicate that phosphorylation- and nucleotide-hydrolysis-dependent gating of CFTR is directly involved in gating of an associated ATP channel. However, the permeation pathways for Cl- and ATP are distinct and the ATP conduction pathway is not obligatorily associated with the expression of CFTR.  相似文献   

11.
The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, an ATP binding cassette (ABC) protein whose defects cause the deadly genetic disease cystic fibrosis (CF), encompasses two nucleotide binding domains (NBD1 and NBD2). Recent studies indicate that in the presence of ATP, the two NBDs coalesce into a dimer, trapping an ATP molecule in each of the two interfacial composite ATP binding sites (site 1 and site 2). Experimental evidence also suggests that CFTR gating is mainly controlled by ATP binding and hydrolysis in site 2, whereas site 1, which harbors several non-canonical substitutions in ATP-interacting motifs, is considered degenerated. The CF-associated mutation G551D, by introducing a bulky and negatively charged side chain into site 2, completely abolishes ATP-induced openings of CFTR. Here, we report a strategy to optimize site 1 for ATP binding by converting two amino acid residues to ABC consensus (i.e. H1348G) or more commonly seen residues in other ABC proteins (i.e. W401Y,W401F). Introducing either one or both of these mutations into G551D-CFTR confers ATP responsiveness for this disease-associated mutant channel. We further showed that the same maneuver also improved the function of WT-CFTR and the most common CF-associated ΔF508 channels, both of which rely on site 2 for gating control. Thus, our results demonstrated that the degenerated site 1 can be rebuilt to complement or support site 2 for CFTR function. Possible approaches for developing CFTR potentiators targeting site 1 will be discussed.  相似文献   

12.
The gills and intestinal epithelia of teleost fish express cystic fibrosis transmembrane conductance regulator (CFTR), and utilize this low conductance anion channel in the apical membrane for ion secretion in seawater gill and in the basolateral membrane for ion absorption in freshwater gill. Similarly, in the intestine CFTR is present in the basolateral membrane for intestinal absorption and also in the apical membrane of secreting intestine. The expression of CFTR and the directed trafficking of the protein to the apical or basolateral membrane is salinity-dependent. The CFTR gene has been cloned and sequenced from several teleost species and although all the major elements in the human gene are present, including two nucleotide binding domains that are common to all ATP binding cassette (ABC) transporters, the sequences are divergent compared to shark or human. In euryhaline fish adapting to seawater, CFTR, localized immunocytochemically, redistributes slowly from a basolateral location to the apical membrane while ion secretory capacity increases. The facility with which teleosts regulate CFTR expression and activation during salinity adaptation make this system an appealing model for the expression and trafficking operation of this labile gene product.  相似文献   

13.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel whose phosphorylation regulates both channel gating and its trafficking at the plasma membrane. Cysteine string proteins (Csps) are J-domain-containing, membrane-associated proteins that have been functionally implicated in regulated exocytosis. Therefore, we evaluated the possibility that Csp is involved in regulated CFTR trafficking. We found Csp expressed in mammalian epithelial cell lines, several of which express CFTR. In Calu-3 airway cells, immunofluorescence colocalized Csp with calnexin in the endoplasmic reticulum and with CFTR at the apical membrane domain. CFTR coprecipitated with Csp from Calu-3 cell lysates. Csp associated with both core-glycosylated immature and fully glycosylated mature CFTRs (bands B and C); however, in relation to the endogenous levels of the B and C bands expressed in Calu-3 cells, the Csp interaction with band B predominated. In vitro protein binding assays detected physical interactions of both mammalian Csp isoforms with the CFTR R-domain and the N terminus, having submicromolar affinities. In Xenopus oocytes expressing CFTR, Csp overexpression decreased the chloride current and membrane capacitance increases evoked by cAMP stimulation and decreased the levels of CFTR protein detected by immunoblot. In mammalian cells, the steady-state expression of CFTR band C was eliminated, and pulse-chase studies showed that Csp coexpression blocked the conversion of immature to mature CFTR and stabilized band B. These results demonstrate a primary role for Csp in CFTR protein maturation. The physical interaction of this Hsc70-binding protein with immature CFTR, its localization in the endoplasmic reticulum, and the decrease in production of mature CFTR observed during Csp overexpression reflect a role for Csp in CFTR biogenesis. The documented role of Csp in regulated exocytosis, its interaction with mature CFTR, and its coexpression with CFTR at the apical membrane domain of epithelial cells may reflect also a role for Csp in regulated CFTR trafficking at the plasma membrane.  相似文献   

14.
Bompadre SG  Hwang TC 《生理学报》2007,59(4):431-442
囊性纤维化跨膜电导调节体(cystic fibrosis transmembrane conductance regulator,CFTR)是一种Cl^-通道,属于ATP结合(ATP-binding cassette,ABC)转运体超家族。CFTR功能缺陷是高加索人种中普遍存在的致死性常染色体隐性遗传疾病囊性纤维化(cystic fibrosis,CF)发生的主要原因。这种疾病患者各组织上皮细胞内Cl^-转运失调。目前,与CF相关的不同突变超过1400种。CFTR调节(regulatory,R)域负责调控,核苷酸结合域(nucleotide-binding domains,NBDs)NBD1和NBD2负责ATP结合和水解门控。近期研究发现CFFR的NBDs与其它ABC蛋白一样可以二聚化。二聚化过程中,NBD1和NBD2首-尾相连,一个NBD上的WalkerA和B模块与另一个NBD提供的标签序列(signature sequence)形成ATP结合袋(ATP-binding pockets,ABPs)ABP1和ABP2。ABPs中与ATP结合相关的氨基酸突变实验揭示,ABP1和ABP2在CFTR的ATP依赖门控中发挥不同作用。ABP2由NBD2上的WalkA和B模块与NBD1提供的标签序列形成,它与ATP结合催化通道开放,而ABP1单独与ATP结合不能促进通道开放,只能稳定通道构象。有一些CFrR突变相关疾病的特征就是门控失调,进一步深入研究CFTR的NBD1和NBD2如何通过相互作用而达到通道门控,将为药理学研究提供更多所需的机制信息,有利于为CF治疗的药物设计铺平道路。  相似文献   

15.
The conserved C-terminal peptide motif (1476DTRL) of the cystic fibrosis transmembrane conductance regulator (CFTR) ensures high affinity binding to different PSD-95/Disc-large/zonula occludens-1 (PDZ) domain-containing molecules, including the Na+/H+ exchanger regulatory factor (NHERF)/ezrin-radixin-moesin-binding phosphoprotein of 50 kDa. The physiological relevance of NHERF binding to CFTR is not fully understood. Individuals with mutations resulting in premature termination of CFTR (S1455X or Delta26 CFTR) have moderately elevated sweat Cl- concentration, without an obvious lung and pancreatic phenotype, implying that the CFTR function is largely preserved. Surprisingly, when expressed heterologously, the Delta26 mutation was reported to abrogate channel activity by destabilizing the protein at the apical domain and inducing its accumulation at the basolateral membrane (Moyer, B., Denton, J., Karlson, K., Reynolds, D., Wang, S., Mickle, J., Milewski, M., Cutting, G., Guggino, W., Li, M., and Stanton, B. (1999) J. Clin. Invest. 104, 1353-1361). The goals of this study were to resolve the contrasting clinical and cellular phenotype of the Delta26 CFTR mutation and evaluate the role of NHERF in the functional expression of CFTR at the plasma membrane. Complex formation between CFTR and NHERF was disrupted by C-terminal deletions, C-terminal epitope tag attachments, or overexpression of a dominant negative NHERF mutant. These perturbations did not alter CFTR expression, metabolic stability, or function in nonpolarized cells. Likewise, inhibition of NHERF binding had no discernible effect on the apical localization of CFTR in polarized tracheal, pancreatic, intestinal, and kidney epithelia and did not influence the metabolic stability or the cAMP-dependent protein kinase-activated chloride channel conductance in polarized pancreatic epithelia. On the other hand, electrophysiological studies demonstrated that NHERF is able to stimulate the cAMP-dependent protein kinase-phosphorylated CFTR channel activity in intact cells. These results help to reconcile the discordant genotype-phenotype relationship in individuals with C-terminal truncations and indicate that apical localization of CFTR involves sorting signals other than the C-terminal 26 amino acid residues and the PDZ-binding motif in differentiated epithelia.  相似文献   

16.
The cystic fibrosis transmembrane conductance regulator (CFTR) functions in vivo as a cAMP-activated chloride channel. A member of the ATP-binding cassette superfamily of membrane transporters, CFTR contains two transmembrane domains (TMDs), two nucleotide-binding domains (NBDs), and a regulatory (R) domain. It is presumed that CFTR couples ATP hydrolysis to channel gating, and as a first step in addressing this issue directly, we have established conditions for purification of biochemical quantities of human CFTR expressed in Sf9 insect cells. Use of an 8-azido[alpha-(32)P]ATP-binding and vanadate-trapping assay allowed us to devise conditions to preserve CFTR function during purification of a C-terminal His(10)-tagged variant after solubilization with lysophosphatidylglycerol (1%) and diheptanoylphosphatidylcholine (0.3%) in the presence of excess phospholipid. Study of purified and reconstituted CFTR showed that it binds nucleotide with an efficiency comparable to that of P-glycoprotein and that it hydrolyzes ATP at rates sufficient to account for presumed in vivo activity [V(max) of 58 +/- 5 nmol min(-1) (mg of protein)(-1), K(M)(MgATP) of 0.15 mM]. In further work, we found that neither nucleotide binding nor ATPase activity was altered by phosphorylation (using protein kinase A) or dephosphorylation (with protein phosphatase 2B); we also observed inhibition (approximately 40%) of ATP hydrolysis by reduced glutathione but not by DTT. To evaluate CFTR function as an anion channel, we introduced an in vitro macroscopic assay based on the equilibrium exchange of proteoliposome-entrapped radioactive tracers. This revealed a CFTR-dependent transport of (125)I that could be inhibited by known chloride channel blockers; no significant CFTR-dependent transport of [alpha-(32)P]ATP was observed. We conclude that heterologous expression of CFTR in Sf9 cells can support manufacture and purification of fully functional CFTR. This should aid in further biochemical characterization of this important molecule.  相似文献   

17.
Cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ABC (ATP binding cassette) transporter family, is a chloride channel whose activity is controlled by protein kinase-dependent phosphorylation. Opening and closing (gating) of the phosphorylated CFTR is coupled to ATP binding and hydrolysis at CFTR's two nucleotide binding domains (NBD1 and NBD2). Recent studies present evidence that the open channel conformation reflects a head-to-tail dimerization of CFTR's two NBDs as seen in the NBDs of other ABC transporters (Vergani et al., 2005). Whether these two ATP binding sites play an equivalent role in the dynamics of NBD dimerization, and thus in gating CFTR channels, remains unsettled. Based on the crystal structures of NBDs, sequence alignment, and homology modeling, we have identified two critical aromatic amino acids (W401 in NBD1 and Y1219 in NBD2) that coordinate the adenine ring of the bound ATP. Conversion of the W401 residue to glycine (W401G) has little effect on the sensitivity of the opening rate to [ATP], but the same mutation at the Y1219 residue dramatically lowers the apparent affinity for ATP by >50-fold, suggesting distinct roles of these two ATP binding sites in channel opening. The W401G mutation, however, shortens the open time constant. Energetic analysis of our data suggests that the free energy of ATP binding at NBD1, but not at NBD2, contributes significantly to the energetics of the open state. This kinetic and energetic asymmetry of CFTR's two NBDs suggests an asymmetric motion of the NBDs during channel gating. Opening of the channel is initiated by ATP binding at the NBD2 site, whereas separation of the NBD dimer at the NBD1 site constitutes the rate-limiting step in channel closing.  相似文献   

18.
Niisato N  Nishio K  Marunaka Y 《Life sciences》2002,71(10):1199-1207
We studied effects of tyrphostin A23 (an inhibitor of protein tyrosine kinase; PTK) and tyrphostin A63 (an inactive analog of tyrphostin A23) on forskolin-activated cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels and Cl(-) secretion in renal epithelial A6 cells. Tyrphostin A23 and A63 had no effects on the basal CFTR Cl(-) channel and Cl(-) secretion. However, under the forskolin-stimulated condition, tyrphostin A23 and A63 stimulated Cl(-) secretion by activating CFTR Cl(-) channels. These observations suggest that: 1) tyrphostin A23 and A63 stimulate the cAMP-activated CFTR Cl(-) channel via a PTK-independent, structure-dependent mechanism, and 2) tyrphostin A23 and A63 do not stimulate the basal CFTR Cl(-) channel. These lead us to an idea that: 1) cAMP might cause a conformational change of CFTR Cl(-) channel which is accessible by tyrphostins, and 2) tyrphostins would stimulate translocation of the cAMP-modified channel to the apical membrane by binding to the channel.  相似文献   

19.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel that is present in a variety of epithelial cell types, and usually expressed in the luminal membrane. In contrast, prestin (SLC26A5) is a voltage-dependent motor protein, which is present in the basolateral membrane of cochlear outer hair cells (OHCs), and plays an important role in the frequency selectivity and sensitivity of mammalian hearing. By using in situ hybridization and immunofluorescence, we found that both mRNA and protein of CFTR are present in OHCs, and that CFTR localizes in both the apical and the lateral membranes. CFTR was not detected in the lateral membrane of inner hair cells (IHCs) or in that of OHCs derived from prestin-knockout mice, i.e., in instances where prestin is not expressed. These results suggest that prestin may interact physically with CFTR in the lateral membrane of OHCs. Immunoprecipitation experiments confirmed a prestin-CFTR interaction. Because chloride is important for prestin function and for the efferent-mediated inhibition of cochlear output, the prestin-directed localization of CFTR to the lateral membrane of OHCs has a potential physiological significance. Aside from its role as a chloride channel, CFTR is known as a regulator of multiple protein functions, including those of the solute carrier family 26 (SLC26). Because prestin is in the SLC26 family, several members of which interact with CFTR, we explored the potential modulatory relationship associated with a direct, physical interaction between prestin and CFTR. Electrophysiological experiments demonstrated that cAMP-activated CFTR is capable of enhancing voltage-dependent charge displacement, a signature of OHC motility, whereas prestin does not affect the chloride conductance of CFTR.  相似文献   

20.
ATP hydrolysis by a CFTR domain: pharmacology and effects of G551D mutation   总被引:2,自引:0,他引:2  
Residues 417-830 of the cystic fibrosis transmembrane conductance regulator (CFTR) were expressed as a glutathione-S-transferase fusion protein. This fusion protein, NBD1/R/GST, contains the regulatory and first nucleotide binding domains of CFTR. NBD1/R/GST hydrolyzed ATP with a K(M) (60 microM) and V(max) (330 nmol/min/mg) that differed from those reported for CFTR and for a peptide containing CFTR residues 433-589. The ATPase inhibitor profile of NBD1/R/GST indicates that CFTR resembles P-glycoprotein with respect to the NBD1 ATPase catalytic mechanism. ATP hydrolysis by NBD1/R/GST was unaffected by genistein, glybenclamide, and other agents known to affect CFTR's chloride channel function, suggesting that these agents do not act by directly influencing the ATPase function of NBD1. The disease-causing mutation, G551D, reduced ATP hydrolysis by NBD1/R/GST by increasing the K(M) for ATP fourfold. This suggests that when G551D occurs in patients with cystic fibrosis, it affects CFTR function by reducing the affinity of NBD1 for ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号