首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple actinomycete strains were isolated from two ant species, Lasius niger and Formica cunicularia, and their phenotypic properties and phylogenetic position were studied. Partial sequencing of 16S rRNA assigned the greater part of them to the genus Streptomyces, but only one belonged to Nocardia. However, some isolates had significant color and morphological differences from their closest phylogenetic relatives. The abundance and biodiversity of actinomycete communities isolated from L. niger ants greatly exceeded those found for F. cunicularia. All of the actinomycetes associated with F. cunicularia ants demonstrated cellulolytic activity, but only one had such ability among the strains associated with black ants.  相似文献   

2.
The characteristics of microbial communities of the anthills of Lasius niger compared to the soil beyond the area of the strong effect of ants is given.  相似文献   

3.
为了阐明固沙过程中蚂蚁群落结构分布特征及其对土壤性质的影响,在腾格里沙漠固沙植被区选取流动沙地以及5 a、8 a、34 a和57 a固沙植被区为研究样地,对不同样地蚂蚁群落的个体数、类群数以及蚁丘内外土壤理化性质进行测定,进而分析了不同样地蚂蚁群落分布特征及其与土壤因子间的关系。结果表明:(1)固沙植被区蚂蚁群落中的优势类群为掘穴蚁(Formica cunicularia),个体数占比为78.87%。(2)57 a固沙植被区蚂蚁密度显著低于8 a和34 a固沙植被区(P < 0.05);5 a固沙植被区蚂蚁类群数显著低于其他植被区(P < 0.05)。(3)57 a固沙植被区蚁丘中土壤含水量、土壤黏粒和土壤全钾显著高于非蚁丘,而土壤电导率和土壤粉粒显著低于非蚁丘(P < 0.05)。8 a和57 a固沙植被区蚁丘中土壤pH显著高于非蚁丘,8 a固沙植被区蚁丘中土壤有机碳显著高于非蚁丘,8 a和34 a固沙植被区蚁丘中土壤全氮显著高于非蚁丘(P < 0.05)。(4)蚂蚁群落组成与土壤粒径、电导率、pH、有机碳、全氮、全磷和有效磷含量的相关关系显著;偏RDA 结果表明,蚂蚁类群数是影响固沙区土壤理化性质的主要限制因子。综合表明,腾格里沙漠不同固沙年限植被区蚂蚁群落组成差异较大,更丰富的蚂蚁群落有利于改善土壤质地,促进土壤理化性质向良好的方向发展,对实现荒漠生态系统恢复起到推进作用。  相似文献   

4.
Yeast abundance and species diversity in the colonies of Formica aquilonia ants in birch–pine grass forest near Novosibirsk, Russia, were studied. The average yeast number in the anthill material was 103–104 CFU/g, reaching 105 CFU/g in the hatching chambers. Typical litter species (Trichosporon moniliiforme and Cystofilobasidium capitatum) were predominant in soil and litter around the anthills. Apart from these species, ascomycete species of the family Debaryomycetaceae, Debaryomyces hansenii, and Schwanniomyces vanrijiae were predominant in the anthill material. Yeast population of the ant’ bodies consisted exclusively of the members of the last two species. Thus, highly specific yeast communities formed in the colonies of Formica aquilonia ants differ from the communities of surrounding soil. These differences are caused by environment-forming activity of the ants.  相似文献   

5.
A typification of Moscow city habitats is undertaken, based on their consideration as mosaic of patches and using such fundamental parameters as habitat origin (soil type), floristic composition, vegetation structure, and area of the biotopes. Altogether, 11 habitat types are distinguished: lawns, agrocenoses, xerophytic and mesophytic meadows, tall weeds, boulevards, small degenerative parks, small oppressed artificial parks, landscape parks, forest parks, and technocenoses. Such a classification is primarily useful for studying ants. The present paper describes the basic structure of ant assemblages in most types of urban biocenoses. The main pool of Moscow’s ant species ranked by their occurrence is as follows: Lasius niger (87%), Myrmica rugulosa (44%), Myrmica rubra (33%), Formica cunicularia (11%), Myrmica ruginodis (10%), etc. Leaf litter removal with a rake was shown to negatively affect the numbers, biomass, and species diversity of ant communities in urban areas with trees. The most stable two-species ant community revealed in Moscow City, termed an “elementary urban community,” consists of L. niger and M. rugulosa, with the former always outnumbering the latter.  相似文献   

6.
Aphids, the main suppliers of energy-rich honeydew, play an important role in the life of ants. However, the data on the trophobiotic ant–aphid associations in the majority of regions are still limited. We present the first data on the ant–aphid relations in the south of Western Siberia. Investigations were carried out in the most typical biotopes of forest-steppe and steppe zones in the territory of Novosibirsk and Kurgan regions (Russia) during 1993–2014. There were revealed 35 species of ants and 198 species of aphids. Detected 456 ant–aphid associations involved 28 ant species and 134 myrmecophilous aphids. Seven ant species were found to consume honeydew of 9 non-myrmecophilous aphids, scraping it from the plant. This behaviour is typical of subdominant and subordinate ants which do not protect their foraging areas. Ants associate with various numbers of aphid species. About 36% of ants attended aphid colonies of less than 5 species. The largest number of myrmecophilous aphids is associated with L. niger (Linnaeus, 1758) (103 species), Formica pratensis Retzius, 1783 (50), Formica rufa group (25–33), F. (Serviformica) fusca Linnaeus, 1758 (26) and F. (S.) cunicularia Latreille, 1798 (27). Different ants play unequal roles in the formation of trophobiotic interactions with aphids. Due to complex territorial and foraging behaviour, including high functional specialization among honeydew collectors, dominant ants of Formica s. str. are one of the leaders in this process. The role of L. niger and Formica ants of the subgenus Serviformica requires further detailed investigation.  相似文献   

7.
It was found that ants significantly affect the physiological activity and functional diversity of soil microbial communities, and redistribution of biophilic elements (C and N) down through the profile occurs in anthills compared to the control soil, as well as their accumulation in the underground part of the ant nests. A high urease activity was revealed in ant nests and ants. Functional dissimilarities of bacterial communities in all studied objects were determined by the multisubstrate test.  相似文献   

8.
Ants are highly abundant generalist predators and important ecosystem engineers which can strongly affect the composition of animal communities. We manipulated the density of the ant species Lasius niger with baits in a small‐scale field experiment to study the role of intraguild predation, top‐down control and bottom‐up effects of ants in a dry grassland surrounded by agricultural fields. Two different kinds of baits (honey and tuna) were presented near to the nests and at a distance of 2 m from six L. niger colonies in a dry grassland habitat, where L. niger was a highly abundant, omnipresent species. The experiments were performed for 1 month in spring. Additionally, the natural abundance of L. niger varying with the distance to their nests was used to study the effects on spiders and potential prey groups. The activity of L. niger was significantly higher at tuna baits compared with that at honey baits and empty control dishes. We found no effects of higher activity of L. niger on the arthropod community. However, there is evidence for a facilitation effect of ants on Collembola near to their colonies, probably due to habitat modification, which also influenced the density of Linyphiidae. Both groups had up to four times higher denisities next to L. niger colonies than at a distance of 2 m. Furthermore, δ13C values demonstrated that linyphiid spiders and L. niger predominantly feed on Collembola. We conclude that there is no evidence of top‐down effects of L. niger in a grassland in spring, but we found a facilitation of linyphiid spiders and their prey by the ants, which acted as ecosystem engineers.  相似文献   

9.
The invasion of Solidago is one of the main threats to the biodiversity of natural meadows, leading to changes in animal and plant communities, as well as soil features. We compared effects of soil microclimatic conditions (temperature and moisture) and the availability of potential protein sources (dry mass of epigean invertebrates) on ants between meadows invaded by Solidago altissima and S. canadensis and those uninvaded. Our results showed that the ant communities were different between the uninvaded and invaded meadows, with reduction of ant abundance and species richness in the latter. Myrmica spp. were abundant in the uninvaded meadows, whereas Lasius niger was the dominant species in the invaded ones. We found that the lower moisture negatively influenced the abundance of Myrmica species in the Solidago‐invaded meadows. Moreover, the epigean invertebrate dry mass, as an estimation of the availability of protein sources, varied between the two types of meadows, with a higher abundance in the uninvaded ones. The abundance of Myrmica ants with narrower ecological requirements showed a positive correlation with the invertebrate biomass in the invaded meadows. In contrast, the abundance of L. niger with broad ecological requirements was negatively correlated with the invertebrate biomass in the invaded meadows, possibly as a strategy to reduce interspecific competition. Our study showed that the invasion of Solidago plants caused changes in the abundance and species composition of ant communities through modification in microhabitat conditions, that is, decreasing soil moisture, reducing biomass and changing distribution of prey invertebrates.  相似文献   

10.
The antLasius niger was observed collecting honeydew and preying on the two aphid speciesLachnus tropicalis andMyzocallis kuricola on the chestnut treesCastanea crenata. Observation determined how the antL. niger controlled their predation on the aphids in response to the density and honeydew-productivity of the aphids.Lachnus tropicalis was a better honeydew source thanM. kuricola forL. niger in terms of the amount of honeydew collected per unit time by the ants. The number of foraging workers on a tree increased with the number ofL. tropicalis on the tree, but not with the number ofM. kuricola. The density ofL. tropicalis perL. niger worker on a tree had a positive effect on the predation activity ofL. niger on both aphids, whereas the density ofM. kuricola per ant did not have any significant effect. The predation pressure by the ant which increased withL. tropicalis density, however, directed toM. kuricola rather than toL. tropicalis. These facts suggest (1) thatL. niger control their predation activities on aphids with regards to the densities of the attended aphids per worker, and (2) that the ants prey on the aphid species producing less honeydew. The effects of the ant predation on aphids and the importance of these predation effect in antaphids interactions were discussed.  相似文献   

11.
1. Invertebrates contribute largely to the decomposition of animal carcasses in natural ecosystems. However, we currently lack experimental evidence for the impact of predatory ants on carrion decomposition. Provided that many ant species display their role in the necrophilous community as predators but not as decomposers, we hypothesized that the ants would negatively affect the carrion decomposition rates by predating on other insect decomposers. 2. In a Tibetan alpine meadow, we conducted a one-factor designed field experiment involving three treatments, that is, 20, 60, and 500 cm of yak (Bos grunniens) carrion plots away from anthills (Camponotus herculeanus), which mirrored the high, intermediate, and low ant abundance, respectively. 3. Our results show that the necrophilous community assemblage differed significantly along the distance gradients from anthills, with the dominance of the necrophilous community shifting from ants in the 20 cm treatment to maggots in the 500 cm treatment. The ants significantly decreased the number of maggots through predation, resulting in a significant decrease of the carrion decomposition rates. However, ants did not change the number of other scavengers albeit they attacked them. 4. These results suggest that the predatory ant C. herculeanus can modify the carrion decomposition rates through generating a strong consumptive effect on decomposers, which is important to understand the necrophilous community assemblage and the decomposition of animal-based materials.  相似文献   

12.
The Iron Quadrangle in the state of Minas Gerais, Brazil, harbors ironstone outcrops locally known as cangas, which are historically under great anthropic pressure. The functions performed by ants in environments with severe edapho-climatic conditions, such as cangas, are poorly known. Considering the lack of studies and the potential role of ants in cangas, this study aimed to identify the taxonomic composition of the myrmecofauna that occurs in the soil of two campo rupestre areas (rupestral plant communities) on cangas under different anthropic impacts and evaluate the influence of seasonality and degree of degradation on the diversity and composition of the myrmecofauna. This is the first study to systematically investigate ant fauna collected with baits on ironstone outcrops. Sardine and honey baits were used in dry and rainy periods. Fourteen species distributed among ten genera belonging to five subfamilies were found. The total number of baits visited in the dry season was lower than in the rainy season. Both habitats had a reasonable similarity in their composition (Jaccard similarity index?=?0.571). Multivariate analyses suggest a greater similarity between areas than seasons. The diversity of ants in the cangas is low compared to other Cerrado environments where more than 20 species are frequently collected in these types of study. This low richness may be related to the adverse conditions characteristic of ironstone outcrops. We hope our data will help to expand the actions to manage and preserve cangas in the Iron Quadrangle.  相似文献   

13.
The following results on the behavior decision making of the antLasius niger toward two species of myrmecophilous aphidsLachnus tropicalis andMyzocallis kuricola on chestnut trees have been found. (1) An individual worker consistently attended only one aphid species, even if her nestmates attended other aphid species on the same tree. (2) The ants preyed less on the aphid species which they attended than on other myrmecophilous aphid species. (3) The ants preyed less on the aphids which had been attended by their nestmates, even if both aphids were the same species. (4) The ants preyed less on aphids which had provided honeydew to their nestmates. (5) The increased aphid density per ant led to an increase in the rate of predation on the introduced aphids by the ants. These results suggest that each worker ofL. niger chooses aphid species to attend from her experience. In addition, the workers can recognize whether an aphid has been attended by their nestmates and whether an aphid has given their nestmates honeydew. Through these processes, each worker decides to attend or to prey on the aphid. As a result, they may realize efficient collective foraging dependent on aphid density per worker.  相似文献   

14.
The Argentine ant, Linepithema humile (Mayr), is an invasive species that has been associated with various negative impacts in native communities around the world. These impacts, as for other invasive ants, are principally towards native ant species, and impacts on below-ground processes such as decomposition remain largely unexplored. We investigated the relationship between Argentine ants and invertebrate fauna, litter decomposition and soil microbial activity between paired invaded and uninvaded sites at two locations in Auckland, New Zealand, where there has been no research to date on their impacts. We examined the diversity and composition of invertebrate and microorganisms communities, and differences in soil and litter components. The composition of invertebrates (Order-level, ant and beetle species) was different between invaded and uninvaded sites, with fewer ants, isopods, amphipods, and fungus-feeding beetles at the invaded sites, whereas Collembola were more abundant at the invaded sites. There were significant differences in soil chemistry, including higher carbon and nitrogen microbial biomass at uninvaded sites. Several litter components were significantly different for Macropiper excelsum. The fibre content of litter was higher, and key nutrients (e.g. nitrogen) were lower, at invaded sites, indicating less breakdown of litter at invaded sites. A greater knowledge of the history of invasion at a site would clarify variation in the impacts of Argentine ants, but their persistence in the ground litter layer may have long-term implications for soil and plant health in native ecosystems.  相似文献   

15.
Camponotus is the second largest ant genus and known to harbor the primary endosymbiotic bacteria of the genus Blochmannia. However, little is known about the effect of diet and environment changes on the gut bacterial communities of these ants. We investigated the intestinal bacterial communities in the lab-raised and field-collected ants of Camponotus fragilis which is found in the southwestern United States and northern reaches of Mexico. We determined the difference of gut bacterial composition and distribution among the crop, midgut, and hindgut of the two types of colonies. Number of bacterial species varied with the methods of detection and the source of the ants. Lab-raised ants yielded 12 and 11 species using classical microbial culture methods and small-subunit rRNA genes (16S rRNAs) polymerase chain reaction-restriction fragment-length polymorphism analysis, respectively. Field-collected ants yielded just 4 and 1–3 species using the same methods. Most gut bacterial species from the lab-raised ants were unevenly distributed among the crop, midgut, and hindgut, and each section had its own dominant bacterial species. Acetobacter was the prominent bacteria group in crop, accounting for about 55 % of the crop clone library. Blochmannia was the dominant species in midgut, nearly reaching 90 % of the midgut clone library. Pseudomonas aeruginosa dominated the hindgut, accounting for over 98 % of the hindgut clone library. P. aeruginosa was the only species common to all three sections. A comparison between lab-raised and field-collected ants, and comparison with other species, shows that gut bacterial communities vary with local environment and diet. The bacterial species identified here were most likely commensals with little effect on their hosts or mild pathogens deleterious to colony health.  相似文献   

16.
Considerably fewer spores of Bacillus stearothermophilus, B. megaterium, and Clostridium sporogenes were recovered than were spores of B. subtilis var. niger and Aspergillus niger after 4 to 5 days at 53 and 60 C in ultrahigh vacuum. There were no significant differences in the recoveries of these five organisms at 25 C and atmospheric pressure, and after exposure to 25 and -190 C in vacuum. At 60 C, a far greater decrease in viability was demonstrated for B. stearothermophilus, B. megaterium, and C. sporogenes in ultrahigh vacuum than at atmospheric pressure. Viable B. subtilis var. niger spores were not detected in an initial 107 spores after retention at 90 C and ultrahigh vacuum, and 104 spores were viable after 5 days at 90 C and atmospheric pressure from an initial 106 spores. Molds and actinomycetes in soil were particularly resistant up to 69 C in vacuum. Actinomycetes were the only soil organisms recovered so far at 120 C.  相似文献   

17.
Seed dispersal mutualisms are essential to ensure the survival of diverse plant species and communities worldwide. Here, we investigated whether the invasive Argentine ant can replace native ants by fulfilling their functional role in the seed dispersal of the rare and threatened endemic myrmecochorous plant, Anchusa crispa, in Corsica (France). Our study addressed the potential of Linepithema humile to disperse elaiosome-bearing seeds of A. crispa, examining L. humile’s effects on (1) the composition of communities of ants removing seeds, (2) the number of seed removals, (3) seed preference, (4) the distance of seed dispersion, and (5) seed germination. We caught seven native species at the control site, but only the Argentine ant at invaded sites. L humile removed A. crispa seeds in greater numbers than did native ants, respectively 66 and 23%, probably due to their higher worker density. The invader was similar to native ants with respect to distance of seed transport. Finally, rates of seed germination were not significantly different between seeds previously in contact with either Argentine ants or not. Taken all together, these results suggest that the Argentine ant is unlikely to pose a threat to A. crispa population. These results have important implications for the management of this rare and threatened endemic plant and provide an example of non-negative interactions between invasive and native species.  相似文献   

18.
Legumes, especially acacias, are considered amongst the most successful invaders globally. However there is still very little known about the role of soil microbial communities in their invasion success in novel ranges. We examined the role of the soil microbial community in the invasion success of four Acacia species (A. cyclops, A. longifolia, A. melanoxylon and A. saligna) and a close relative Paraserianthes lophantha, introduced into novel regions within Australia using a “black-box” approach. Seed and soil material were collected from multiple populations within each species’ native and introduced range within Australia and used in a plant-soil feedback experiment to assess the effect of the soil microbial community on plant growth and nodulation. We found no effect, either positive or negative, of soil origin on species’ performance, however there was a significant interaction between species and seed origin. Seed origin had a significant effect on the biomass of two species, A. cyclops and A. saligna. A. cyclops plants from the native range performed better across all soils than plants from the introduced range. The opposite trend was observed for A. saligna, with plants from the introduced range performing better overall than plants from the native range. Seed or soil origin did not have a significant effect on the presence and number of nodules suggesting that rhizobia do not constrain the invasion success of these legumes. Our results suggest that plant-soil feedbacks are unlikely to have played a significant role in the invasion success of these five species introduced into novel regions within Australia. This may be due to the widespread occurrence of acacias and their associated soil microbial communities throughout the Australian continent.  相似文献   

19.
The abundance of microbes in soil is thought to be strongly influenced by plant productivity rather than by plant species richness per se. However, whether this holds true for different microbial groups and under different soil conditions is unresolved. We tested how plant species richness, identity and biomass influence the abundances of arbuscular mycorrhizal fungi (AMF), saprophytic bacteria and fungi, and actinomycetes, in model plant communities in soil of low and high fertility using phospholipid fatty acid analysis. Abundances of saprophytic fungi and bacteria were driven by larger plant biomass in high diversity treatments. In contrast, increased AMF abundance with larger plant species richness was not explained by plant biomass, but responded to plant species identity and was stimulated by Anthoxantum odoratum. Our results indicate that the abundance of saprophytic soil microbes is influenced more by resource quantity, as driven by plant production, while AMF respond more strongly to resource composition, driven by variation in plant species richness and identity. This suggests that AMF abundance in soil is more sensitive to changes in plant species diversity per se and plant species composition than are abundances of saprophytic microbes.  相似文献   

20.
Heller NE  Sanders NJ  Shors JW  Gordon DM 《Oecologia》2008,155(2):385-395
Climate change may exacerbate invasions by making conditions more favorable to introduced species relative to native species. Here we used data obtained during a long-term biannual survey of the distribution of ant species in a 481-ha preserve in northern California to assess the influence of interannual variation in rainfall on the spread of invasive Argentine ants, Linepithema humile, and the displacement of native ant species. Since the survey began in 1993, Argentine ants have expanded their range into 74 new hectares. Many invaded hectares were later abandoned, so the range of Argentine ants increased in some years and decreased in others. Rainfall predicted both range expansion and interannual changes in the distribution of Argentine ants: high rainfall, particularly in summer months, promoted their spread in the summer. This suggests that an increase in rainfall will promote a wider distribution of Argentine ants and increase their spread into new areas in California. Surprisingly, the distribution of two native ant species also increased following high rainfall, but only in areas of the preserve that were invaded by L. humile. Rainfall did not have a negative impact on total native ant species richness in invaded areas. Instead, native ant species richness in invaded areas increased significantly over the 13 years of observation. This suggests that the impact of Argentine ants on naïve ant communities may be most severe early in the invasion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号