首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During Arabidopsis flower development a set of homeotic genes plays a central role in specifying the distinct floral organs of the four whorls, sepals in the outermost whorl, and petals, stamens, and carpels in the sequentially inner whorls. The current model for the identity of the floral organs includes the SEPALLATA genes that act in combination with the A, B and C genes for the specification of sepals, petals, stamens and carpels. According to this new model, the floral organ identity proteins would form different complexes of proteins for the activation of the downstream genes. We show that the presence of SEPALLATA proteins is needed to activate the AG downstream gene SHATTERPROOF2, and that SEPALLATA4 alone does not provide with enough SEPALLATA activity for the complex to be functional. Our results suggest that CAULIFLOWER may be part of the protein complex responsible for petal development and that it is fully required in the absence of APETALA1 in 35S::SEP3 plants. In addition, genetic and molecular experiments using plants constitutively expressing SEPALLATA3 revealed a new role of SEPALLATA3 in activating other B and C function genes. We molecularly prove that the ectopic expression of SEPALLATA3 is sufficient to ectopically activate APETALA3 and AGAMOUS. Remarkably, plants that constitutively express both SEPALLATA3 and LEAFY developed ectopic petals, carpels and ovules outside of the floral context.  相似文献   

2.
S A Kempin  M A Mandel    M F Yanofsky 《Plant physiology》1993,103(4):1041-1046
Mutations in the AGAMOUS (AG) gene of Arabidopsis thaliana result in the conversion of reproductive organs, stamens and carpels, into perianth organs, sepals and petals. We have isolated and characterized the putative AG gene from Nicotiana tabacum, NAG1, whose deduced protein product shares 73% identical amino acid residues with the Arabidopsis AG gene product. RNA tissue in situ hybridizations show that NAG1 RNA accumulates early in tobacco flower development in the region of the floral meristem that will later give rise to stamens and carpels. Ectopic expression of NAG1 in transgenic tobacco plants results in a conversion of sepals and petals into carpels and stamens, respectively, indicating that NAG1 is sufficient to convert perianth into reproductive floral organs.  相似文献   

3.
A mathematical model simulating spatial pattern formation (positioning) of floral organs is proposed. Computer experiment with this model demonstrated the following sequence of spatial pattern formation in a typical cruciferous flower: medial sepals, carpels, lateral sepals, long stamens, petals, and short stamens. The positioning was acropetal for the perianth organs and basipetal for the stamens and carpels. Organ type specification and positioning proceed non-simultaneously in different floral parts and organ type specification goes ahead of organ spatial pattern formation. Computer simulation of flower development in several mutants demonstrated that the AG and AP2 genes determine both organ type specification and formation of the zones for future organ development. The function of the AG gene is to determine the basipetal patterning zones for the development of the reproductive organs, while the AP2 gene maintains proliferative activity of the meristem establishing the acropetal patterning zone for the development of the perianth organs.  相似文献   

4.
B-function genes determine the identity of petals and stamens in the flowers of model plants such as Arabidopsis and Antirrhinum . Here, we show that a putative B-function gene BpMADS2 , a birch homolog for PISTILLATA , is expressed in stamens and carpels of birch inflorescences. We also present a novel birch gene BpMADS8 , a homolog for APETALA3 / DEFICIENS , which is expressed in stamens. Promoter-GUS analysis revealed that BpMADS2 promoter is active in the receptacle of Arabidopsis flower buds while BpMADS8 promoter is highly specific in mature stamens. BpMADS2 promoter:: BARNASE construct prevented floral organ development in Arabidopsis and tobacco. In birch, inflorescences with degenerated stamens and carpels were obtained. BpMADS8::BARNASE resulted in degeneration of stamens in Arabidopsis and birch causing male sterility. In tobacco, only sepals were developed instead of normal flowers. The results show that the BpMADS2::BARNASE construct can be used to specifically disrupt floral organ development in phylogenetically distant plant species. The stamen-specific promoter of BpMADS8 is a promising tool for biotechnological applications in inducing male sterility or targeting gene expression in the late stamen development.  相似文献   

5.
In many flowering plants, flowers consist of two peripheral organs, sepals and petals, occurring in outer two whorls, and two inner reproductive organs, stamens and carpels. These organs are arranged in a concentric pattern in a floral meristem, and the organ identity is established by the combined action of floral homeotic genes expressed along the whorls. Floral organ primordia arise at fixed positions in the floral meristem within each whorl. The RABBIT EARS (RBE) gene is transcribed in the petal precursor cells and primordia, and regulates petal initiation and early growth in Arabidopsis thaliana. We investigated the spatial and temporal expression pattern of a RBE protein fused to the green fluorescent protein (GFP). Expression of the GFP:RBE fusion gene under the RBE cis-regulatory genomic fragment rescues the rbe petal defects, indicating that the fusion protein is functional. The GFP signal is located to the cells where RBE is transcribed, suggesting that RBE function is cell-autonomous. Ectopic expression of GFP:RBE under the APETALA1 promoter causes the homeotic conversion of floral organs, resulting in sterile flowers. In these plants, the class B homeotic genes APETALA3 and PISTILLATA are down-regulated, suggesting that the restriction of the RBE expression to the petal precursor cells is crucial for flower development.  相似文献   

6.

Background

The genus Aquilegia is an emerging model system in plant evolutionary biology predominantly because of its wide variation in floral traits and associated floral ecology. The anatomy of the Aquilegia flower is also very distinct. There are two whorls of petaloid organs, the outer whorl of sepals and the second whorl of petals that form nectar spurs, as well as a recently evolved fifth whorl of staminodia inserted between stamens and carpels.

Methodology/Principal Findings

We designed an oligonucleotide microarray based on EST sequences from a mixed tissue, normalized cDNA library of an A. formosa x A. pubescens F2 population representing 17,246 unigenes. We then used this array to analyze floral gene expression in late pre-anthesis stage floral organs from a natural A. formosa population. In particular, we tested for gene expression patterns specific to each floral whorl and to combinations of whorls that correspond to traditional and modified ABC model groupings. Similar analyses were performed on gene expression data of Arabidopsis thaliana whorls previously obtained using the Ath1 gene chips (data available through The Arabidopsis Information Resource).

Conclusions/Significance

Our comparative gene expression analyses suggest that 1) petaloid sepals and petals of A. formosa share gene expression patterns more than either have organ-specific patterns, 2) petals of A. formosa and A. thaliana may be independently derived, 3) staminodia express B and C genes similar to stamens but the staminodium genetic program has also converged on aspects of the carpel program and 4) staminodia have unique up-regulation of regulatory genes and genes that have been implicated with defense against microbial infection and herbivory. Our study also highlights the value of comparative gene expression profiling and the Aquilegia microarray in particular for the study of floral evolution and ecology.  相似文献   

7.
8.

Background and Aims

The study of variation in number, position and type of floral organs may serve as a key to understanding the mechanisms underlying their variation, and will make it possible to improve the analysis of gene function in model plant species by means of a more accurate characterization of mutant phenotypes. The present analysis was carried out in order to understand the correlation between number and position of floral organs in Arabidopsis thaliana.

Methods

An analysis of number and position of organs in flowers of wild type as well as in a series of mutations with floral organ position alterations was carried out, using light and electron microscopy. Variation common to different genotypes was analysed by means of individual diagrams, upon which generalized diagrams depicting variation in number and position of organs, were built by superimposition.

Key Results and Conclusions

It is shown that in the Arabidopsis flower a correlation exists between positions of petals and sepals, as well as between positions of stamens and carpels, whereas the position of carpels does not seem to depend on number and position of petals and stamens. This suggests that the position of organs in the basal (sepals) and apical (carpels) parts of the flower are determined before that in the intermediate zone. This assumption is consistent with the results of mathematical modelling and is supposed to be the consequence of stem-cell activity in the flower.  相似文献   

9.
Eucalypt MADS-Box Genes Expressed in Developing Flowers   总被引:10,自引:0,他引:10       下载免费PDF全文
Three MADS-box genes were identified from a cDNA library derived from young flowers of Eucalyptus grandis W. Hill ex Maiden. The three egm genes are single-copy genes and are expressed almost exclusively in flowers. The egm1 and egm3 genes shared strongest homology with other plant MADS-box genes, which mediate between the floral meristem and the organ-identity genes. The egm3 gene was also expressed strongly in the receptacle or floral tube, which surrounds the carpels in the eucalypt flower and bears the sepals, petals, and numerous stamens. There appeared to be a group of genes in eucalypts with strong homology with the 3′ region of the egm1 gene. The egm2 gene was expressed in eucalypt petals and stamens and was most homologous to MADS-box genes, which belong to the globosa group of genes, which regulate organogenesis of the second and third floral whorls. The possible role of these three genes in eucalypt floral development is discussed.  相似文献   

10.
Among the homeotic mutants with altered floral organs, two mutants of Arabidopsis thaliana, apetala3 and pistillata, and two mutants of Antirrhinum majus, deficiens and globosa, have a homeotic conversion of the floral organs in whorl 2 and 3, namely petals to sepals and stamens to carpels. We have isolated a homologue of the DEFICIENS gene from A. thaliana wild type and shown complete complementation of apetala3 mutation by introducing the isolated gene using Agrobacterium-mediated transformation. These results show that the APETALA3 is a homologue of DEFICIENS structurally and functionally. The 5-upstream region of APETALA3 contains three SRE-like sequence, where MADS box-containing proteins are assumed to bind and regulate expression in tissue-and stage-specific manner.  相似文献   

11.
12.
13.
14.
The floral homeotic C function gene AGAMOUS (AG) plays crucial roles in Arabidopsis development by specifying stamen and carpel identity, repressing A-class genes, as well as regulating floral meristem determination. Although the function of AG homologs from other core eudicots appears highly conserved, the role of AG orthologs in the design of floral architecture in basal angiosperm remains unknown. We isolated and identified an AG ortholog from Magnolia wufengensis, a woody basal angiosperm belonging to the Magnoliaceae. Sequence and phylogenetic analyses revealed that it is a clade member of the euAG lineage, and hence, the gene is referred to as MAwuAG (M. wu fengensis AGAMOUS). Moreover, two highly conserved motifs specific to C proteins, AG motifs I and II, are found in the C-terminal regions of the MAwuAG protein, but the N-terminal extensions that usually appear in euAG lineage members from eudicots were not found in MAwuAG. The cDNA has the first in-frame ATG immediately preceding the MADS domain. A semi-quantitative PCR analysis showed that the expression of MAwuAG was restricted to reproductive organs of stamens and carpels. The transgenic Arabidopsis containing 35S::MAwuAG displayed extremely early flowering, bigger stamens and carpels, and homeotic conversion of petals into staminoid organs, but ectopic expression of MAwuAG in the first whorls failed to convert the sepals into carpeloid structures that are usually observed in the overexpression transgenic Arabidopsis of AG orthologs from other core eudicots. In addition, the phenotype of the transgenic 35S::MAwuAG Arabidopsis revealed that the abscission of the outer three floral whorls (sepals, petals, and stamens) was inhibited.  相似文献   

15.
The Arabidopsis floral organ identity genes APETALA3 (AP3) and PISTILLATA (PI) encode related DNA-binding proteins of the MADS family. Considerable evidence supports the hypothesis that a heterodimer of AP3 and PI is an essential component of B class activity. All ap3 and pi alleles characterized to date exhibit equivalent phenotypic defects in both whorls 2 and 3. In strong ap3 and pi mutants, petals and stamens are missing and sepals and carpels develop in their place. Weak ap3 and pi mutants exhibit partial conversions of petals to sepals and stamens to carpels. In this report, we describe the isolation and characterization of pi-5, an unusual B class mutant that exhibits defects in whorl 2 where sepals develop in place of petals, but third whorl stamens are most often normal. pi-5 flowers resemble those from 35S::SEP3 antisense plants. pi-5 contains missense mutation in the K domain (PIE125K). PIE125K exhibits defects in heterodimerization with its partner protein AP3. Via a reverse yeast two-hybrid screen, AP3K139E was isolated as a compensatory mutant of PIE125K. The compensatory interaction between PIE125K and AP3K139E is observed both in yeast two-hybrid assays and in planta. On its own, AP3K139E exhibits defects in specifying both petal and stamen identity. In addition, PIE125K is defective in interaction with SEPALLATA proteins in both two- and three-hybrid assays suggesting that PIE125K is defective in forming higher order complexes of MADS proteins. The decreased concentration of PI/AP3/SEP complexes offers an explanation for the petal defects observed in both pi-5 and 35S::SEP3 antisense plants.  相似文献   

16.
Impatiens is a highly diversified genus with remarkable zygomorphic flowers. Floral ontogeny of three species of Impatiens has recently been studied, which suggested that, during the course of evolution, the anterolateral sepals become reduced and that these rudimentary sepals fuse postgenitally or congenitally with the anterior petal. All three belong to the majority type with five carpels and no mature anterolateral sepals. However, a few species of Impatiens have four carpels and two well-developed mature anterolateral sepals, and their floral development has never been examined. From a comparative-ontogenetic viewpoint, we explore the mechanism of formation of well-developed anterolateral sepals and four carpels in I. chishuiensis with five sepals and four carpels. The results show that, if anterolateral sepals are present, their early development statuses will likely influence whether or not the sepals can fully develop later, and that the initiation and development of five stamens have an effect on the shapes of floral apexes, eventually resulting in congenital fusion of two adaxial carpels. Furthermore, we discuss the systematic and evolutional value of floral early development data.  相似文献   

17.
We examined the floral development of Dichocarpum fargesii, Thalictrum fargesii, Thalictrum przewalskii, and Aquilegia yabeana in Thalictroideae, Ranunculaceae, by scanning electron microscope. The sepals are initiated spirally in D. fargesii and A. yabeana, and in two pairs (with four sepals) or spirally (with five sepals) in T. fargesii and T. przewalskii. The petals in D. fargesii and A. yabeana and the stamens and carpels are initiated in a whorled pattern in all three genera. The floral phyllotaxis is whorled in these genera. The primordia of sepals are lunular and truncate, but that of petals and/or stamens are hemispherical, rounded, and much smaller than the sepal primordia. A relatively long plastochron exists between the last sepal and the first petal in D. fargesii and A. yabeana or the first stamen in T. fargesii and T. przewalskii. The similarity between the primordia of petals and stamens may indicate an evolutionary relationship between petals and stamens. The petals develop slower than the stamens in D. fargesii, but faster than stamens in A. yabeana. The early developmental stages of the staminodes in A. yabeana are similar to that of stamens, so they may be phylogenetically homologous organs. The carpel primordia are initiated in a single whorl; are lunular in shape and plicate in A. yabeana and D. fargesii; and are initiated spirally and hemispheric in shape and ascidiate in T. fargesii and T. przewlaskii. The stigma is everted and decurrent with unicellular papillae in T. fargesii and T. przewalskii; the head has unicellular papillae in D. fargesii and is smooth in A. yabeana. The floral development features of Aquilegia are unique in Thalictroideae.  相似文献   

18.
罗敏蓉 《广西植物》2020,40(11):1645-1652
花的发生和发育过程研究可以发现早期进化的轨迹,为系统发育的研究提供重要线索。蓝堇草属(Leptopyrum)为毛茛科唐松草亚科一单种属,仅包含蓝堇草一种,其花的发生和发育过程仍为空白。为了深入理解唐松草亚科乃至毛茛科花发育多样性和演化规律,该文运用扫描电子显微镜(SEM)观察了蓝堇草各轮花器官的形态发生和发育过程。结果表明:该属植物所有的萼片、花瓣、雄蕊和雌蕊均为螺旋状发生,花器官排列式样也为螺旋状; 5枚萼片原基宽阔,5枚花瓣原基圆球形、位于萼片原基的间隔,且在后期表现为延迟发育现象,雄蕊原基较小、为圆球形;花瓣原基和雄蕊原基连续发生,无明显的时空间隔,但与萼片原基有时空间隔;心皮原基为马蹄形对折,柱头组织由单细胞乳突组成;胚珠倒生、具单珠被。该属花器官螺旋状排列、胚珠具单珠被在唐松草亚科中是独有的性状,花发育形态学证据支持了该属的特殊性。  相似文献   

19.
The ABC model of flower organ identity is widely recognized as providing a framework for understanding the specification of flower organs in diverse plant species. Recent studies in Arabidopsis thaliana have shown that three closely related MADS-box genes, SEPALLATA1 (SEP1), SEP2 and SEP3, are required to specify petals, stamens, and carpels because these organs are converted into sepals in sep1 sep2 sep3 triple mutants. Additional studies indicate that the SEP proteins form multimeric complexes with the products of the B and C organ identity genes. Here, we characterize the SEP4 gene, which shares extensive sequence similarity to and an overlapping expression pattern with the other SEP genes. Although sep4 single mutants display a phenotype similar to that of wild-type plants, we find that floral organs are converted into leaf-like organs in sep1 sep2 sep3 sep4 quadruple mutants, indicating the involvement of all four SEP genes in the development of sepals. We also find that SEP4 contributes to the development of petals, stamens, and carpels in addition to sepals and that it plays an important role in meristem identity. These and other data demonstrate that the SEP genes play central roles in flower meristem identity and organ identity.  相似文献   

20.
G N Drews  J L Bowman  E M Meyerowitz 《Cell》1991,65(6):991-1002
We characterized the distribution of AGAMOUS (AG) RNA during early flower development in Arabidopsis. Mutations in this homeotic gene cause the transformation of stamens to petals in floral whorl 3 and of carpels to another ag flower in floral whorl 4. We found that AG RNA is present in the stamen and carpel primordia but is undetectable in sepal and petal primordia throughout early wild-type flower development, consistent with the mutant phenotype. We also analyzed the distribution of AG RNA in apetela2 (ap2) mutant flowers. AP2 is a floral homeotic gene that is necessary for the normal development of sepals and petals in floral whorls 1 and 2. In ap2 mutant flowers, AG RNA is present in the organ primordia of all floral whorls. These observations show that the expression patterns of the Arabidopsis floral homeotic genes are in part established by regulatory interactions between these genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号